JPH0458261B2 - - Google Patents
Info
- Publication number
- JPH0458261B2 JPH0458261B2 JP58025267A JP2526783A JPH0458261B2 JP H0458261 B2 JPH0458261 B2 JP H0458261B2 JP 58025267 A JP58025267 A JP 58025267A JP 2526783 A JP2526783 A JP 2526783A JP H0458261 B2 JPH0458261 B2 JP H0458261B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- voltage
- self
- output
- power converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、他の交流電源と連系運転される交流
連系システムに係り、特に交流電源の電圧変動時
においても安定に所定の無効電力を供給し、交流
電源の事故時においては特定の負荷に電力を供給
するに適した自励式電力変換装置の運転方法に関
する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an AC interconnection system that is operated in conjunction with another AC power source, and in particular to a system that stably supplies a predetermined reactive power even when the voltage of the AC power source fluctuates. The present invention relates to a method of operating a self-excited power converter suitable for supplying power to a specific load in the event of an AC power failure.
従来、異なる系統の交流電源を並列運転するに
は、無効電力の偏差で各交流電源間の電圧差を、
有効電力の偏差で各交流電源間の位相をそれぞれ
制御することが知られている。
Conventionally, in order to operate AC power supplies from different systems in parallel, the voltage difference between each AC power supply is calculated by the deviation of reactive power.
It is known to control the phase between each AC power source by the deviation of the active power.
インバータ装置に代表される直流−交流電力変
換装置と電力系統を連系する場合は、電力系統は
制御できないので変換装置に自励式電力変換装置
(以下、電力変換装置と略称する)を用いて、有
効電力、無効電力を制御する方法が採用される。 When connecting a DC-AC power converter, such as an inverter, to a power system, the power system cannot be controlled, so a self-excited power converter (hereinafter referred to as a power converter) is used as the converter. A method of controlling active power and reactive power is adopted.
第1図に、従来の電力変換装置の制御方法を示
すブロツク図を表わす。 FIG. 1 shows a block diagram showing a conventional control method for a power converter.
直流電源1の直流出力は電力変換装置2により
交流に変換され、変圧器3により所定の電圧に変
換され、開閉器4を介して電力系統5へ接続され
る。 The DC output of the DC power source 1 is converted into AC by a power conversion device 2, converted to a predetermined voltage by a transformer 3, and connected to a power grid 5 via a switch 4.
制御回路100においては、電圧基準21と電
力変換装置2に接続される変圧器3の2次検出電
圧12とを比較し、その偏差25aは切替スイツ
チ25を介して誤差増幅器24へ印加される。無
効電力基準22と変圧器3の2次検出電圧12お
よび変圧器3の2次検出電流11より無効電力を
検出する無効電力検出回路23との出力を比較
し、その偏差25bは切替スイツチ24を介して
誤差増幅器24に印加され、誤差増幅器24の出
力は電圧制御回路26の入力となつている。 In the control circuit 100, the voltage reference 21 is compared with the secondary detection voltage 12 of the transformer 3 connected to the power converter 2, and the difference 25a is applied to the error amplifier 24 via the changeover switch 25. The reactive power reference 22 is compared with the output of a reactive power detection circuit 23 that detects reactive power from the secondary detection voltage 12 of the transformer 3 and the secondary detection current 11 of the transformer 3, and the deviation 25b is detected by the changeover switch 24. The output of the error amplifier 24 is applied to the voltage control circuit 26 through the voltage control circuit 26.
同様に、有効電力基準31と変圧器3の2次検
出電圧12および変圧器3の2次検出電流11よ
り有効電力を検出する有効電力検出回路32の出
力とを比較し、その偏差33aは誤差増幅器33
の入力へ与え、誤差増幅器33の出力の出力はフ
エーズロツクループ(Phase locked loop)いわ
ゆるPLL回路34の1つの入力“イ”となつて
いる。35は分周器でPLL回路34の出力周波
数を分周し、その出力はPLL回路34の他の1
つの入力“ハ”となる。PLL回路34の他の1
つの入力“ロ”には、電力系統検出電圧13が位
相基準として与えられる。 Similarly, the active power reference 31 is compared with the output of the active power detection circuit 32 that detects active power from the secondary detection voltage 12 of the transformer 3 and the secondary detection current 11 of the transformer 3, and the deviation 33a is the error. Amplifier 33
The output of the error amplifier 33 serves as one input "I" of a phase locked loop, so-called PLL circuit 34. 35 is a frequency divider which divides the output frequency of the PLL circuit 34, and its output is divided into other parts of the PLL circuit 34.
