JPH045847Y2 - - Google Patents

Info

Publication number
JPH045847Y2
JPH045847Y2 JP1984066515U JP6651584U JPH045847Y2 JP H045847 Y2 JPH045847 Y2 JP H045847Y2 JP 1984066515 U JP1984066515 U JP 1984066515U JP 6651584 U JP6651584 U JP 6651584U JP H045847 Y2 JPH045847 Y2 JP H045847Y2
Authority
JP
Japan
Prior art keywords
steam generator
water level
detector
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984066515U
Other languages
Japanese (ja)
Other versions
JPS60181516U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984066515U priority Critical patent/JPS60181516U/en
Publication of JPS60181516U publication Critical patent/JPS60181516U/en
Application granted granted Critical
Publication of JPH045847Y2 publication Critical patent/JPH045847Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【考案の詳細な説明】 本案は原子力プラントの蒸気発生器内水位検出
装置の改良に関するものである。
[Detailed description of the invention] This invention relates to an improvement of a water level detection device in a steam generator of a nuclear power plant.

原子炉容器内の炉心部を通過して加熱された一
次冷却材を一次冷却材循環系配管から蒸気発生器
の水室を経て伝熱管内へ導き、同蒸気発生器内の
二次冷却水(管外流体)を加熱して蒸発させ、そ
れをタービンヘ導いて発電機を駆動する加圧水型
原子力プラントでは、蒸気発生器内の二次冷却水
の水位が低くなると、一次冷却材の熱を二次冷却
水側へ伝達できなくなり、原子炉側の熱が一次側
に蓄積して、燃料溶解等の事故が発生するので、
蒸気発生器内の水位を設定値に保持する必要があ
る。
The primary coolant that has passed through the reactor core in the reactor vessel and is heated is guided from the primary coolant circulation system piping through the water chamber of the steam generator into the heat transfer tubes, and is then transferred to the secondary cooling water ( In pressurized water nuclear power plants, which heat and evaporate the fluid (outside the tube) and guide it to the turbine to drive the generator, when the water level of the secondary cooling water in the steam generator becomes low, the heat of the primary coolant is transferred to the secondary cooling water. This prevents the heat from being transferred to the cooling water side, and the heat from the reactor side accumulates on the primary side, causing accidents such as fuel melting.
The water level in the steam generator must be maintained at a set point.

