JPH0458469A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0458469A
JPH0458469A JP2167627A JP16762790A JPH0458469A JP H0458469 A JPH0458469 A JP H0458469A JP 2167627 A JP2167627 A JP 2167627A JP 16762790 A JP16762790 A JP 16762790A JP H0458469 A JPH0458469 A JP H0458469A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
battery
lithium ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2167627A
Other languages
Japanese (ja)
Other versions
JP2865387B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Toshiyuki Noma
俊之 能間
Yuji Yamamoto
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2167627A priority Critical patent/JP2865387B2/en
Publication of JPH0458469A publication Critical patent/JPH0458469A/en
Application granted granted Critical
Publication of JP2865387B2 publication Critical patent/JP2865387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the expansion or shrinkage of a positive electrode caused by the progress of cycle characteristics by using a positive electrode active material preliminarily discharged and charged outside a battery. CONSTITUTION:The expansion or shrinkage of a positive electrode in a battery is suppressed by using a positive electrode active material preliminarily dis charged and charged outside the battery before it is assembled into the battery. Lithium ions are once taken into the crystal lattice of the positive electrode active material by a discharge, partially remaining lithium ions exist, the crystal lattice is increased, and the desorption and infiltration of lithium ions thereafter are facilitated. MnO2, MoO3, V2O5, MoS2, TiS2, NbSe3, and LixMnOy are preferably used for the positive electrode active material which lithium ions can infiltrate into or desorb from. The preliminary discharge quantity of the positive electrode active material is preferably set to 10-100% of the positive electrode capacity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム或いはリチウム合金を負極活物質とす
る非水電解液二次電池に係り、特に正極の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery using lithium or a lithium alloy as a negative electrode active material, and particularly relates to improvement of a positive electrode.

(ロ)従来の技術 この種の二次電池の正極活OIwとじては、二酸化マン
ガン(MnO7)、三酸化モリブデ/(〜100、)、
五酸化バナジウム(v−05)、チタン或いはニオブの
硫化物等が(Tie、等)が提案され、一部実用化され
ているものもある。これらの正極活物質は、放電、充電
時に、その結晶構造中に、リチウムイオンが侵入、脱離
し、放電、充電反応が進行する。しかし、これらの活物
質を正極に用いて電池を組み立て、放電、充電をくり返
−た場合、放電、充電のサイクルの進行に伴い巳だいに
放電容量が低下−でゆくという間趙点がある。
(b) Prior art The positive electrode active OIw of this type of secondary battery includes manganese dioxide (MnO7), molybdenum trioxide/(~100,),
Vanadium pentoxide (v-05), titanium, niobium sulfide, etc. have been proposed (Tie, etc.), and some have been put into practical use. When these cathode active materials are discharged or charged, lithium ions enter and leave their crystal structures, and the discharge and charge reactions proceed. However, when a battery is assembled using these active materials as a positive electrode, and then discharged and charged repeatedly, there is a problem in that the discharge capacity gradually decreases as the discharge and charge cycles progress. .

この理由を、主として正極活物質の代表例である二酸化
マンガンを例にとり説明する。リチウムやリチウム合金
を負極活物質とし、正極活物質をM n O2とじて、
電池を構成し放電反応を行なうと、M n O、の結晶
構造中にリチウムが挿入される。このとき結晶格子が広
がり、二酸化マンガン粒子の膨張が起こる。放電終了後
、充電を行うと、正極活物質より挿入されたリチウムイ
オンの脱離がおこるが、侵入したリチウムイオンの一部
はM n O+の結晶構造内にとり込まれ充電によって
とり出すことができない。また、放電で広がった結晶格
子も、ある程度は収縮するが、放電前と同じ大きさには
戻らない。二回目以降の放電では、結晶格子の広がりは
1回目に比べて小さく、またこの広がりは充電によって
収縮する。
The reason for this will be explained mainly by taking as an example manganese dioxide, which is a typical example of a positive electrode active material. Using lithium or lithium alloy as the negative electrode active material and M n O2 as the positive electrode active material,
When a battery is constructed and a discharge reaction is performed, lithium is inserted into the crystal structure of M n O. At this time, the crystal lattice expands and the manganese dioxide particles expand. When charging is performed after discharging, the lithium ions inserted from the positive electrode active material are desorbed, but some of the lithium ions that have entered are incorporated into the crystal structure of M n O + and cannot be taken out by charging. . Also, the crystal lattice expanded by the discharge shrinks to some extent, but does not return to the same size as before the discharge. In the second and subsequent discharges, the spread of the crystal lattice is smaller than in the first time, and this spread is contracted by charging.