This results in two inputs “ha”. Another one of the PLL circuit 34
The power system detection voltage 13 is applied to the two inputs "b" as a phase reference.
ここでPLL回路34は周知の回路であるが、
簡単に説明する。第2図はPLL回路34のブロ
ツク図の一例である。PLL回路34の構成は位
相誤差検出器PHD、低域波器LPFそして電圧
制御発振器VCOから構成される。これ等各要素
の概要を説明すると、位相誤差検出器PHDは位
相基準信号“ロ”と位相帰還信号“ハ”との位相
差に比例した信号“ニ”を発生する。この位相差
に比例した信号“ニ”が低域波器LPFの入力
となり、この低域波器LPFで高調波成分を除
去すると共に、位相誤差を増幅する。そして電圧
制御発振器VCOは低域波器LPFの出力“ホ”
に比例した周波数を出力し、この電圧制御発振器
VCOの出力“ヘ”は分周器35へ与えられる。
分周器35の段数をNとすれば、電圧制御発振器
VCOの発振周波数は位相基準信号“ロ”のN倍
となる。ここでNは電力変換装置2のインバータ
回路の相数により、任意の整数に選ばれる。分周
器35の出力は位相誤差検出器PHDの位相帰還
信号“ハ”となつているので、電圧制御発振器
VCOの発振周波数は位相基準信号“ロ”と位相
帰還信号“ハ”との位相が一致するように自動制
御される。ここでPLL回路34の1つの入力
“イ”の働きは、低域波器LPFへ信号を与える
ことにより、位相基準信号“ロ”と位相帰還信号
“ハ”との位相差を任意に設定可能となる。 Here, the PLL circuit 34 is a well-known circuit, but
Explain briefly. FIG. 2 is an example of a block diagram of the PLL circuit 34. The PLL circuit 34 is composed of a phase error detector PHD, a low frequency filter LPF, and a voltage controlled oscillator VCO. To give an overview of each of these elements, the phase error detector PHD generates a signal "D" proportional to the phase difference between the phase reference signal "B" and the phase feedback signal "C". A signal "2" proportional to this phase difference is input to the low-pass filter LPF, which removes harmonic components and amplifies the phase error. And the voltage controlled oscillator VCO is the output “H” of the low frequency filter LPF.
This voltage controlled oscillator outputs a frequency proportional to
The output “H” of the VCO is given to the frequency divider 35.
If the number of stages of the frequency divider 35 is N, then the voltage controlled oscillator
The oscillation frequency of the VCO is N times that of the phase reference signal "L". Here, N is selected as an arbitrary integer depending on the number of phases of the inverter circuit of the power conversion device 2. Since the output of the frequency divider 35 is the phase feedback signal "c" of the phase error detector PHD, the voltage controlled oscillator
The oscillation frequency of the VCO is automatically controlled so that the phases of the phase reference signal "L" and the phase feedback signal "C" match. Here, the function of one input "A" of the PLL circuit 34 is that the phase difference between the phase reference signal "B" and the phase feedback signal "C" can be arbitrarily set by giving a signal to the low frequency filter LPF. becomes.
再び第1図の動作説明に戻る。PLL回路34
の位相基準信号“ロ”としては電力系統5の位相
が印加されているので、PLL回路34の出力周
波数は電力系統5の位相と同期し、従つて電力変
換装置2の位相も電力系統5の位相と同期してい
る。 Returning again to the explanation of the operation in FIG. PLL circuit 34
Since the phase of the power system 5 is applied as the phase reference signal “b” of Synchronized with phase.
開閉器4が開の状態ではスイツチ25は偏差2
5aを選択しており、変圧器3の2次検出電圧1
2が電圧基準21に等しくなるよう自動制御され
る。また、誤差増幅器33の入出力はスイツチ3
6で短絡されており、有効電力の偏差33aによ
る電力変換装置2の位相を制御する有効電力制御
回路は形成されていない。 When the switch 4 is open, the switch 25 has a deviation of 2.