従来行なつている蒸気発生器内の水位制御は、
発電機の出力が0〜15%で、蒸気発生器から取り
出される蒸気の流量が小流量のときには、蒸気発
生器内の水位を狭域水位検出器(第1,2図の2
参照)により検出し、そこで得られた検出信号を
偏差検出器(第2図の8参照)へ送り、水位設定
値(第2図の1参照)とにより互いの偏差を計算
する一方、一次冷却材の蒸気発生器出入口の温度
差ΔTを蒸気発生器出入口温度差検出器(第1,
2図の3参照)により検出し、二次冷却水供給系
配管の給水流量(バイパス給水管(第1図のe1
照)の給水流量)を給水流量検出器(第1,2図
の4参照)により検出し、さらに上記各検出器
8,3,4で得られた検出信号を蒸気発生器内水
位制御装置へ送り、実水位と設定水位との差を零
にする演算を行ない、その結果得られた制御信号
をバイパス給水弁(第1図の15参照)へ送り、バ
イパス給水弁の開度を制御して、蒸気発生器内の
水位を設定値に保持するように、また発電機の出
力が15〜100%で、蒸気発生器から取り出される
蒸気の流量が大流量のときには、蒸気発生器内の
水位を前記狭域水位検出器により検出し、そこで
得られた検出信号を前記偏差検出器へ送り、前記
水位設定値と比較して互いの偏差を計算する一
方、蒸気発生器から取り出される蒸気の流量を蒸
気流量検出器により検出し、二次冷却水供給系配
管の給水流量(給水管(第1図のe参照)の給水
流量)を前記給水流量検出器により検出し、さら
に前記各検出器で得られた検出信号を前記蒸気発
生器内水位制御装置へ送り、実水位と設定水位と
の差を零にする演算を行ない、その結果得られた
制御信号を主給水弁(第1図の16参照)へ送り、
同主給水弁の開度を制御して、蒸気発生器内の水
位を設定値に保持するようになつている。なお二
次冷却水供給系配管に、バイパス給水弁と主給水
弁との2つの給水弁を設けているが、その理由
は、小流量の二次冷却水と大流量の二次冷却水と
を同一の給水弁で制御するのは精度上困難なため
であり、()発電機の出力が0〜15%で、蒸気
発生器から取り出される蒸気の流量が小流量のと
き(二次冷却水の流量が小流量のとき)には、バ
イパス給水弁が使用され、()発電機の出力が
15〜100%で、蒸気発生器から取り出される蒸気
の流量が大流量のとき(二次冷却水の流量が大流
量のとき)には、主給水弁が使用されている。ま
た上記()のときには、バイパス給水弁の制御
に、一次冷却材の蒸気発生器出入口温度差検出器
で得られた検出信号を使用し、上記()のとき
には、蒸気流量検出器で得られた検出信号を使用
しているが、その理由は、上記()のときに
は、蒸気発生器から取り出される蒸気量が多く
て、蒸気流量が安定しており、蒸気流量が蒸気発
生器の負荷を反映していて、主給水弁の制御に蒸
気発生器で得られた検出信号を使用しても差支え
ないのに対し、上記()のときには、蒸気発生
器から取り出される蒸気量が少なくて、蒸気流量
が不安定であり、蒸気流量が蒸気発生器の負荷を
正確に反映しておらず、蒸気流量検出器の代り
に、一次冷却材の蒸気発生器出入口温度差検出器
で得られた検出信号を使用している。この蒸気発
生器出入口温度差検出器の検出値も蒸気発生器の
負荷変動を示すことになる。即ち、本原子力プラ
ントは、一次冷却材循環系を流れる一次冷却材を
ほぼ一定流量に保つて運転しており、蒸気発生器
の負荷をQ,ΔTを一次冷却材の蒸気発生器出入
口の温度差、Fを一次冷却材の流量とすると、Q
=ΔT×Fが成立し、ΔTが蒸気発生器の負荷の
変動を示すことになる。
The conventional water level control in a steam generator is
When the output of the generator is 0 to 15% and the flow rate of steam taken out from the steam generator is small, the water level inside the steam generator is detected by a narrow range water level detector (2 in Figures 1 and 2).
The detection signal obtained there is sent to the deviation detector (see 8 in Fig. 2), and the deviation from each other is calculated based on the water level setting value (see 1 in Fig. 2). The temperature difference ΔT at the steam generator inlet and outlet of the material is detected by the steam generator inlet and outlet temperature difference detector (first,
The water supply flow rate of the secondary cooling water supply system piping (the water supply flow rate of the bypass water supply pipe (see e 1 of Figure 1)) is detected by the water supply flow rate detector (see 4 of Figures 1 and 2). ), and furthermore, the detection signals obtained by each of the above-mentioned detectors 8, 3, and 4 are sent to the water level control device in the steam generator, and calculations are performed to zero the difference between the actual water level and the set water level. The resulting control signal is sent to the bypass water supply valve (see 15 in Figure 1) to control the opening of the bypass water supply valve to maintain the water level in the steam generator at the set value. When the output of the steam generator is 15 to 100% and the flow rate of steam taken out from the steam generator is large, the water level in the steam generator is detected by the narrow range water level detector, and the detection signal obtained there is used as the deviation The flow rate of steam taken out from the steam generator is detected by the steam flow rate detector, and the flow rate of the water supplied to the secondary cooling water supply system piping ( The water supply flow rate of the water supply pipe (see e in Figure 1) is detected by the water supply flow rate detector, and the detection signals obtained by each of the detectors are sent to the water level control device in the steam generator, and the actual water level and Performs calculations to make the difference with the set water level zero, and sends the resulting control signal to the main water supply valve (see 16 in Figure 1).
The water level in the steam generator is maintained at a set value by controlling the opening degree of the main water supply valve. The secondary cooling water supply system piping is equipped with two water supply valves, a bypass water supply valve and a main water supply valve.The reason for this is that the secondary cooling water with a small flow rate and the secondary cooling water with a large flow rate are This is because it is difficult to control with the same water supply valve in terms of accuracy. When the flow rate is small (), the bypass water valve is used and () the generator output is
15 to 100%, and when the flow rate of steam taken out from the steam generator is large (when the flow rate of secondary cooling water is large), the main water supply valve is used. In addition, in the case of () above, the detection signal obtained by the primary coolant steam generator inlet and outlet temperature difference detector is used to control the bypass water supply valve, and in the case of () above, the detection signal obtained by the steam flow rate detector is used to control the bypass water supply valve. The reason for using a detection signal is that when () above, the amount of steam extracted from the steam generator is large, the steam flow rate is stable, and the steam flow rate does not reflect the load of the steam generator. In contrast, in case () above, the amount of steam taken out from the steam generator is small and the steam flow rate is The steam flow rate is unstable and does not accurately reflect the steam generator load, and the detection signal obtained by the primary coolant steam generator inlet and outlet temperature difference detector is used instead of the steam flow rate detector. are doing. The detected value of this steam generator inlet/outlet temperature difference detector also indicates the load fluctuation of the steam generator. In other words, this nuclear power plant is operated by keeping the primary coolant flowing through the primary coolant circulation system at a nearly constant flow rate, and the load on the steam generator is Q, and ΔT is the temperature difference between the primary coolant inlet and outlet of the steam generator. , F is the flow rate of the primary coolant, then Q
=ΔT×F holds true, and ΔT indicates the variation in the load of the steam generator.