即ち、第一回目の放電時にのみ、特異的な結晶格子の広
がりが起こり、この広がりは通常の充放電では元にもど
らない。上述のような第一回目の放電時に結晶構造が広
がる現象は、M n O、だけに限らず、M o Os
、V2O6、M o S 、、TiS7、NbSe、、
LixMnOy等の結晶構造中へ放電時にリチウムイオ
ンが侵入するタイプの正極活物質に共通して見られる現
象である。これは、結晶構造中にある程度のリチウムイ
オンが侵入巳で結晶格子が広がることによって、それ以
後のリチウムイオンの侵入および脱離が容易になること
と、それと同時に、最初に侵入し、結晶格子の広がりを
生じせしめたリチウムイオンは、結晶中で安定な位置に
とり込まれてしまうと考えられる。この最初の放電時の
結晶格子の広がりは、電池特性上、様々な問題点をひき
起こす。即ち、■正極活物質粒子が膨張することにより
、正極中の導電材と正極活物質の接合性が悪くなり、正
極活物質の利用率が低下する、■・正極が集電体より剥
離する、■膨張した正極に電解液が吸収され、正極−負
極間の電解液が減少する、等の弊害を生じ、正極の充放
電サイクル特性を低下させる原因の1つとなっている。
That is, only during the first discharge, a specific broadening of the crystal lattice occurs, and this broadening does not return to its original state during normal charging and discharging. The above-mentioned phenomenon in which the crystal structure spreads during the first discharge is not limited to M n O, but also M o Os.
, V2O6, M o S , , TiS7, NbSe, ,
This is a phenomenon commonly observed in positive electrode active materials of the type in which lithium ions invade into the crystal structure during discharge, such as LixMnOy. This is because the crystal lattice expands when a certain amount of lithium ions penetrate into the crystal structure, making it easier for subsequent lithium ions to enter and leave the crystal structure. It is thought that the lithium ions that caused the spread were incorporated into stable positions within the crystal. This expansion of the crystal lattice during the first discharge causes various problems in terms of battery characteristics. That is, (1) the expansion of the positive electrode active material particles deteriorates the bonding properties between the conductive material in the positive electrode and the positive electrode active material, resulting in a decrease in the utilization rate of the positive electrode active material; (2) the positive electrode peels off from the current collector; (2) The electrolyte is absorbed by the expanded positive electrode, causing problems such as a decrease in the amount of electrolyte between the positive and negative electrodes, which is one of the causes of deterioration of the charge-discharge cycle characteristics of the positive electrode.

また、負極活物質であるリチウムが、正極中に挿入され
た後残留するため過剰のリチウムが必要となり、電池体
積あたりの容量が低下するとともに、−度ある程度の深
度まで放電されたリチウムは充放電特性が劣化する欠点
がある。
In addition, since lithium, which is the active material of the negative electrode, remains after being inserted into the positive electrode, excess lithium is required, which reduces the capacity per battery volume, and the lithium that has been discharged to a certain depth is not charged or discharged. The disadvantage is that the characteristics deteriorate.

(ハ)発明が解決しようとする課題 本発明は斯る問題点に鑑みてなされたものであって、非
水電解液二次電池の充放電サイクルの進行に伴う正極容
量の低下を抑制し、この種電池のサイクル特性の向上を
計るものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above problems, and aims to suppress the decrease in positive electrode capacity as the charge/discharge cycle of a non-aqueous electrolyte secondary battery progresses. The aim is to improve the cycle characteristics of this type of battery.