5a is selected, and the secondary detection voltage 1 of transformer 3 is selected.
2 is automatically controlled to be equal to the voltage reference 21. In addition, the input and output of the error amplifier 33 are connected to the switch 3.
6 is short-circuited, and an active power control circuit that controls the phase of the power converter 2 based on the active power deviation 33a is not formed.
次に開閉器4を閉の状態にすると、切替スイツ
チ25は偏差25bを選択し、電力変換装置2の
無効電力が無効電力基準22に等しくなるよう電
力変換装置2の出力電圧が自動制御される。 Next, when the switch 4 is closed, the changeover switch 25 selects the deviation 25b, and the output voltage of the power conversion device 2 is automatically controlled so that the reactive power of the power conversion device 2 becomes equal to the reactive power reference 22. .
また、開閉器4を閉の状態にすると同時にスイ
ツチ36が開き、誤差増幅器33の入出力の短絡
が解除され、電力変換装置2の有効電力が有効電
力基準31と等しくなるよう電力変換装置2の電
圧位相が自動制御される。 Further, at the same time as the switch 4 is closed, the switch 36 is opened, the input/output short circuit of the error amplifier 33 is released, and the power converter 2 is adjusted so that the active power of the power converter 2 becomes equal to the active power reference 31. Voltage phase is automatically controlled.
しかして、本発明の作用の説明では有効電力は
特に関係がないので、以下の説明では電力変換装
置2と電力系統5の電圧位相が全く等しいとす
る。 Therefore, in the description of the operation of the present invention, active power is not particularly relevant, so in the following description, it is assumed that the voltage phases of the power conversion device 2 and the power system 5 are completely equal.
いま、電力変換装置2の出力電圧211をE〓1、
電力系統5との連系点の電圧すなわち変圧器3の
2次電圧14をE〓2とすると、変圧器3には第3
図のベクトルのE〓1−E〓2の電圧が印加されること
になり、変圧器3を流れる電流I・Lは変圧器3の
インピーダンスをリアクタンス分のみと考える
と、電圧ベクトルE〓1,E〓2に対して90゜位相の遅れ
たベクトルE〓Lで表わされる。 Now, the output voltage 211 of the power converter 2 is E〓 1 ,
If the voltage at the connection point with the power grid 5, that is, the secondary voltage 14 of the transformer 3, is E = 2 , then the transformer 3 has a third
A voltage of E〓 1 −E〓 2 of the vector in the figure will be applied, and the current I・L flowing through the transformer 3 will be the voltage vector E〓 1 , assuming that the impedance of the transformer 3 is only the reactance component. It is expressed as a vector E〓 L whose phase is delayed by 90° with respect to E〓 2 .
この時の電力は無効電力であり、電力変換装置
2の出力電圧制御は無効電力の授受を行なうこと
になる。言い換えれば電力変換装置2の無効電力
制御による電力系統5との無効電力の授受は、連
系点の電圧の安定化を行なうことができる。すな
わち、電力系統5の電圧が所定値よりも小であれ
ば無効電力基準22に所定の指令を与え、電力変
換装置2から電力系統5へ無効電力を供給するこ
とにより、連系点の電圧を上げることができ、電
力系統5の電圧が所定値よりも大であれば、その
逆が行なわれることになる。すなわち、電力系統
5の電圧は変えられないものとすると、電力変換
装置2の電圧を変化させることにより、両電源間
の無効電力を制御することができる。 The power at this time is reactive power, and the output voltage control of the power converter 2 involves giving and receiving reactive power. In other words, the transfer of reactive power to and from the power grid 5 through the reactive power control of the power converter 2 can stabilize the voltage at the interconnection point. That is, if the voltage of the power grid 5 is lower than a predetermined value, a predetermined command is given to the reactive power standard 22, and reactive power is supplied from the power conversion device 2 to the power grid 5, thereby reducing the voltage at the interconnection point. If the voltage of the power system 5 is greater than the predetermined value, the reverse will occur. That is, assuming that the voltage of the power system 5 cannot be changed, the reactive power between the two power sources can be controlled by changing the voltage of the power conversion device 2.