前記原子力プラントの蒸気発生器内水位制御装
置には次の問題があつた。即ち、一次冷却材の蒸
気発生器出入口の温度差ΔTが蒸気発生器から取
り出される蒸気の流量に比例するので、同温度差
ΔTが二次冷却水供給系(バイパス給水弁)制御
の先行要素になる。ところが蒸気発生器の負荷変
動(蒸気流量変化)が上記温度差ΔTに反映され
るまでには、時間の遅れが生じる。これは応答性
の遅い熱を媒体としているからである。上記蒸気
発生器の負荷変動時、狭域水位検出器は、蒸気発
生器の外胴と内胴(第1図のb6参照)との間(ダ
ウンカマー内)の水位Lを検出し、内胴内の水位
を検出していない。蒸気発生器内には、第4,5
図に示すように多数の気泡があり、蒸気発生器の
負荷が変動して、蒸気発生器の内圧が変化する
と、比容積が変り、これにより、蒸気発生器の外
胴と内胴との間の水位が大幅に変化する。例えば
蒸気発生器の負荷が減少すると、余剰蒸気により
蒸気発生器の内圧が上昇して、P1<P2になり、
水位LがL1→L2に低下する。つまり水位Lが比
容積の変化に反応する。この部分の実水位を検出
するのが狭域水位検出器で、バイパス給水弁は同
狭域水位検出器により得られた検出信号に基づき
制御されるので、蒸気発生器の負荷変動時の水位
制御は、整定されるまでに時間がかかるし、安定
性に欠け、蒸気発生器の実水位と水位設定値との
間に大幅な偏差が生じると、熱交換面積の制御が
問題になる。
The water level control device in the steam generator of the nuclear power plant had the following problems. In other words, since the temperature difference ΔT of the primary coolant between the inlet and outlet of the steam generator is proportional to the flow rate of steam taken out from the steam generator, the temperature difference ΔT is the leading element in controlling the secondary cooling water supply system (bypass water supply valve). Become. However, a time delay occurs before the load fluctuation (steam flow rate change) of the steam generator is reflected in the temperature difference ΔT. This is because heat, which has a slow response, is used as a medium. When the load of the steam generator changes, the narrow-range water level detector detects the water level L (inside the downcomer) between the outer shell and the inner shell (see b 6 in Figure 1) of the steam generator, and The water level inside the shell is not detected. Inside the steam generator, there are 4th and 5th
As shown in the figure, there are many bubbles, and when the load of the steam generator fluctuates and the internal pressure of the steam generator changes, the specific volume changes, which causes the gap between the outer shell and the inner shell of the steam generator to change. The water level changes significantly. For example, when the load on the steam generator decreases, the internal pressure of the steam generator increases due to excess steam, and P 1 < P 2 ,
Water level L decreases from L 1 to L 2 . That is, the water level L responds to changes in specific volume. A narrow-area water level detector detects the actual water level in this area, and the bypass water supply valve is controlled based on the detection signal obtained by the narrow-area water level detector, so water level control when the steam generator load fluctuates is controlled. It takes time to settle, lacks stability, and when a large deviation occurs between the actual water level of the steam generator and the set water level, control of the heat exchange area becomes a problem.

本案は前記の問題点に対処するもので、原子炉
容器内の炉心部を通過して加熱された一次冷却材
をほぼ一定流量を保つて一次冷却材循環系配管か
ら蒸気発生器の水室を経て伝熱管内へ導く一方、
二次冷却水を二次冷却水供給系から同蒸気発生器
内へ導いて、蒸気発生器内を管外流体として流れ
る同二次冷却水を上記一次冷却水により加熱し
て、蒸発させ、それをタービンへ導いて、発電機
を駆動する原子力プラントにおいて、前記蒸気発
生器内の二次冷却水の水位を検出する狭域水位検
出器と、同狭域水位検出器により得られた水位検
出値と水位設定値との偏差を検出する偏差検出器
と、前記蒸気発生器の出入口の一次冷却材の温度
差を検出する蒸気発生器出入口温度差検出器と、
前記蒸気発生器への給水流量を検出する給水流量
検出器と、前記蒸気発生器の負荷変動時に前記狭
域水位検出器に代わつて前記蒸気発生器内の二次
冷却水の水位を検出する広域水位検出器とを有
し、同各検出器からの検出信号に基づき前記蒸気
発生器への二次冷却水の供給量を演算しその結果
得られた制御信号により二次冷却水供給系に設け
たバイパス給水弁を制御して蒸気発生器内の二次
冷却水の水位を設定値に保持する蒸気発生器内水
位制御装置を具えていることを特徴とした原子力
プラントに係り、その目的とする処は、発電機の
出力が0〜15%程度と低いときに、蒸気発生器の
負荷が変動しても、バイパス給水弁を安定的に制
御できる原子力プラントの蒸気発生器内水位制御
装置を供する点にある。
This proposal addresses the above-mentioned problems by keeping the primary coolant heated after passing through the reactor core inside the reactor vessel at a nearly constant flow rate, and directing the heated primary coolant from the primary coolant circulation system piping to the water chamber of the steam generator. while guiding it into the heat exchanger tube,
The secondary cooling water is guided from the secondary cooling water supply system into the steam generator, and the secondary cooling water flowing inside the steam generator as extra-tube fluid is heated and evaporated by the primary cooling water. In a nuclear power plant where water is guided to a turbine to drive a generator, a narrow-area water level detector detects the water level of secondary cooling water in the steam generator, and a water level detection value obtained by the narrow-area water level detector. and a steam generator outlet temperature difference detector that detects a temperature difference of the primary coolant at the outlet and outlet of the steam generator;
a water supply flow rate detector that detects the flow rate of water supplied to the steam generator; and a wide area water level detector that detects the water level of secondary cooling water in the steam generator in place of the narrow area water level detector when the load of the steam generator changes. A water level detector is installed in the secondary cooling water supply system based on the control signal obtained by calculating the amount of secondary cooling water supplied to the steam generator based on the detection signals from each of the detectors. A nuclear power plant characterized in that it is equipped with a water level control device in a steam generator that controls a bypass water supply valve to maintain the water level of secondary cooling water in the steam generator at a set value. To provide a water level control device in a steam generator of a nuclear power plant that can stably control a bypass water supply valve even when the load of the steam generator fluctuates when the output of the generator is as low as 0 to 15%. At the point.

