JP2830619B2 - Static var compensator - Google Patents

Static var compensator

Info

Publication number
JP2830619B2
JP2830619B2 JP4163502A JP16350292A JP2830619B2 JP 2830619 B2 JP2830619 B2 JP 2830619B2 JP 4163502 A JP4163502 A JP 4163502A JP 16350292 A JP16350292 A JP 16350292A JP 2830619 B2 JP2830619 B2 JP 2830619B2
Authority
JP
Japan
Prior art keywords
signal
inverter
circuit
pwm
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4163502A
Other languages
Japanese (ja)
Other versions
JPH05333953A (en
Inventor
紀夫 宮田
友宏 吉近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP4163502A priority Critical patent/JP2830619B2/en
Publication of JPH05333953A publication Critical patent/JPH05333953A/en
Application granted granted Critical
Publication of JP2830619B2 publication Critical patent/JP2830619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はインバータ部の制御を定
常時と過渡変動時とで変更できる制御部を備える静止形
無効電力補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static var compensator having a control unit capable of changing the control of an inverter unit between a steady state and a transient state.

【0002】[0002]

【従来の技術】例えば電気車両のような変動負荷がかか
る系統においては、図4に示すような静止形無効電力補
償装置が適用される。電源1に系統母線4が接続される
ものとし、これに対して変動負荷3が負荷されるものと
する。これに対して系統母線4に変圧器8を介してGTO
を通電制御素子としてフルブリッジ接続したインバータ
9が接続される。なお10は電圧形インバータの電源とし
てのコンデンサである。このような、インバータ9に対
する制御回路として、系統母線電圧検出用のPT5 と系統
母線電流検出用のCT6 よりの系統母線電圧信号と母線電
流信号を入力とする電力動揺抑制制御回路12にて無効電
力Qを演算する。 一方、母線電圧信号を系統電圧基準
値Vrefより加算器18で減算し、系統電圧一定制御回路11
に差電圧信号△Vを出力し、△VとQは加算器19で加算
され、無効電流制御回路14に入力する。一方、インバー
タ9の通電電流はCT17で検出され、無効電力検出器21で
通電無効電力値信号Q1 が求められ、無効電流制御回路
14において△V+QよりQ1 が差し引かれ、インバータ
9により系統母線4に生じさせる無効電流対応の遅相、
または進相無効電力信号isが求められ、PWMゲート制
御回路15に入力する。前記isが遅相の無効電力信号であ
る場合は、前記遅相の無効電力信号に相当する進相無効
電流をインバータ9より変圧器8を介して系統母線4に
流入させればよく、isが進相の無効電力信号である場合
は、遅相無効電流を系統母線4に流入させるように構成
すればよい。従って、PWMゲート制御回路15において
は、isが遅相の無効電力信号である場合には、同期電源
回路13よりの同期信号により、−π/2よりπ/2の間
で、is相当の進相電流を系統母線4に流入させるよう
に、isの大きさに従って、図2に示すようにPWMパル
ス幅θ1 〜θ5 を可変とすることにより、一方isが進相
の無効電力信号である場合には、同期電源回路13よりの
同期信号により、π/2より3π/2の間で、is相当の
遅相電流を系統母線4に流入させるように、isの大きさ
に従ってPWMパルス幅θ6 〜θ10を可変とすることに
より、インバータ電流を任意に制御する。これらのPW
Mパルスθ1 〜θ5 、またはθ6 〜θ10はゲートドライ
ブ回路16に入力して、進相無効電流、または遅相電流を
系統母線4に送り込み、系統母線電圧は一定に連続制御
される。この場合、インバータのスイッチングロスは、
前記PWMパルスを作り出すキャリア周波数に比例して
多くなるため、常時PWMによる高速制御を行うと損失
は増大する。
2. Description of the Related Art In a system with a variable load such as an electric vehicle, a static var compensator as shown in FIG. 4 is applied. It is assumed that the system bus 4 is connected to the power supply 1 and the variable load 3 is applied thereto. On the other hand, the GTO is connected to the system bus 4 via the transformer 8
Are connected to the inverter 9 connected in full bridge. Reference numeral 10 denotes a capacitor as a power source of the voltage source inverter. As such a control circuit for the inverter 9, the power fluctuation suppression control circuit 12 which receives the system bus voltage signal and the bus current signal from the PT5 for system bus voltage detection and the CT6 for system bus current detection has Calculate Q. On the other hand, the bus voltage signal is subtracted from the system voltage reference value Vref by the adder 18, and the system voltage constant control circuit 11
A difference voltage signal ΔV is output to the adder 19, and ΔV and Q are added by the adder 19 and input to the reactive current control circuit 14. On the other hand, the conduction current of the inverter 9 is detected by the CT 17, and the reactive power value signal Q 1 is obtained by the reactive power detector 21, and the reactive current control circuit
At 14, Q 1 is subtracted from ΔV + Q, and a delay corresponding to a reactive current generated in the system bus 4 by the inverter 9,
Or advanced phase reactive power signal i s is obtained, and inputs the PWM gate control circuit 15. Wherein if i s is a reactive power signal of the slow phases may be caused to flow into the leading phase reactive current corresponding to the reactive power signal of the phase lag to the system bus 4 via a transformer 8 from the inverter 9, i If s is a leading reactive power signal, it may be configured so that a lagging reactive current flows into the system bus 4. Accordingly, the PWM gate control circuit 15, if i s is a reactive power signal of the slow phase, the synchronizing signal from the synchronizing power supply circuit 13, between - [pi] / 2 than π / 2, i s equivalent the leading phase current so as to flow into the system bus 4 in accordance with the magnitude of the i s, by varying the PWM pulse width theta 1 through? 5 as shown in FIG. 2, whereas invalid i s is the phase advance If it is the power signal, the synchronization signal from the synchronization source circuit 13, between than [pi / 2 of the 3 [pi] / 2, a i s equivalent of the slow current so as to flow into the system bus 4, the i s size The inverter current is arbitrarily controlled by making the PWM pulse width θ 6 to θ 10 variable accordingly. These PW
The M pulses θ 1 to θ 5 or θ 6 to θ 10 are input to the gate drive circuit 16 to send a leading reactive current or a lagging current to the system bus 4, and the system bus voltage is continuously controlled to be constant. . In this case, the switching loss of the inverter is
Since the number increases in proportion to the carrier frequency that generates the PWM pulse, the loss increases when high-speed control is always performed by PWM.