ところが電力変換装置2に対して電力系統5の
容量が非常に大きい場合、所謂交流電源が強い場
合は、電力変換装置2の無効電力制御を行なつて
も、連系点の電圧の安定化に対する寄与度は小さ
い。その上、かかる第1図に示す従来の方式は、
電力系統5の電圧の急変に対しては無効電力検出
回路23に無効電力を演算する回路が必要なた
め、この演算回路の遅れが生じてしまい、電力変
換装置2の出力電圧制御機能も遅れてしまう。
However, if the capacity of the power system 5 is very large relative to the power converter 2, or if the so-called AC power source is strong, even if the reactive power control of the power converter 2 is performed, it will not be possible to stabilize the voltage at the interconnection point. The contribution is small. Moreover, the conventional method shown in FIG.
In response to sudden changes in the voltage of the power system 5, the reactive power detection circuit 23 requires a circuit that calculates the reactive power, so this calculation circuit is delayed, and the output voltage control function of the power converter 2 is also delayed. Put it away.
この出力電圧制御機能の遅れは第3図に示す電
圧差E〓1−E〓2によつて生じる電流I・Lの急変を生じ
、
電力系統5の電圧の急変量によつては電力変換装
置2の保護上周知とされる過電流検出値に達して
しまい、電力変換装置2が保護連動動作をし、停
止してしまう欠点が生じる。 This delay in the output voltage control function causes a sudden change in the current I・L caused by the voltage difference E〓 1 −E〓 2 shown in Fig. 3.
Depending on the sudden change in the voltage of the power system 5, a well-known overcurrent detection value is reached for the protection of the power converter 2, resulting in the disadvantage that the power converter 2 performs a protective interlocking operation and stops. .
また、開閉器4の操作と同時に切替スイツチ2
5で電力変換装置2の出力電圧制御と無効電力制
御の切り替えを行なうため、開閉器4の開閉動作
時に、電力変換装置2の電力、特に無効電力の急
変を余儀なくされてしまう欠点が生じる。 Also, at the same time as the switch 4 is operated, the changeover switch 2
Since the output voltage control and reactive power control of the power converter 2 are switched in step 5, there is a drawback that the power of the power converter 2, especially the reactive power, is forced to suddenly change when the switch 4 is opened/closed.
本発明は、この点に鑑み所謂強い他の交流電源
と連系運転される交流連系システムにおいて、電
力系統5の電圧の急変に対しても安定に動作を続
け、また開閉器4の開閉動作時における連系点の
電圧の急変を抑え、しかも電力系統5の事故時に
おいて速やかに開閉器4を開放して所定の負荷の
みの単独負荷運転に移行することができる自励式
電力変換装置の運転方法を提供することを、その
目的とする。
In view of this point, the present invention provides an AC grid-connected system that is operated in conjunction with other so-called strong AC power supplies, which continues to operate stably even in the face of sudden changes in the voltage of the power grid 5, and which maintains the opening/closing operation of the switch 4. Operation of a self-excited power converter that can suppress sudden changes in voltage at interconnection points during times of failure, and can quickly open the switch 4 and shift to single load operation of only a predetermined load in the event of an accident in the power system 5. Its purpose is to provide a method.