次に本案の原子力プラントの蒸気発生器内水位
制御装置を第1,2図に示す一実施例により説明
すると、aが原子炉、bが蒸気発生器、b1,b3
同蒸気発生器bの水室、b2が同水室b1,b3から蒸
気発生器bの熱交換域b4に延びた逆U字状の伝熱
管、b5が蒸気取り出し管、b6が内筒、fが上記蒸
気発生器b内上部に配設された給水リング、cが
上記原子炉aと上記蒸気発生器bの水室b1,b3
を連絡する一次冷却材循環用配管、dが主給水ポ
ンプ、eが同主給水ポンプdから上記給水リング
fへ延びた配管、16が同配管eに設けた主給水
弁、15が同主給水弁16を迂回するバイパス管
e1に設けたバイパス給水弁、1が蒸気発生器bの
水位設定値、2が狭域水位検出器、3が一次冷却
材の蒸気発生器出入口温度差検出器、4が給水流
量検出器、5が水位の高域周期ノイズを除く一次
遅れ要素(高域フイルター)、6が進相/遅れ要
素(高域フイルター+微分要素+負荷(蒸気流量
相当))、7が給水流量の高域周期ノイズを除く一
次遅れ要素(高域フイルター)、8が加算器(水
位偏差検出器)、9が比例積分制御器、10が加
算器、11が本案で最も特徴とする広域水位検出
器、12が進相/遅れ要素(高域フイルター+微
分要素)、13が比例積分制御器、14が自動−
手動切換器である。
Next, the water level control device in a steam generator of a nuclear power plant according to the present invention will be explained using an embodiment shown in FIGS . Water chamber b, b 2 is an inverted U-shaped heat transfer tube extending from the same water chambers b 1 and b 3 to the heat exchange area b 4 of steam generator b, b 5 is a steam extraction pipe, and b 6 is an inner cylinder. , f is a water supply ring disposed in the upper part of the steam generator b, c is a primary coolant circulation pipe connecting the reactor a and the water chambers b 1 and b 3 of the steam generator b, and d is the main water supply pump, e is a pipe extending from the main water supply pump d to the water supply ring f, 16 is the main water supply valve provided in the pipe e, and 15 is a bypass pipe that bypasses the main water supply valve 16.
e Bypass water supply valve installed in 1 , 1 is the water level setting value of steam generator b, 2 is a narrow range water level detector, 3 is a primary coolant steam generator inlet/outlet temperature difference detector, 4 is a feed water flow rate detector, 5 is the first-order lag element (high-frequency filter) that excludes high-frequency periodic noise of the water level, 6 is the leading/lag element (high-frequency filter + differential element + load (equivalent to steam flow rate)), and 7 is the high-frequency period of the feed water flow rate. 1st-order delay element (high-pass filter) that removes noise, 8 is an adder (water level deviation detector), 9 is a proportional-integral controller, 10 is an adder, 11 is a wide area water level detector that is the most distinctive feature of this project, 12 is a Phase lead/lag element (high-pass filter + differential element), 13 is proportional-integral controller, 14 is automatic -
It is a manual switch.