(ニ)課題を解決するための手段 本発明は、リチウムあるいはリチウム合金を負極活物質
とする負極と、リチウムイオンが侵入、脱離可能な正極
活物質からなる正極とを備えた非水電解液二次電池であ
って、前記正極活物質が電池外で予備的に放電及び充電
されたものであることを特徴とするものである。
(d) Means for Solving the Problems The present invention provides a non-aqueous electrolyte comprising a negative electrode made of lithium or a lithium alloy as a negative electrode active material, and a positive electrode made of a positive electrode active material into which lithium ions can enter and escape. The secondary battery is characterized in that the positive electrode active material is preliminarily discharged and charged outside the battery.

ここで、前記正極活物質としては、M n Ot、λ1
oO8、X′、O6、M o S +、TiS、、Nb
5e1、L i x M n OΣ・のうちから選択さ
れた少なくとも1種を含むものが好ましい。
Here, as the positive electrode active material, M n Ot, λ1
oO8, X', O6, M o S +, TiS,, Nb
5e1, L i x M n OΣ· is preferable.

また、前記正極活物質の予備的放電量としては、正極容
量の10%〜100%とするのが好適である。
Further, the preliminary discharge amount of the positive electrode active material is preferably 10% to 100% of the positive electrode capacity.

(ホ)作 用 本発明の如く、正極活物質が電池内に組込れる迄に、電
池外で予備的に放電及び充電されたものを用いることに
より、電池内における正極の膨張、収縮を抑制すること
が可能となる。即ち、放電により正極活物質の結晶格子
内に一部リチウムイオンがとり込まれ、一部残留するリ
チウムイオンも存在するので、結晶格子が大きくなり、
これ以降のリチウムイオンの脱離及び侵入が容易となる
(E) Function As in the present invention, expansion and contraction of the positive electrode inside the battery is suppressed by using a positive electrode active material that has been preliminarily discharged and charged outside the battery before it is incorporated into the battery. It becomes possible to do so. In other words, some lithium ions are incorporated into the crystal lattice of the positive electrode active material due to discharge, and some lithium ions remain, so the crystal lattice becomes larger.
Subsequent desorption and intrusion of lithium ions becomes easy.

そして、リチウムイオンが侵入、脱離可能な前記正極活
物質としては、N4 n Ot、M o O+、■。
Examples of the positive electrode active material into which lithium ions can enter and leave are N4 n Ot, M o O+, and ■.

06、N1oS+、TiS、、Nb5er、LixMn
Oyのうちから、選択された少なくとも1種を用5)る
のが好ましい。
06, N1oS+, TiS, , Nb5er, LixMn
It is preferable to use at least one selected from 5) Oy.

また、前記正極活物質の予備的放を量としては、正極容
量の109o〜100%とするのが、好適である。
Further, the amount of preliminary release of the positive electrode active material is preferably 109 to 100% of the positive electrode capacity.

(へ)実施例 以下、本発明の実施例と比較例との対比について詳述す
る。
(f) Examples Hereinafter, comparisons between examples of the present invention and comparative examples will be explained in detail.

〔実施例1] 正極活物質としての化学二酸化マンガン(MnO7)、
導電材としてのアセチレンブラックと、結着材としての
PTFEとを、それぞir重量比で80:10:  1
0に混合し、これに水を加えてペースト状にした。この
ペーストをステンレス集電板の両面に配置し、ローラー
で所定厚みに圧延し、正極とする。この正極を250℃
で真空熱処理した後、電解液としてのIMLiCJ20
.−PC/D〜iE(Ml、)と負極リチウムからなる
電解槽内で、電位が負極に対し2.OVになるまで前記
正極を放電する。この放電量は、はぼ正極容量の100
 %に相当する。この放電に引き続いて、今度は電圧が
4. 、 OVになるまで充電する。
[Example 1] Chemical manganese dioxide (MnO7) as a positive electrode active material,
Acetylene black as a conductive material and PTFE as a binder were mixed in an IR weight ratio of 80:10:1.
0 and added water to make a paste. This paste is placed on both sides of a stainless steel current collector plate and rolled to a predetermined thickness using a roller to form a positive electrode. This positive electrode was heated to 250°C.
After vacuum heat treatment in
.. -PC/D~iE (Ml, ) and a negative electrode lithium in an electrolytic cell with a potential of 2. The positive electrode is discharged until it reaches OV. This discharge amount is approximately 100% of the positive electrode capacity.
%. Following this discharge, the voltage now increases to 4. , Charge until it reaches OV.