本発明は、直流電源の出力を交流に変換する自
励式電力変換装置が開閉器を介して他の交流電源
に接続され、この交流電源の無効電力、有効電力
を前記自励式電力変換装置によつて制御する電力
変換システムにおいて、
前記自励式電力変換装置の出力電圧制御系の電
圧基準を所定の設定値と前記交流電源電圧検出値
のいずれかを選択する選択回路を備え、
前記交流電源の電圧が所定の範囲内であれば、
前記交流電源電圧検出値を電圧基準に選択し、こ
の交流電源電圧検出値と前記自励式電力変換装置
の出力電圧検出値と無効電力制御回路の制御偏差
とを入力する電圧制御回路の出力信号により、前
記自励式電力変換装置の出力電圧を制御するとと
もに、
前記交流電源の電圧が所定の範囲外であれば、
前記開閉器を開放して前記無効電力制御回路およ
び有効電力制御回路を停止させ、前記所定の設定
値を電圧基準に選択し、この所定の設定値と前記
自励式電力変換装置の出力電圧検出値を入力とす
る前記電圧制御回路の出力信号により、前記自励
式電力変換装置の出力電圧を制御する
自励式電力変換装置の運転方法である。
In the present invention, a self-excited power converter that converts the output of a DC power source into alternating current is connected to another AC power source via a switch, and the reactive power and active power of this AC power source are transferred to the self-excited power converter. A power conversion system for controlling an output voltage control system of the self-excited power converter, comprising a selection circuit that selects either a predetermined setting value or the AC power supply voltage detection value as a voltage reference of an output voltage control system of the self-excited power conversion device, the voltage of the AC power supply If is within the specified range,
The AC power supply voltage detection value is selected as a voltage reference, and the output voltage control circuit inputs the AC power supply voltage detection value, the output voltage detection value of the self-excited power converter, and the control deviation of the reactive power control circuit. , while controlling the output voltage of the self-excited power converter, if the voltage of the AC power supply is outside a predetermined range,
The switch is opened to stop the reactive power control circuit and the active power control circuit, the predetermined set value is selected as a voltage reference, and the predetermined set value and the detected output voltage value of the self-excited power converter are This is a method of operating a self-excited power converter, in which the output voltage of the self-excited power converter is controlled by an output signal of the voltage control circuit that receives as an input.
本発明の一実施例を第4図にその構成を示すブ
ロツク図により説明する。
An embodiment of the present invention will be explained with reference to a block diagram showing its configuration in FIG. 4.
第4図において、第1図と同じ符号のものは同
一機能をそなえるものである。 In FIG. 4, the same reference numerals as in FIG. 1 have the same functions.
この実施例(第4図)で従来(第1図)と相異
する点は次のとおり。すなわち、誤差増幅器24
の電圧基準として電力系統検出電圧13あるいは
電圧基準21の一方を選択する切替スイツチ42
を介して選択された基準信号42aと電力変換装
置2の出力検出電圧15および無効電力制御のた
めの誤差増幅器43の出力信号43aを入力とし
ている点である。 The differences between this embodiment (Fig. 4) and the conventional example (Fig. 1) are as follows. That is, the error amplifier 24
a changeover switch 42 for selecting either the power system detection voltage 13 or the voltage reference 21 as the voltage reference;
The reference signal 42a selected via the power converter 2, the output detection voltage 15 of the power converter 2, and the output signal 43a of the error amplifier 43 for reactive power control are input.
では、本発明の作用を述べる。 Now, the operation of the present invention will be described.
第4図において、電力系統5が所定の範囲内で
確立していれば電力系統検出電圧13を入力とす
る電圧判別回路41により、切替スイツチ42は
電力系統検出電圧13を選択して、電圧制御系の
基準信号42aとしている。 In FIG. 4, if the power grid 5 is established within a predetermined range, the voltage discrimination circuit 41 which receives the power grid detection voltage 13 as an input causes the changeover switch 42 to select the power grid detection voltage 13 and control the voltage. This is used as a reference signal 42a for the system.
開閉器4が開の状態、つまり電力変換装置2が
負荷6のみに電力を供給している状態では、誤差
増幅器33,43ともその入出力はそれぞれスイ
ツチ36,44により短絡されていて有効電力、
無効電力制御系とも機能を停止しており、誤差増
幅器24は基準信号42aと電力変換装置2の出
力検出電圧15の偏差24aを入力として電圧制
御を行なう。すなわち、電力変換装置2の出力電
圧が電力系統5の電圧に等しくなるよう自動制御
される。 When the switch 4 is open, that is, when the power converter 2 is supplying power only to the load 6, the input and output of the error amplifiers 33 and 43 are short-circuited by the switches 36 and 44, respectively, so that the effective power
Both reactive power control systems have stopped functioning, and the error amplifier 24 performs voltage control using the deviation 24a between the reference signal 42a and the output detection voltage 15 of the power converter 2 as input. That is, the output voltage of the power conversion device 2 is automatically controlled to be equal to the voltage of the power system 5.
