JPH0458589B2 - - Google Patents

Info

Publication number
JPH0458589B2
JPH0458589B2 JP24904883A JP24904883A JPH0458589B2 JP H0458589 B2 JPH0458589 B2 JP H0458589B2 JP 24904883 A JP24904883 A JP 24904883A JP 24904883 A JP24904883 A JP 24904883A JP H0458589 B2 JPH0458589 B2 JP H0458589B2
Authority
JP
Japan
Prior art keywords
collimator
spacer
flat plate
radiation
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24904883A
Other languages
Japanese (ja)
Other versions
JPS60144683A (en
Inventor
Tokuyuki Shibahara
Tsunekazu Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24904883A priority Critical patent/JPS60144683A/en
Publication of JPS60144683A publication Critical patent/JPS60144683A/en
Publication of JPH0458589B2 publication Critical patent/JPH0458589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、シンチレーシヨンカメラなどにお
いて所定方向の放射線のみを通過させて検出器に
入射させるのに用いるコリメータの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a collimator used in a scintillation camera or the like to allow only radiation in a predetermined direction to pass and enter a detector.

(ロ) 従来技術 従来より、芯材で埋められた六角パイプを短い
一定の長さに切断し、これをならべて相互に結合
した後芯材を溶解除去して多孔ハニカム構造体を
作り、これをコリメータとする方法が知られてい
る(特開昭52−133872号、同53−12679号、同55
−7672号等を参照)。
(b) Conventional technology Conventionally, a hexagonal pipe filled with a core material is cut into short, constant lengths, which are lined up and bonded together, and the core material is then melted and removed to create a porous honeycomb structure. A method is known in which the collimator is used as a collimator.
-Refer to No. 7672, etc.).

しかし、この方法では、製造工程が複雑で、均
一にすることが難しくて、精度的に満足するもの
が得られない欠点があり、さらに製造コストも高
いという欠点がある。
However, this method has the disadvantage that the manufacturing process is complicated, it is difficult to make it uniform, and it is difficult to obtain a product with satisfactory accuracy, and furthermore, the manufacturing cost is high.

(ハ) 目的 この発明は、より簡単で、精度向上も容易で、
且つ、製造コストを安くできる放射線用コリメー
タの製造方法を提供することを目的とする。
(C) Purpose This invention is simpler, easier to improve accuracy,
Another object of the present invention is to provide a method for manufacturing a radiation collimator that can reduce manufacturing costs.

(ニ) 構成 この発明によれば、まず、放射線用隔壁板とス
ペーサとが1つの平面方向に交互にならんで接着
されて一体になつた1枚の平板をつくり、つぎ
に、上記平板の周囲に枠体を設けるとともに両面
に補強シートを取り付け、その後、上記スペーサ
を溶解除去する。
(D) Structure According to the present invention, first, radiation bulkhead plates and spacers are glued together alternately in one planar direction to form a single flat plate, and then the periphery of the flat plate is A frame body is provided and reinforcing sheets are attached to both sides, and then the spacer is dissolved and removed.

(ホ) 実施例 まず、第1図に示すように、鉛等の厚さtの放
射線用隔壁板1とアルミニウムの厚さdのスペー
サ2とを積層し、これらを接着剤で接着する。そ
の後実線で示すように幅dに切断し、さらに点線
のように幅aに切断する。すると、第2図に示す
ような高さaで幅dの細長いブロツク3が切り出
されることになる。このブロツク3を第2図のよ
うに1つの平面上に並べ、且つそれらの間に高さ
aで厚さtの細長い上記の隔壁板1と同様の隔壁
板4を挿入する。こうしてこれらを接着し一体化
して、1つの平板を形成する。この平板では多数
のスペーサ2をそれぞれ縦d、横d、高さaとな
つており、その周囲の4片が隔壁板1,4で囲ま
れることになる。
(e) Example As shown in FIG. 1, first, a radiation bulkhead plate 1 made of lead or the like having a thickness t and a spacer 2 made of aluminum having a thickness d are laminated and bonded together with an adhesive. Thereafter, it is cut into a width d as shown by the solid line, and further into a width a as shown by the dotted line. Then, an elongated block 3 having a height a and a width d as shown in FIG. 2 is cut out. The blocks 3 are arranged on one plane as shown in FIG. 2, and an elongated partition plate 4 similar to the above-mentioned partition plate 1 having a height a and a thickness t is inserted between them. In this way, these are bonded and integrated to form one flat plate. In this flat plate, a large number of spacers 2 each have a length d, a width d, and a height a, and the four pieces around them are surrounded by the partition plates 1 and 4.