充電後、正極を再びローラーで所定厚みに圧延し、電池
組立てに用いる。尚、正極を真空熱処理した後の工程は
、すべて、A r雰囲気中で行うものである。
After charging, the positive electrode is again rolled to a predetermined thickness using a roller and used for battery assembly. Note that all steps after the vacuum heat treatment of the positive electrode are performed in an Ar atmosphere.

第1図は、この正極を用いて組み立てた本発明に係る円
筒電池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a cylindrical battery according to the present invention assembled using this positive electrode.

第1図中、正%1を、ポリプロピレン製セパレータ2を
介して、リチウム負極3とともに渦巻状に巻きとり、こ
ノtを負極針4に挿入し、負極リード5をスポット溶接
により負極缶底部に溶接する。正極リード6は、正極キ
ャンプ7にスポット溶接され、絶縁バッキング8を介在
して、正極キャップ7により、負極針4が密閉されてい
る。
In Fig. 1, the positive %1 is wound up in a spiral shape together with the lithium negative electrode 3 through a polypropylene separator 2, this tip is inserted into the negative electrode needle 4, and the negative electrode lead 5 is spot welded to the bottom of the negative electrode can. Weld. The positive electrode lead 6 is spot-welded to the positive electrode camp 7, and the negative electrode needle 4 is sealed by the positive electrode cap 7 with an insulating backing 8 interposed therebetween.

電解液には、プロピレンカーボネートと1.2ジメトキ
シエタンの混合溶媒に、過塩素酸リチウムを1モル/!
で溶解したものを用いている。
The electrolyte contains 1 mol/! of lithium perchlorate in a mixed solvent of propylene carbonate and 1.2 dimethoxyethane.
I am using the solution dissolved in

このようにして組み立てた電池を、本発明電池A1とす
る。
The battery assembled in this manner is referred to as the battery A1 of the present invention.

実施例2コ 正極活物質としてM n O、を用いることを除いては
、前記実施例1と同様にして本発明電池A。
Example 2 A battery A of the present invention was prepared in the same manner as in Example 1 except that MnO was used as the positive electrode active material.

を組み立てた。assembled.

[実施例3] 正極活物質として\“205を用いることを除いては、
前記実施例1と同様にして本発明電池A、を組み立てた
[Example 3] Except for using \"205 as the positive electrode active material,
The battery A of the present invention was assembled in the same manner as in Example 1 above.

[実施例4コ 正極活物質としてM o S 、を用いることを除いて
は、前記実施例1と同様にして本発明電池A4を組み立
てた。
[Example 4] A battery A4 of the present invention was assembled in the same manner as in Example 1 except that M o S was used as the positive electrode active material.

[実施例5] 正極活物質としてT + S tを用いることを除いて
は、前記実施例1と同様にして本発明電池A5を組み立
てた。
[Example 5] A battery A5 of the present invention was assembled in the same manner as in Example 1 except that T + S t was used as the positive electrode active material.

[実施例6] 正極活物質としてN b S e sを用いることを除
いては、前記実施例1と同様にして本発明電池A、を組
み立てた。
[Example 6] A battery A of the present invention was assembled in the same manner as in Example 1 except that N b S e s was used as the positive electrode active material.