この状態で開閉器4を投入すると、電力変換装
置2の出力電圧211と電力系統5の電圧が等し
いため両者の電圧差による無効電力の授受がない
から、連系点の電圧の変動を抑えることができ
る。 When the switch 4 is turned on in this state, the output voltage 211 of the power converter 2 and the voltage of the power grid 5 are equal, so there is no exchange of reactive power due to the voltage difference between the two, so fluctuations in the voltage at the interconnection point can be suppressed. Can be done.
誤差増幅器33,43は各々のスイツチ36,
44が開放されると図示されない起動回路によ
り、緩やかに所定の有効電力、無効電力制御を行
なうよう動作する。 The error amplifiers 33, 43 are connected to the respective switches 36,
When 44 is opened, a starting circuit (not shown) operates to gently control predetermined active power and reactive power.
誤差増幅器43の出力信号43aは基準信号4
2aと電力変換装置2の出力検出電圧15の加算
点に与えられ、無効電力制御量で電圧制御系の偏
差24aを補正するように働き、結果として電力
変換装置2と電力系統5の間の無効電力の授受が
無効電力基準22に等しくなるよう自動制御され
る。 The output signal 43a of the error amplifier 43 is the reference signal 4
2a and the output detection voltage 15 of the power converter 2, and works to correct the deviation 24a of the voltage control system with the reactive power control amount, and as a result, the reactive power between the power converter 2 and the power system 5 is The transfer of power is automatically controlled to be equal to the reactive power standard 22.
また、電力系統5の電圧が急変しても電圧制御
系の基準信号42aが瞬時に変化するため偏差2
4aにより、誤差増幅器24が速応することがで
き、無効電力量の変化は抑えられる。つまり、両
電源間での電流の増加が抑えられるため電力変換
装置2が過電流検出して保護連動動作することも
ない。 Furthermore, even if the voltage of the power system 5 suddenly changes, the reference signal 42a of the voltage control system changes instantaneously, so the deviation 2
4a allows the error amplifier 24 to respond quickly and suppresses changes in the amount of reactive power. In other words, since the increase in current between the two power supplies is suppressed, the power converter 2 does not detect an overcurrent and perform a protective interlock operation.
しかして、電力系統5が所定の範囲以上に変動
した場合は、電圧判別回路41によりそれを検出
して開閉器4を開放動作させるとともに、切替ス
イツチ42を電圧基準21に切り替えることによ
り電力変換装置2の出力電圧211を定電圧制御
することができ、負荷6に安定した電力を供給す
ることができる。 If the power system 5 fluctuates beyond a predetermined range, the voltage discrimination circuit 41 detects this and opens the switch 4, and switches the changeover switch 42 to the voltage reference 21, thereby switching the power converter The output voltage 211 of No. 2 can be controlled at a constant voltage, and stable power can be supplied to the load 6.
ところで、この実施例では電力系統検出電圧1
3が所定の範囲内であることを検出して、電圧判
別回路41により切替スイツチ42で電力系統検
出電圧13を選択させ、所定の範囲外であれば、
電圧基準21を選択するようにしたが、電力変換
装置2の出力電圧制御範囲に合わせて電圧判別回
路41による検出範囲を定めても良い。 By the way, in this embodiment, the power system detection voltage 1
3 is within a predetermined range, the voltage discrimination circuit 41 causes the selector switch 42 to select the power system detection voltage 13, and if it is outside the predetermined range,
Although the voltage reference 21 is selected, the detection range by the voltage discrimination circuit 41 may be determined in accordance with the output voltage control range of the power conversion device 2.
すなわち、電力系統5の一部分岐回路での一時
的な短絡事故が発生した場合でも、電力変換装置
2の出力電圧制御範囲を広くしておくことによ
り、電力変換装置2は電力系統5の電圧に追従す
るため、過電流を検出することなく、動作し続け
ることができる。 In other words, even if a temporary short-circuit accident occurs in some branch circuits of the power system 5, by widening the output voltage control range of the power conversion device 2, the power conversion device 2 can maintain the voltage of the power system 5. This allows it to continue operating without detecting overcurrent.