つぎに、この実施例では、上記の平板を円形に
切断し、周囲に第3図に示すように鉛等でなる枠
体5を固定し、上下の両面に網目状あるいはハニ
カム構造のシートなどの多孔の補強シート6を接
着剤で貼り付ける。
Next, in this embodiment, the above-mentioned flat plate is cut into a circular shape, a frame body 5 made of lead or the like is fixed around it as shown in FIG. A porous reinforcing sheet 6 is pasted with adhesive.

その後、第3図に示す一体物を、カセイソーダ
液に浸し、アルミニウムのスペーサ2を溶解して
除去する。すると、スペーサ2の部分が空洞とな
つた格子状の構造のコリメータが出上り、各空洞
は断面がd×dの正方形で長さaの貫通孔とな
る。この貫通孔は放射線の通過孔となり、中空で
あつて中には放射線吸収体が何も存在しないので
感度低下をもたらすことがない。
Thereafter, the integral body shown in FIG. 3 is immersed in a caustic soda solution, and the aluminum spacer 2 is dissolved and removed. Then, a collimator having a lattice-like structure in which the spacer 2 is hollow comes out, and each hollow becomes a through hole with a square cross section of d×d and a length a. This through hole serves as a passage hole for radiation, and since it is hollow and does not contain any radiation absorber, there is no reduction in sensitivity.

ここで、枠体5は周辺での放射線の漏れを防止
するとともにコリメータの補強をする役目を果
す。また、多孔シート6は、スペーサ2が除去さ
れて隔壁板1,4のみとなつたときに、この隔壁
板1,4のみではその材質が鉛等であつてしかも
厚さtが薄いこともあるので、強度的な不安を解
消するため設けられるものである。そのため、こ
のシート6は放射線に対して減衰係数が小さく、
しかもカセイソーダに対して不活性な材質である
必要がある。多孔としたのはカセイソーダを浸透
させるためである。また、多孔シート6の各孔の
大きさは放射線透過用貫通孔の大きさと同程度と
することが望ましい。
Here, the frame body 5 serves to prevent radiation leakage in the periphery and to reinforce the collimator. Furthermore, when the spacer 2 is removed and only the partition plates 1 and 4 are left, the porous sheet 6 may be made of lead or the like and have a small thickness t. Therefore, it was established to eliminate severe anxiety. Therefore, this sheet 6 has a small attenuation coefficient for radiation.
Furthermore, the material must be inert to caustic soda. The reason for making it porous is to allow the caustic soda to penetrate. Further, it is desirable that the size of each hole in the porous sheet 6 be approximately the same as the size of the radiation transmission through hole.

なお、この実施例では、第1図の積層体から2
回切断を行なつて第2図のブロツク3をつくるよ
うにしたが、第4図に示すように幅dで厚さtの
隔壁板7と幅d厚さdのスペーサ8とを並べて接
着した後、これを幅aに切断して第2図のブロツ
ク3をつくるようにしてもよい。
In addition, in this example, 2
The block 3 shown in Fig. 2 was made by cutting twice, but as shown in Fig. 4, a partition plate 7 having a width d and a thickness t and a spacer 8 having a width d and a thickness d were lined up and glued together. Thereafter, this may be cut to a width a to form the block 3 shown in FIG.

また、上記では正方形孔のコリメータを製造し
たが、ECT装置用の長方形孔のコリメータも寸
法を変更するだけで容易に製造することができ
る。さらにスラントホールコリメータ(傾斜型コ
リメータ)も、第1図または第4図で幅aに切断
するとき、その切断面を所定角度に傾斜させれば
その傾斜角度を有するものとして容易に製造でき
る。
Furthermore, although a square-hole collimator was manufactured above, a rectangular-hole collimator for an ECT device can also be easily manufactured by simply changing the dimensions. Further, a slant hole collimator (inclined collimator) can also be easily manufactured by inclining the cut surface at a predetermined angle when cutting the width a in FIG. 1 or FIG. 4.

つぎに第2の実施例のついて説明する。上記の
第1の実施例では正方形孔を多数有する2次元コ
リメータを製造したが、この第2の実施例では平
板1次元コリメータを製造する。第5図のよう
に、薄板状の細長い隔壁板9とスペーサ10とを
交互に配列し、これらを接着剤で固定して1つの
平板状一体物を形成する。その後周囲に枠体を設
け両面に多孔補強シートを取り付け、(第3図参
照)、さらにカセイソーダ液に浸してスペーサ1
0を溶解除去する点は上記の第1の実施例と同様
である。
Next, a second embodiment will be explained. In the first embodiment described above, a two-dimensional collimator having a large number of square holes was manufactured, but in this second embodiment, a flat one-dimensional collimator was manufactured. As shown in FIG. 5, elongated thin partition plates 9 and spacers 10 are arranged alternately and fixed with an adhesive to form one flat integral body. After that, a frame is provided around it, a porous reinforcing sheet is attached to both sides (see Figure 3), and the spacer 1 is soaked in caustic soda solution.
The point of dissolving and removing 0 is the same as in the first embodiment described above.