次に前記原子力プラントの作用を説明する。狭
域水位検出器2で得られた実水位検出信号は一次
遅れ要素5へ送られ、ここでノイズ除去が行なわ
れて、水位設定値1とともに加算器8へ送られ、
ここで互いの偏差が計算されて、比例積分制御器
9へ送られ、ここで後記の補正が行われて、加算
器10へ送られ、また蒸気発生器出入口温度差検
出器3で得られた信号は進相/遅れ要素6へ送ら
れ、ここで制御先行信号作成及びノイズ除去が行
なわれて、加算器10へ送られ、また給水流量検
出器4で得られた信号は上記一次遅れ要素7へ送
られ、ここでノイズ除去が行なわれて、加算器1
0へ送られる。また広域水位検出器11で得られ
た実水位検出信号は進相/遅れ要素12へ送ら
れ、ここで制御先行信号作成及びノイズ除去が行
なわれて、加算器10へ送られ、ここで互いの偏
差が計算されて、比例積分制御器13へ送られ
る。同比例積分制御器13は、発電機の出力が15
〜100%で、蒸気発生器bから取り出される蒸気
の流量が大流量のときには、主給水弁16の制御
に狭域水位検出器2からの実水位検出信号を使用
しているが、発電機の出力が0〜15%で、蒸気発
生器bから取り出される蒸気の流量が小流量のと
きには、進相/遅れ要素6と一次遅れ要素7との
差及び進相/遅れ要素12の微分要素により、蒸
気発生器b内の水位を設定値に一致させるように
演算する。この演算結果により、蒸気発生器b内
の水位に偏差が生じなければよいが、通常は偏差
を生じる。前記比例積分制御器9はこの偏差を補
正するために設けられている。上記比例積分制御
器13で得られた制御信号は自動−手動切換器1
4を経てバイパス給水弁15へ送られて、同バイ
パス給水弁15の開度が制御される。なお上記広
域水位検出器11の具体例を第3図に示した。同
第3図において、17が差圧電送器、rsが気相部
比重量、rwが液相部の比重量、rfが配管部の比重
量、ΔPがダウンカマー部の圧損、ΔP.ooが100%
水位時の検出器に加わる圧力、ΔPoが0%水位時
の検出器に加わる圧力で、上記各圧力は、 ΔP.oo=H(rf−rw)+ΔP …… ΔPo=H(rf−rs)+ΔP …… により表わされる。同広域水位検出器11の較正
は、rf=rw=1,rs=0,ΔP=0 で実施してお
り、ΔP.oo=0,ΔPo=H である。同広域水位
検出器11が低出力時の蒸気発生器bの負荷変動
時に、狭域水位検出器2に比べて正確、敏速に応
答する理由は次の通りである。すでに述べたよう
に蒸気発生器b内には多数の気泡があり、蒸気発
生器bの負荷が変動して、蒸気発生器bの内圧が
変化すると、比容積が変り、これにより、蒸気発
生器bの外胴と内胴との間(ダウンカマー内)の
水位が大幅に変化する。例えば蒸気発生器bの負
荷が減少すると、余剰蒸気により蒸気発生器bの
内圧が上昇してP1<P2になり、水位LがL1→L2
に低下する。この部分の実水位を検出しているの
が狭域水位検出器2で、同狭域水位検出器2は比
容積の変化に反応するが、広域水位検出器11は
r×Hを測定しており、比容積の変化に反応しな
い。従つて広域水位検出器11は低出力時の蒸気
発生器bの負荷変動時に、狭域水位検出器2に比
べて正確、敏速に応答する。また前記手動−自動
切換器14は、手動にすれば、比例積分制御器1
3から任意の制御信号を取り出せるし、自動にす
れば、第2図のブロツク図通りの自動制御にな
る。
Next, the operation of the nuclear power plant will be explained. The actual water level detection signal obtained by the narrow range water level detector 2 is sent to the first-order delay element 5, where noise is removed and sent to the adder 8 together with the water level setting value 1.
Here, the mutual deviation is calculated and sent to the proportional-integral controller 9, where the correction described later is performed and sent to the adder 10, and also obtained by the steam generator outlet and outlet temperature difference detector 3. The signal is sent to the phase lead/lag element 6, where the control advance signal is created and noise removed, and sent to the adder 10, and the signal obtained by the water supply flow rate detector 4 is sent to the first-order lag element 7. is sent to adder 1, where it undergoes noise removal and is sent to adder 1.
Sent to 0. Further, the actual water level detection signal obtained by the wide area water level detector 11 is sent to the phase advance/delay element 12, where the control advance signal is created and noise removed, and then sent to the adder 10, where it is mutually The deviation is calculated and sent to the proportional-integral controller 13. The equal proportional-integral controller 13 has a generator output of 15
~100%, and when the flow rate of steam taken out from steam generator b is large, the actual water level detection signal from narrow area water level detector 2 is used to control the main water supply valve 16, but the When the output is 0 to 15% and the flow rate of steam taken out from steam generator b is small, due to the difference between the lead/lag element 6 and the primary lag element 7 and the differential element of the lead/lag element 12, The water level in steam generator b is calculated to match the set value. Although it is preferable that no deviation occurs in the water level in the steam generator b based on this calculation result, a deviation normally occurs. The proportional-integral controller 9 is provided to correct this deviation. The control signal obtained by the proportional-integral controller 13 is transferred to the automatic-manual switch 1
4 to the bypass water supply valve 15, and the opening degree of the bypass water supply valve 15 is controlled. A specific example of the wide area water level detector 11 is shown in FIG. In Fig. 3, 17 is a differential pressure transmitter, r s is the specific weight of the gas phase, r w is the specific weight of the liquid phase, r f is the specific weight of the piping, ΔP is the pressure drop in the downcomer, ΔP .oo is 100%
The pressure applied to the detector when the water level is 0%, ΔPo is the pressure applied to the detector when the water level is 0%, and each of the above pressures is as follows: ΔP.oo=H(r f −r w )+ΔP …… ΔPo=H(r f − r s )+ΔP... The wide area water level detector 11 is calibrated with r f = r w = 1, r s = 0, ΔP = 0, and ΔP.oo = 0, ΔPo = H. The reason why the wide-area water level detector 11 responds more accurately and quickly than the narrow-area water level detector 2 when the load of the steam generator b changes at low output is as follows. As already mentioned, there are many bubbles in steam generator b, and when the load on steam generator b fluctuates and the internal pressure of steam generator b changes, the specific volume changes, and as a result, the steam generator The water level between the outer shell and the inner shell (inside the downcomer) of b changes significantly. For example, when the load on steam generator b decreases, the internal pressure of steam generator b increases due to excess steam, P 1 < P 2 , and the water level L decreases from L 1 →L 2
decreases to The narrow-area water level detector 2 detects the actual water level in this area, and the narrow-area water level detector 2 responds to changes in specific volume, but the wide-area water level detector 11 measures r×H. and does not respond to changes in specific volume. Therefore, the wide area water level detector 11 responds more accurately and quickly than the narrow area water level detector 2 when the load of the steam generator b changes at low output. Further, if the manual/automatic switch 14 is set to manual, the proportional integral controller 1
Any control signal can be taken out from 3, and if it is set to automatic, it will be automatically controlled as shown in the block diagram of FIG.