また、切替スイツチ42は、開閉器4が開放の
状態では負荷6に一定な電圧を供給するよう電圧
基準21を選択させておいて、開閉器4の投入時
に切替スイツチ42を切り替えて電力系統5の電
圧に等しくなるよう制御させても良い。 Further, the changeover switch 42 selects the voltage reference 21 so as to supply a constant voltage to the load 6 when the switch 4 is open, and when the switch 4 is turned on, the changeover switch 42 is switched to control the power system 5. The voltage may be controlled to be equal to the voltage.
以上説明したように、本発明によれば、直流電
源からの直流を交流に変換する電力変換装置と他
の異なる交流電源を接続する交流連系システムに
おいて、開閉器の投入による連系時点での過渡的
な無効電力の授受を抑え、連系点の電圧を変動さ
せることなく、また、電力系統の電圧が急変して
も、電圧制御系が速応することによつて、不要な
無効電力量の授受が抑えられるため、電力変換装
置が過電流を検出することもなく動作し続けるこ
とができる。万一、電力系統が事故を起こして
も、開閉器4を速やかに開放することによつて定
められた負荷への電力は絶えることなく供給する
ことができる。
As explained above, according to the present invention, in an AC interconnection system that connects a power conversion device that converts direct current from a DC power source to alternating current and another different AC power source, at the time of interconnection by turning on a switch, By suppressing the transmission and reception of transient reactive power, without changing the voltage at interconnection points, and by quickly responding to voltage control systems even if the voltage of the power grid suddenly changes, unnecessary reactive power can be reduced. Since the transmission and reception of power is suppressed, the power conversion device can continue to operate without detecting overcurrent. Even if an accident occurs in the power system, by promptly opening the switch 4, power can be continuously supplied to the specified load.
第1図は従来の交流連系システムの制御方式を
示すブロツク図、第2図は第1図のPLL回路の
具体的な回路構成図、第3図は無効電力の発生を
説明するベクトル図、第4図は本発明の一実施例
の構成を示すブロツク図である。
1……直流電源、2……自励式電力変換装置
(211はその出力電圧)、3……変圧器、4……
開閉器あるいは遮断器、5……電力系統、6……
負荷、11……出力電流、12……変圧器3の2
次検出電圧、13……電力系統検出電圧、14…
…変圧器3の2次電圧、15……電力変換装置2
の出力検出電圧、21……電圧基準、22……無
効電力基準、23……無効電力検出回路、24…
…誤差増幅器、24a……偏差、25……切替ス
イツチ、25a,25b……偏差、26……電圧
制御回路、31……有効電力基準、32……有効
電力検出回路、33……誤差増幅器、34……
PLL回路、35……分周器、36……スイツチ、
41……電圧判別回路、42……切替スイツチ、
43……誤差増幅器、43a……出力信号、44
……スイツチ。
Fig. 1 is a block diagram showing the control method of a conventional AC interconnection system, Fig. 2 is a specific circuit configuration diagram of the PLL circuit shown in Fig. 1, and Fig. 3 is a vector diagram explaining the generation of reactive power. FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention. 1... DC power supply, 2... Self-excited power converter (211 is its output voltage), 3... Transformer, 4...
Switch or circuit breaker, 5... Power system, 6...
Load, 11...Output current, 12...2 of transformer 3
Next detection voltage, 13... Power system detection voltage, 14...
...Secondary voltage of transformer 3, 15...Power converter 2
output detection voltage, 21... voltage reference, 22... reactive power reference, 23... reactive power detection circuit, 24...
...error amplifier, 24a...deviation, 25...changeover switch, 25a, 25b...deviation, 26...voltage control circuit, 31...active power reference, 32...active power detection circuit, 33...error amplifier, 34...
PLL circuit, 35... Frequency divider, 36... Switch,
41... Voltage discrimination circuit, 42... Changeover switch,
43...Error amplifier, 43a...Output signal, 44
...Switch.