[実施例7] 正極活物質としてLiOHとM n O2をL1対〜1
nの原子比が3対7になるように混合し、空気中で37
5℃で20時間焼成して作製したL1含有二酸化マンガ
ン(LixMnOy)を正極活物質として用いることを
除いては、前記実施例1と同様にして本発明電池A7を
組み立てた。
[Example 7] LiOH and MnO2 as positive electrode active materials in L1 to 1 ratio
Mix so that the atomic ratio of n is 3:7, and 37
A battery A7 of the present invention was assembled in the same manner as in Example 1, except that L1-containing manganese dioxide (LixMnOy) prepared by firing at 5° C. for 20 hours was used as the positive electrode active material.

[実施例8] 正極活物質としてM n O、を用い、電解槽内での正
極の予備的放電量を、前記実施例1の予備的放電量に対
して50%とし、これに続く充電は同様に4.OV迄と
することを除いては、前記実施例1と同様にして本発明
電池A、を組み立てた。
[Example 8] Using MnO as the positive electrode active material, the preliminary discharge amount of the positive electrode in the electrolytic cell was set to 50% of the preliminary discharge amount of Example 1, and the subsequent charging was Similarly 4. A battery A of the present invention was assembled in the same manner as in Example 1, except that the battery was up to OV.

[実施例9コ 正極活物質としてM n Orを用い、電解槽内での正
極の予備的放電量を、実施例1の予備的放電量に対して
10%とし、これに続く充電は同様に4 、 OV迄と
することを除いては、前記実施例1と同様にして本発明
電池A、を組み立てた。
[Example 9] M n Or was used as the positive electrode active material, the preliminary discharge amount of the positive electrode in the electrolytic cell was set to 10% of the preliminary discharge amount of Example 1, and subsequent charging was carried out in the same manner. 4. Battery A of the present invention was assembled in the same manner as in Example 1 except that the battery was used up to OV.

[比較例1] 正極活物質としてM n O、を用い、真空熱処理した
後の正極に予備的放電および充電を全く行なわずそのま
ま電池組立に使用することを除いては、前記実施例1と
同様にして比較電池B、を組み立てた。
[Comparative Example 1] Same as Example 1, except that M n O was used as the positive electrode active material and the positive electrode after vacuum heat treatment was used for battery assembly without any preliminary discharging or charging. Comparative battery B was assembled.

「比較例2コ 正極活物質としてM o Oiを用ることを除いては、
前記比較例1と同様にして比較電池B2を組み立てた。
"Comparative Example 2: Except for using MoOi as the positive electrode active material,
Comparative battery B2 was assembled in the same manner as in Comparative Example 1 above.

[比較例3] 正極活物質として■、05を用ることを除いては、前記
比較例1と同様にして比較電池B、を組み立てた。
[Comparative Example 3] Comparative battery B was assembled in the same manner as in Comparative Example 1, except that ■, 05 was used as the positive electrode active material.

U比較例4] 正極活物質としてM o S !を用ることを除いては
、前記比較例1と同様にして比較電池B、を組み立てた
U Comparative Example 4] M o S as a positive electrode active material! Comparative battery B was assembled in the same manner as in Comparative Example 1, except that the battery B was used.

E比較例5] 正極活物質としてTiS、を用ることを除いては、前記
比較例1と同様にして比較電池B、を組み立てた。
E Comparative Example 5] Comparative battery B was assembled in the same manner as Comparative Example 1, except that TiS was used as the positive electrode active material.

[比較例6″J 正極活物質と巳てN b S e hを用ることを除い
ては、前記比較例1と同様にして比較電池B6を組み立
てた。
[Comparative Example 6″J Comparative battery B6 was assembled in the same manner as in Comparative Example 1 except that N b S eh was used instead of the positive electrode active material.

[比較例7] 正極活物質とLで、LiOHとSi n O、をLi肘
λ1nの原子比が3対7になるように混合し、空気中で
375℃で20時間焼成して作製したL1含有二酸化マ
ンガン(LixMnOy)を正極活物質として用いるこ
とを除いては、前記比較例1と同様にして比較電池B7
を組み立てた。
[Comparative Example 7] L1 was prepared by mixing the positive electrode active material and L with LiOH and Si O such that the atomic ratio of Li elbow λ1n was 3:7, and baking the mixture in air at 375°C for 20 hours. Comparative battery B7 was prepared in the same manner as in Comparative Example 1 except that manganese dioxide (LixMnOy) containing manganese dioxide (LixMnOy) was used as the positive electrode active material.
assembled.