本案の原子力プラントは前記のように構成され
ており、低出力時の蒸気発生器の負荷変動時、変
化する二次冷却水の水位に正確、敏速に応答する
広域水位検出器からの実水位検出信号に制御先行
要素として取り入れるので、発電機の出力が0〜
15%程度と低いときに、蒸気発生器の負荷が変動
しても、二次冷却水供給系に設けたバイパス給水
弁が安定的に制御される。即ち、 蒸気発生器b内の二次冷却水流路は、壁部によ
り外側部と内側部とに隔てられている。二次冷却
水は、蒸気発生器内の外側部へ給水され、蒸気発
生器の内側部で沸騰を開始する。沸騰した蒸気
は、蒸気発生器の内側上部から蒸気発生器外へ取
り出され、沸騰しない二次冷却水は、再び蒸気発
生器内の外側部へ流れて、循環している。この流
量は循環流量と称している。また二次冷却水が蒸
気発生器内の内側部で沸騰を開始する点を沸騰開
始点と称している。この状態で、狭域水位検出器
2は、上部検出端と下部検出端との差圧を計測し
ている。この狭域水位検出器2により検出した差
圧ΔPNは、第6図に示すように缶内水比重をγ、
高さをhN、循環流量をQ、圧損係数をKiとする
と、 ΔPN=PHN−PLN =(Po+γhN)−Po−KQ2 =γhN−KNQ2 …… である。広域水位検出器11も上部検出端と下部
検出端との差圧を計測している。この広域水位検
出器11により検出した差圧ΔPWは、第7図に示
すように缶内水比重をγ、高さをhW、循環流量
をQ、圧損係数をKWとすると、 ΔPW=PHW−PLW =(Po+γhW)−Po−KWQ2 =γhW−KWQ2 …… である。このように狭域水位検出器2及び広域水
位検出器11の計測要領は同じであるが、蒸気発
生器bは、内部に循環流量が存在することによ
り、普通のタンク等とは異なり、循環流量による
圧損を考慮する必要がある。蒸気発生器bは、そ
の内部が壁部により外側部と内側部とに隔てられ
ていることは既に述べた通りであるが、構造上、
壁部外側の流路面積は、上部(狭域水位検出器2
の計測範囲)では、広いのに対して、下部では、
第7図に示すように狭くなつている。即ち、広域
水位検出器11は、圧損の項が狭域水位検出器2
に比べると影響が大きくて、無視できないものに
なつている。従つて上記式及び上記式は、次
のように書き替えられる。
The proposed nuclear power plant is configured as described above, and the actual water level is detected by a wide-area water level detector that accurately and quickly responds to the changing water level of the secondary cooling water when the load of the steam generator changes at low output. Since it is incorporated into the signal as a control precedent element, the output of the generator is 0~
When it is as low as about 15%, the bypass water supply valve installed in the secondary cooling water supply system can be stably controlled even if the steam generator load fluctuates. That is, the secondary cooling water flow path in the steam generator b is separated into an outer part and an inner part by a wall part. The secondary cooling water is fed into the outer part of the steam generator and starts boiling in the inner part of the steam generator. The boiled steam is taken out of the steam generator from the inner upper part of the steam generator, and the non-boiled secondary cooling water flows again to the outer part of the steam generator and is circulated. This flow rate is called the circulation flow rate. Further, the point at which the secondary cooling water starts boiling inside the steam generator is called the boiling start point. In this state, the narrow area water level detector 2 measures the differential pressure between the upper detection end and the lower detection end. The differential pressure ΔP N detected by the narrow-range water level detector 2 determines the specific gravity of water in the can by
When the height is h N , the circulating flow rate is Q, and the pressure loss coefficient is K i , ΔP N = PH N −PL N = (Po + γh N ) − Po−KQ 2 = γh N −K N Q 2 .... The wide area water level detector 11 also measures the differential pressure between the upper detection end and the lower detection end. The differential pressure ΔP W detected by this wide-area water level detector 11 is calculated as follows , as shown in FIG . = PH W − PL W = (Po + γh W ) − Po − K W Q 2 = γh W − K W Q 2 ……. In this way, the measurement procedures of the narrow-area water level detector 2 and the wide-area water level detector 11 are the same, but the steam generator b has a circulating flow rate inside it, unlike a normal tank, etc. It is necessary to consider the pressure loss due to As already mentioned, the inside of the steam generator b is separated by a wall into an outside part and an inside part, but due to its structure,
The flow path area outside the wall is the upper part (narrow area water level detector 2
(measurement range) is wide, while at the bottom,
As shown in Fig. 7, it has become narrower. That is, the wide-area water level detector 11 has a pressure loss term that is higher than that of the narrow-area water level detector 2.
The impact is so large that it cannot be ignored. Therefore, the above formula and the above formula can be rewritten as follows.

狭域 ΔPN=γhN …… 広域 ΔPW=γhW−KWQ2 …… 以上により、広域水位検出器11は、循環流量
の変動によつても指示が変わることが判る。
Narrow area ΔP N = γh N ... Wide area ΔP W = γh W −K W Q 2 ... From the above, it can be seen that the indication of the wide area water level detector 11 changes depending on fluctuations in the circulating flow rate.