なお、この実施例で、焦点型コリメータのよう
に構造が複雑なコリメータを製造する場合には、
上記のように貼り合わせるのでなく、第6図に示
すように、まずアルミニウムのスペーサ11で型
をつくりこの型の空間内に鉛12を流し込んで鋳
造法により平板状一体物を形成するようにしても
よい。この場合鉛12が隔壁板となる訳である。
In addition, in this example, when manufacturing a collimator with a complicated structure such as a focal type collimator,
Instead of pasting them together as described above, as shown in Figure 6, a mold is first made with aluminum spacers 11, lead 12 is poured into the space of this mold, and a flat plate-like integral body is formed by casting. Good too. In this case, the lead 12 becomes the partition plate.

こうして製造された平板1次元コリメータは、
平板1次元コリメータとして使用できることは勿
論であるが、2個用い、これらを、両者の方向が
直角になるようにして重ね合わせれば、平板2次
元コリメータとして使用可能である。また、この
ように組み合わせることができるので、種々の平
板1次元コリメータを製造しておき、それらを自
在に着脱することにより種々の平板2次元コリメ
ータとして使用することが可能となる。
The flat plate one-dimensional collimator manufactured in this way is
It goes without saying that it can be used as a flat one-dimensional collimator, but it can also be used as a flat two-dimensional collimator by using two pieces and stacking them so that their directions are at right angles. Furthermore, since they can be combined in this way, it is possible to manufacture various flat plate one-dimensional collimators and use them as various flat plate two-dimensional collimators by freely attaching and detaching them.

また、上記の平板1次元コリメータを2個重ね
合わせたような平板2次元コリメータを最初から
一体に製造することもできる。これが第3の実施
例である。つまり、第7図に示すように、隔壁板
9とスペーサ10とが交互に並ぶ平板状一体物1
3,14(これらは第5図で説明したと同様の方
法でつくられる)を、それらの方向が直角となる
ようにして重ね合わせ、接着剤で貼り合わせる。
その後周囲に枠体を設け両面に多孔補強シートを
取り付け(第3図参照)、さらにカセイソーダ液
に浸してスペーサ10の溶解除去する点は上記の
第1の実施例と同様である。こうして一体になつ
た平板2次元コリメータが製造できる。
Moreover, a flat plate two-dimensional collimator, such as two flat plate one-dimensional collimators stacked one on top of the other, can also be manufactured integrally from the beginning. This is the third embodiment. In other words, as shown in FIG.
3 and 14 (which are made in the same manner as explained in FIG. 5) are superimposed so that their directions are perpendicular and bonded together with adhesive.
Thereafter, a frame is provided around the spacer, a porous reinforcing sheet is attached to both sides (see FIG. 3), and the spacer 10 is dissolved and removed by immersion in a caustic soda solution, which is the same as in the first embodiment. In this way, an integrated flat plate two-dimensional collimator can be manufactured.

なお、上記の実施例ではスペーサとしてアルミ
ニウムを用い、これを後にカセイソーダで溶解除
去するようにしたが、プラスチツクのように特定
の化学薬品で容易に溶解する材質を用いることも
可能であり、また化学的な方法で溶解除去するだ
けでなく、熱を加えるなどの物理的方法を用いて
スペーサを除去することもできる。
In the above example, aluminum was used as the spacer, which was later dissolved and removed with caustic soda. However, it is also possible to use a material that is easily dissolved by specific chemicals, such as plastic. In addition to dissolving and removing the spacer using a conventional method, the spacer can also be removed using a physical method such as applying heat.