[比較例8] 正極活物質としてMn O!を用い、電解槽内での正極
の予備的放電量を、前記実施例1の予備的放電量に対し
て5%とし、これに続く充電は同様に4.OV迄とする
ことを除いては、前記実施例1と同様にして比較電池B
、を組み立てた。
[Comparative Example 8] MnO! as a positive electrode active material! The preliminary discharge amount of the positive electrode in the electrolytic cell was set to 5% of the preliminary discharge amount in Example 1, and the subsequent charging was carried out in the same manner as in 4. Comparative battery B
, was assembled.

こitら電池A1〜A、及びB、〜B、を用い、電池の
サイクル特性を比較した。この結果を、第2図乃至第8
図に示す。第2図乃至第8図は、電池のサイクル特性図
である。
The cycle characteristics of the batteries were compared using batteries A1 to A, and B, to B. This result is shown in Figures 2 to 8.
As shown in the figure. 2 to 8 are cycle characteristic diagrams of the battery.

そして第2図は、正極活物質にM n Oxを用いた場
合の本発明電池A1、A8、A、と、比較電池B7、B
8のサイクル特性図である。
FIG. 2 shows inventive batteries A1, A8, A when M n Ox is used as the positive electrode active material, and comparative batteries B7, B.
8 is a cycle characteristic diagram of No. 8.

また、正極活物質として、M o Os、V、O,、λ
Io St、TiS、、N b S e h、L i 
x M n Oyを用いた本発明電池と比較電池のサイ
クル特性の比較をそれぞれ第3図乃至第8図に示す。
In addition, as a positive electrode active material, M o Os, V, O,, λ
Io St, TiS,, N b S e h, L i
A comparison of the cycle characteristics of a battery of the present invention using x M n Oy and a comparative battery is shown in FIGS. 3 to 8, respectively.

第2図より、M n O、を正極活物質とした場合、電
池外での予備的放電量が10%以上のときに、予備的放
電量を0〜5%とした場合に比べて、サイクル寿命が著
しく向上していることがわかる。
From Figure 2, when MnO is used as the positive electrode active material, when the amount of preliminary discharge outside the battery is 10% or more, the cycle rate is lower than when the amount of preliminary discharge is 0 to 5%. It can be seen that the lifespan has been significantly improved.

また、第3図乃至第8図に示されるように、MnO2以
外の正極活物質を用いた場合でも、電池外で予備的放電
を行うことにより、それぞれサイクル特性が向上してい
ることがわかる。
Moreover, as shown in FIGS. 3 to 8, it can be seen that even when positive electrode active materials other than MnO2 are used, the cycle characteristics are improved by performing preliminary discharge outside the battery.

(ト)発明の効果 本発明の非水電解液二次電池は、正極活物質が電池外で
予備的に放電及び充電されたものであるから、サイクル
特性進行に伴う正極の膨張、収縮を抑制することが可能
となり、正極の容量低下が抑えられ、この種電池のサイ
クル特性の向上が計れるものであり、その工業的価値は
極めて大きい
(G) Effects of the Invention In the non-aqueous electrolyte secondary battery of the present invention, since the positive electrode active material is preliminarily discharged and charged outside the battery, expansion and contraction of the positive electrode as cycle characteristics progress is suppressed. This makes it possible to suppress the decrease in the capacity of the positive electrode and improve the cycle characteristics of this type of battery, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

電池のサイクル特性図である。 1・・・正極、2・・・セパレータ、3・・負極、4山
負極缶、5・・・負極リード、6・正極リード、7・・
・正極キャップ、8・・絶縁バッキング、 A3、A、、A、、A4、A5、A6、A7、A、。 A、・・・本発明電池、 B2、B8、B1、B4、B5、B6、B9、B、・・
・比V電池。
It is a cycle characteristic diagram of a battery. 1... Positive electrode, 2... Separator, 3... Negative electrode, 4-pole negative electrode can, 5... Negative electrode lead, 6... Positive electrode lead, 7...
- Positive electrode cap, 8... Insulating backing, A3, A,, A,, A4, A5, A6, A7, A,. A,...Battery of the present invention, B2, B8, B1, B4, B5, B6, B9, B,...
- Specific V battery.