蒸気発生器bの水位は、狭域水位検出器2の検
出信号に基づいて制御されている。ところが蒸気
発生器bの水位を支配しているのは循環している
二次冷却水であり、循環量は、内側部の水量に左
右される。例えば第8図に示すように二相流の気
相容量が減少すれば、その分を補うように外側部
から内側部へ二次冷却水が流入することになる。
このため、蒸気発生器b内の二次冷却水の水位が
低下する。即ち、気相の存在する範囲が二次冷却
水の水位の挙動を支配する。以上により、狭域水
位検出器2は、二次冷却水の沸騰開始点の変動に
影響を受け易い。
The water level of the steam generator b is controlled based on the detection signal of the narrow range water level detector 2. However, it is the circulating secondary cooling water that controls the water level in the steam generator b, and the amount of circulation depends on the amount of water inside. For example, as shown in FIG. 8, if the gas phase capacity of the two-phase flow decreases, secondary cooling water will flow from the outside to the inside to compensate for the decrease.
Therefore, the level of the secondary cooling water in the steam generator b decreases. That is, the range in which the gas phase exists governs the behavior of the water level of the secondary cooling water. As a result of the above, the narrow-range water level detector 2 is easily influenced by fluctuations in the boiling start point of the secondary cooling water.

以上に述べたことを要約すると、()狭域水
位検出器2は、沸騰開始点の変化を受け易い。
()広域水位検出器11は、循環流量の変化を
受け易い。例えば沸騰開始点が上昇する。即ち、
狭域水位検出器2が降下する事象を想定すると、
(A)狭域水位検出器2のΔPNは、hNが下がるこ
とにより水位の低下として現れる。(B)広域水
位検出器11のΔPWは、hWが下がるものの、循
環流量も下がることになつて、ΔPWとしては下が
り難くなる。例えば給水を増加すると、缶内水容
量が増加するが、冷水である給水の熱影響により
一旦沸騰開始点が上昇することになり、狭域水位
は、一旦降下することになる。一方、広域水位検
出器11は、沸騰開始点による影響を受け難いの
で、容量の増加分だけ上昇する(第9図参照)。
以上により、広域水位検出器11は、狭域水位検
出器2のように容量以外のパラメータに影響さな
いので、容積を比較的正しく現している。そのた
め、広域水位検出器11の挙動から狭域水位検出
器2の挙動が予想し易いことになり、狭域水位検
出器2の検出信号を広域水位検出器11の検出信
号で補正することにより、二次冷却水給水系のバ
イパス給水弁15は大きく変動し難くなり、行き
過ぎ量の低減を図れて、二次冷却水供給系に設け
たバイパス給水弁15が安定的に制御される。
To summarize what has been said above, (2) The narrow range water level detector 2 is susceptible to changes in the boiling start point.
() The wide area water level detector 11 is susceptible to changes in the circulating flow rate. For example, the boiling point increases. That is,
Assuming an event where the narrow area water level detector 2 falls,
(A) ΔP N of the narrow-area water level detector 2 appears as a decrease in the water level as h N decreases. (B) As for ΔP W of the wide area water level detector 11, although h W decreases, the circulating flow rate also decreases, making it difficult for ΔP W to decrease. For example, when the water supply is increased, the water capacity in the can increases, but the boiling start point temporarily rises due to the thermal influence of the cold water supply, and the narrow area water level temporarily falls. On the other hand, since the wide area water level detector 11 is not easily affected by the boiling start point, it rises by the amount of increase in capacity (see FIG. 9).
As described above, the wide-area water level detector 11 does not affect parameters other than capacity, unlike the narrow-area water level detector 2, and thus expresses the capacity relatively accurately. Therefore, it is easy to predict the behavior of the narrow area water level detector 2 from the behavior of the wide area water level detector 11, and by correcting the detection signal of the narrow area water level detector 2 with the detection signal of the wide area water level detector 11, The bypass water supply valve 15 of the secondary cooling water supply system is difficult to fluctuate greatly, the amount of overflow can be reduced, and the bypass water supply valve 15 provided in the secondary cooling water supply system is stably controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案に係る原子力プラントの一実施例
を示す説明図、第2図は蒸気発生器内水位制御装
置の系統図、第3図は広域水位検出器の説明図、
第4,5図は狭域水位検出器の検出部位を示す説
明図、第6,7,8,9図は本案に係わる原子力
プラントの効果を説明する説明図である。 a……原子炉容器、b……蒸気発生器、c……
一次冷却材循環系配管、A……一次冷却材、B…
…蒸気、1……水位設定値、2……狭域水位検出
器、3……蒸気発生器出入口温度差検出器、4…
…給水流量検出器、8……偏差検出器、11……
広域水位検出器。
Fig. 1 is an explanatory diagram showing an example of a nuclear power plant according to the present proposal, Fig. 2 is a system diagram of a water level control device in a steam generator, and Fig. 3 is an explanatory diagram of a wide area water level detector.
FIGS. 4 and 5 are explanatory diagrams showing detection parts of the narrow area water level detector, and FIGS. 6, 7, 8, and 9 are explanatory diagrams explaining the effects of the nuclear power plant according to the present invention. a...Reactor vessel, b...Steam generator, c...
Primary coolant circulation system piping, A...Primary coolant, B...
...Steam, 1...Water level setting value, 2...Narrow area water level detector, 3...Steam generator inlet/outlet temperature difference detector, 4...
...Water supply flow rate detector, 8...Difference detector, 11...
Wide area water level detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 原子炉容器内の炉心部を通過して加熱された一
次冷却材をほぼ一定流量を保つて一次冷却材循環
系配管から蒸気発生器の水室を経て伝熱管内へ導
く一方、二次冷却水を二次冷却水供給系から同蒸
気発生器内へ導いて、蒸気発生器内を管外流体と
して流れる同二次冷却水を上記一次冷却水により
加熱して、蒸発させ、それをタービンへ導いて、
発電機を駆動する原子力プラントにおいて、前記
蒸気発生器内の二次冷却水の水位を検出する狭域
水位検出器と、同狭域水位検出器により得られた
水位検出値と水位設定値との偏差を検出する偏差
検出器と、前記蒸気発生器の出入口の一次冷却材
の温度差を検出する蒸気発生器出入口温度差検出
器と、前記蒸気発生器への給水流量を検出する給
水流量検出器と、前記蒸気発生器の負荷変動時に
前記狭域水位検出器に代わつて前記蒸気発生器内
の二次冷却水の水位を検出する広域水位検出器と
を有し、同各検出器からの検出信号に基づき前記
蒸気発生器への二次冷却水の供給量を演算しその
結果得られた制御信号により二次冷却水供給系に
設けたバイパス給水弁を制御して蒸気発生器内の
二次冷却水の水位を設定値に保持する蒸気発生器
内水位制御装置を具えていることを特徴とした原
子力プラント。
The primary coolant heated after passing through the reactor core inside the reactor vessel is guided from the primary coolant circulation system piping to the heat transfer tubes via the water chamber of the steam generator while maintaining a nearly constant flow rate. is guided into the steam generator from the secondary cooling water supply system, and the secondary cooling water flowing as extra-tube fluid in the steam generator is heated and evaporated by the primary cooling water, and then guided to the turbine. hand,
In a nuclear power plant that drives a generator, a narrow-range water level detector detects the water level of secondary cooling water in the steam generator, and a water level detection value obtained by the narrow-range water level detector and a water level setting value. a deviation detector that detects a deviation; a steam generator inlet/outlet temperature difference detector that detects a temperature difference between the primary coolant at the inlet and outlet of the steam generator; and a feed water flow rate detector that detects the flow rate of water supplied to the steam generator. and a wide-area water level detector that detects the water level of the secondary cooling water in the steam generator in place of the narrow-area water level detector when the load of the steam generator changes, and the detection from each of the detectors is provided. Based on the signal, the amount of secondary cooling water supplied to the steam generator is calculated, and the control signal obtained as a result controls the bypass water supply valve provided in the secondary cooling water supply system. A nuclear power plant characterized by comprising a water level control device in a steam generator that maintains the water level of cooling water at a set value.
JP1984066515U 1984-05-09 1984-05-09 nuclear power plant Granted JPS60181516U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984066515U JPS60181516U (en) 1984-05-09 1984-05-09 nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984066515U JPS60181516U (en) 1984-05-09 1984-05-09 nuclear power plant