Claims (1)
変換装置が開閉器を介して他の交流電源に接続さ
れ、この交流電源の無効電力、有効電力を前記自
励式電力変換装置によつて制御する電力変換シス
テムにおいて、 前記自励式電力変換装置の出力電圧制御系の電
圧基準を所定の設定値と前記交流電源電圧検出値
のいずれかを選択する選択回路を備え、 前記交流電源の電圧が所定の範囲内であれば、
前記交流電源電圧検出値を電圧基準に選択し、こ
の交流電源電圧検出値と前記自励式電力変換装置
の出力電圧検出値と無効電力制御回路の制御偏差
とを入力する電圧制御回路の出力信号により、前
記自励式電力変換装置の出力電圧を制御するとと
もに、 前記交流電源の電圧が所定の範囲外であれば、
前記開閉器を開放して前記無効電力制御回路およ
び有効電力制御回路を停止させ、前記所定の設定
値を電圧基準に選択し、この所定の設定値と前記
自励式電力変換装置の出力電圧検出値を入力とす
る前記電圧制御回路の出力信号により、前記自励
式電力変換装置の出力電圧を制御する ことを特徴とする自励式電力変換装置の運転方
法。[Scope of Claims] 1. A self-excited power converter that converts the output of a DC power source into alternating current is connected to another AC power source via a switch, and the reactive power and active power of this AC power source are converted into the self-excited power converter. A power conversion system controlled by the device, comprising a selection circuit that selects either a predetermined setting value or the AC power supply voltage detection value as a voltage reference of the output voltage control system of the self-excited power conversion device, If the voltage of the power supply is within the specified range,
The AC power supply voltage detection value is selected as a voltage reference, and the output voltage control circuit inputs the AC power supply voltage detection value, the output voltage detection value of the self-excited power converter, and the control deviation of the reactive power control circuit. , while controlling the output voltage of the self-excited power converter, if the voltage of the AC power supply is outside a predetermined range,
The switch is opened to stop the reactive power control circuit and the active power control circuit, the predetermined set value is selected as a voltage reference, and the predetermined set value and the detected output voltage value of the self-excited power converter are A method of operating a self-excited power converter, characterized in that an output voltage of the self-excited power converter is controlled by an output signal of the voltage control circuit which receives as an input.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58025267A JPS59153426A (en) | 1983-02-17 | 1983-02-17 | Methdo of operating self-excited power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58025267A JPS59153426A (en) | 1983-02-17 | 1983-02-17 | Methdo of operating self-excited power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59153426A JPS59153426A (en) | 1984-09-01 |
JPH0458261B2 true JPH0458261B2 (en) | 1992-09-17 |
Family
ID=12161248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58025267A Granted JPS59153426A (en) | 1983-02-17 | 1983-02-17 | Methdo of operating self-excited power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59153426A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6152114A (en) * | 1984-08-22 | 1986-03-14 | 株式会社東芝 | Controller of power converter |
JPS62155732A (en) * | 1985-12-26 | 1987-07-10 | 株式会社明電舎 | Parallel driving apparatus of inverters |
-
1983
- 1983-02-17 JP JP58025267A patent/JPS59153426A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59153426A (en) | 1984-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4641042A (en) | Power supply system and a control method thereof | |
US4639848A (en) | Method and system for controlling an AC-DC converter system | |
JPH0480620B2 (en) | ||
He et al. | Switching-Cycle-Based Startup for Grid-tied Inverters | |
JPH09182294A (en) | Power factor regulator | |
JPH09247952A (en) | Uninterrupted operation method and uninterrupted power supply apparatus | |
JPS60207461A (en) | Controlling method and device of conversion apparatus | |
JPH0458261B2 (en) | ||
JP3550573B2 (en) | Power converter | |
JPS5932974B2 (en) | Control method for inverters connected to the power grid | |
JPS6260897B2 (en) | ||
JPH0956170A (en) | Controller for inverter for system linkage | |
JP2830619B2 (en) | Static var compensator | |
JP2703367B2 (en) | Inverter parallel control device | |
JPH0126255B2 (en) | ||
JP2957613B2 (en) | Inverter device | |
JPS59209073A (en) | Starting method of self-excited power converter | |
JPS6343975B2 (en) | ||
JP2791006B2 (en) | Control method of AC / DC converter | |
JPH06189556A (en) | Parallel controller for inverter | |
JPS6322134B2 (en) | ||
JP2001197683A (en) | Uninterruptible power supply apparatus | |
JPH0686560A (en) | Self-excited inverter | |
JPS59103528A (en) | Control system for self-excited power converter | |
JPS6341289B2 (en) |