Claims (3)

【特許請求の範囲】[Claims] (1)リチウムあるいはリチウム合金を負極活物質とす
る負極と、リチウムイオンが侵入、脱離可能な正極活物
質からなる正極とを備えた電池であって、 前記正極活物質が電池外で予備的に放電及び充電された
ものであることを特徴とする非水電解液二次電池。
(1) A battery comprising a negative electrode made of lithium or a lithium alloy as a negative electrode active material, and a positive electrode made of a positive electrode active material into which lithium ions can enter and escape, wherein the positive electrode active material is used as a preliminary material outside the battery. A non-aqueous electrolyte secondary battery characterized by being discharged and charged.
(2)前記正極活物質が、MnO_2、MoO_3、V
_2O_5、MoS_2、TiS_2、NbSe_3、
Li_xMnO_yのうちから選択された少なくとも1
種を含むことを特徴とする請求項1記載の非水電解液二
次電池。
(2) The positive electrode active material is MnO_2, MoO_3, V
_2O_5, MoS_2, TiS_2, NbSe_3,
At least one selected from Li_xMnO_y
The non-aqueous electrolyte secondary battery according to claim 1, characterized in that the non-aqueous electrolyte secondary battery contains a seed.
(3)前記正極活物質の予備的放電量が、正極容量の1
0%〜100%であることを特徴とする請求項(1)記
載の非水電解液二次電池。
(3) The preliminary discharge amount of the positive electrode active material is 1 of the positive electrode capacity.
The nonaqueous electrolyte secondary battery according to claim 1, wherein the electrolyte content is 0% to 100%.
JP2167627A 1990-06-26 1990-06-26 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2865387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167627A JP2865387B2 (en) 1990-06-26 1990-06-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167627A JP2865387B2 (en) 1990-06-26 1990-06-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0458469A true JPH0458469A (en) 1992-02-25
JP2865387B2 JP2865387B2 (en) 1999-03-08

Family

ID=15853295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167627A Expired - Lifetime JP2865387B2 (en) 1990-06-26 1990-06-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2865387B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466655A (en) * 1993-06-21 1995-11-14 Mitsubishi Paper Mills Limited Heat-sensitive recording material
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
JP2008098131A (en) * 2006-09-13 2008-04-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
WO2011030686A1 (en) * 2009-09-09 2011-03-17 日本電気株式会社 Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466655A (en) * 1993-06-21 1995-11-14 Mitsubishi Paper Mills Limited Heat-sensitive recording material
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
JP2008098131A (en) * 2006-09-13 2008-04-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
WO2011030686A1 (en) * 2009-09-09 2011-03-17 日本電気株式会社 Secondary battery
JP5716667B2 (en) * 2009-09-09 2015-05-13 日本電気株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2865387B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JPH02288068A (en) Nonaqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06342673A (en) Lithium secondary battery
JPH07335261A (en) Lithium secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JPH0458469A (en) Nonaqueous electrolyte secondary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPS61165961A (en) Organic electrolytic solution battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP3025695B2 (en) Non-aqueous secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH05307974A (en) Organic electrolyte secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JPH10188976A (en) Lithium secondary battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH05226003A (en) Nonaqueous electrolyte secondary battery
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JP2865355B2 (en) Non-aqueous secondary battery
JPH0630256B2 (en) Non-aqueous electrolyte secondary battery
JPH0888024A (en) Lithium secondary battery
JPH08171937A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12