Publications (2)

Publication Number Publication Date
JPS60181516U JPS60181516U (en) 1985-12-02
JPH045847Y2 true JPH045847Y2 (en) 1992-02-19

Family

ID=30599492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984066515U Granted JPS60181516U (en) 1984-05-09 1984-05-09 nuclear power plant

Country Status (1)

Country Link
JP (1) JPS60181516U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158596A (en) * 1981-03-02 1982-09-30 Westinghouse Electric Corp Method and device for generating electric power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158596A (en) * 1981-03-02 1982-09-30 Westinghouse Electric Corp Method and device for generating electric power

Also Published As

Publication number Publication date
JPS60181516U (en) 1985-12-02

Similar Documents

Publication Publication Date Title
KR890001252B1 (en) Feedwater control system
JPH06507007A (en) Steam generation system and water supply control system
US4877574A (en) Method of and apparatus for controlling power of natural circulation reactor
US2294501A (en) Method for operating vapor generators
JPH045847Y2 (en)
US4576007A (en) Method and apparatus for controlling an operation of plant
WO2022151765A1 (en) Flow control device, waste heat discharge system, and flow stabilization method
CN106482087A (en) Steam generator water capacity measuring method and device
Tanios Marginal operation field of existing MSF distillation plants
CA1132015A (en) Apparatus for metering and controlling a feed of hydrogen fluoride vapour
JPH0225160B2 (en)
JP2923040B2 (en) Power plant and water level control method and apparatus
JPS6151645B2 (en)
CN218916052U (en) System for saturated steam replaces traditional tubular furnace heating oil enrichment
JPH08285368A (en) Adjustor for heating amount of steam heater
JPH0337084B2 (en)
SU1548617A1 (en) Solar-energy heat sypply system
JPS6029501A (en) Steam generator for recovering waste heat
JP2710125B2 (en) Control device for excess steam in steam separator of fuel cell
JPH0539282Y2 (en)
RU1778322C (en) Regulation system of power plant with steam-water accumulator
JPH0227287Y2 (en)
JPS6135442B2 (en)
JP2921839B2 (en) Supercritical pressure operation boiler
JPS61116184A (en) Control device of by-pass valve