(ヘ) 効果 この発明の放射線用コリメータの製造方法によ
れば、コリメータの精度(つまり均一性)は並べ
られる放射線用隔壁板とスペーサの寸法精度にの
み依存するため、精度の高いコリメータを容易に
製造できる。しかも、工程が簡単なので、低コス
トで製造できる。
(F) Effect According to the method for manufacturing a radiation collimator of the present invention, the accuracy (that is, uniformity) of the collimator depends only on the dimensional accuracy of the radiation partition plates and spacers that are arranged, so a highly accurate collimator can be easily manufactured. Can be manufactured. Moreover, since the process is simple, it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は第1の実施例の各工
程を示す斜視図、第4図は第1の実施例の一部の
工程の変形例を示す斜視図、第5図は第2の実施
例の工程を示す斜視図、第6図は第2の実施例の
変形例を示す断面図、第7図は第3の実施例の工
程を示す斜視図である。 1,4,7,9,12……隔壁板、2,8,1
0,11……スペーサ、5……枠体、6……多孔
補強シート。
1, 2, and 3 are perspective views showing each step of the first embodiment, FIG. 4 is a perspective view showing a modification of some steps of the first embodiment, and FIG. 5 6 is a sectional view showing a modification of the second embodiment, and FIG. 7 is a perspective view showing the steps of the third embodiment. 1, 4, 7, 9, 12...Partition plate, 2, 8, 1
0, 11... Spacer, 5... Frame, 6... Porous reinforcement sheet.

Claims (1)

【特許請求の範囲】[Claims] 1 放射線用隔壁板とスペーサとが1つの平面方
向に交互にならんで接着されて一体になつた1枚
の平板をつくる工程と、上記平板の周囲に枠体を
設けるとともに両面に補強シートを取り付ける工
程と、上記スペーサを溶解除去する工程とからな
る放射線用コリメータの製造方法。
1 Step of creating a single flat plate in which radiation bulkhead plates and spacers are glued in alternating rows in one plane direction, and a frame is provided around the flat plate and reinforcing sheets are attached to both sides. A method for manufacturing a radiation collimator, comprising a step of dissolving and removing the spacer.
JP24904883A 1983-12-31 1983-12-31 Manufacture of collimator for radiation Granted JPS60144683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24904883A JPS60144683A (en) 1983-12-31 1983-12-31 Manufacture of collimator for radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24904883A JPS60144683A (en) 1983-12-31 1983-12-31 Manufacture of collimator for radiation

Publications (2)

Publication Number Publication Date
JPS60144683A JPS60144683A (en) 1985-07-31
JPH0458589B2 true JPH0458589B2 (en) 1992-09-17

Family

ID=17187233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24904883A Granted JPS60144683A (en) 1983-12-31 1983-12-31 Manufacture of collimator for radiation

Country Status (1)

Country Link
JP (1) JPS60144683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217812A (en) * 1999-01-27 2000-08-08 Fuji Photo Film Co Ltd Scattered-beam eliminating grid and manufacture therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297899A (en) * 1991-03-27 1992-10-21 Toshiba Corp Manufacture of collimator, and collimator obtained thereby
US20040120464A1 (en) 2002-12-19 2004-06-24 Hoffman David Michael Cast collimators for CT detectors and methods of making same
US20090323899A1 (en) * 2005-09-19 2009-12-31 Koninklijke Philips Electronics N. V. Grid for selective absorption of electromagnetic radiation and method for its manufacture
JP2009240378A (en) * 2008-03-28 2009-10-22 Univ Of Tokyo X-ray imaging apparatus and method of manufacturing slit member used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217812A (en) * 1999-01-27 2000-08-08 Fuji Photo Film Co Ltd Scattered-beam eliminating grid and manufacture therefor

Also Published As

Publication number Publication date
JPS60144683A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
US4514247A (en) Method for fabricating composite transducers
JPS603277B2 (en) speaker device
EP0186311B1 (en) Improvements in or relating to piezoelectric composites
US5239736A (en) Method for making piezoelectric composites
JPH0458589B2 (en)
JPS6017380A (en) Faulted collimator and its production
JPS5958002U (en) Stacked dialyzer
KR100943721B1 (en) Concrete member for shielding electromagnetic wave using metal foil
JP4097123B2 (en) Optical film interposing method and optical cell block
GB2034198A (en) Blood treatment apparatus
JP2577360B2 (en) Collimator and collimator manufacturing method
JPS6337878B2 (en)
JPH04276586A (en) Fabrication of colimeter for tomography
JPS58137807A (en) Production of optical fiber laminate
KR100620544B1 (en) Honeycom core
JPH06316012A (en) Honeycomb panel
JPH0571785U (en) Honeycomb structure for collimator
JPH0453118Y2 (en)
JPH024552Y2 (en)
JPH0215432Y2 (en)
JP3113115B2 (en) Honeycomb core
JPS5940284A (en) Collimator for radiation image forming apparatus
JPS5925183A (en) Manufacture of liquid circulation type aluminium silver oxide battery
JPS58134736A (en) Manufacture of honeycomb sandwich panel
JPH0413999A (en) Collimator and manufacture thereof