【0003】[0003]

【発明が解決しようとする課題】ところで、電鉄負荷に
おいては、ATフィーダ(単巻変圧器により構成される
き電線路)の投入、電車の切替投入に伴う突入電流によ
り瞬時電圧低下を起す。しかし、前記のような過渡的状
態となる場合を除き、き電線における電圧変動に急速応
答してき電線電圧を調整する必要はない。本発明は、瞬
時電圧低下をきたしたような場合にかぎり、キャリア周
波数の切替えによりPWMによるインバータの高速制御
を行うことで、インバータの出力電流を制御して系統電
圧変動を抑制し、常時は、PWM高速制御によるインバ
ータ部のスイッチングロスの減少をはかるものである。
By the way, in an electric railway load, an instantaneous voltage drop occurs due to an inrush current caused by turning on an AT feeder (a feeder line constituted by an autotransformer) and switching on a train. However, there is no need to adjust the feeder line voltage in a rapid response to voltage fluctuations in the feeder line except in the case of the above-mentioned transient state. The present invention controls the output current of the inverter to suppress the system voltage fluctuation by performing high-speed control of the inverter by PWM by switching the carrier frequency only when the instantaneous voltage drop occurs. The purpose is to reduce the switching loss of the inverter section by the PWM high-speed control.

【0004】[0004]

【実施例】以下図1にブロック図で示す実施例により、
本発明を説明する。図4と同一符号は同一部分を示す。
図1に示す回路の構成と図4に示すそれとは、図1にお
いてPWMキャリア周波数切替回路20を備え、前記切替
回路20はCB投入信号によってキャリア周波数を大きく
し、定常時は、電源周波数と同周波数のキャリアとし、
キャリア周波数はPWMゲート制御回路15に入力する。
系統母線4が定常にある場合、PWMゲート制御回路15
に入力する遅相、または進相無効電力信号isは、前記電
源周波数と同周波数のキャリアによって変調され、図3
に示すようにisの大きさに従うパルス幅をもつ半周期で
それぞれ1パルスのPWM信号を発し、ゲートドライブ
回路16に入力し、インバータ9を制御する。PWMゲー
ト制御回路15に入力するisが遅相の場合は、図3に示す
ようにインバータ電流は進みの電流を生じるように、矩
形波を発生し、無効電力を供給し、isが進相の場合は、
同じく図3に示すようにインバータ電流は遅れの電流を
生じるように矩形波を発生し、無効電力を消費するよう
にインバータ9が制御される。電車の切替投入等の突入
電流に伴う電圧変動は、例えばCB投入信号により、キ
ャリア周波数をPWMキャリア周波数切替回路20にて電
源周波数の整数倍に切替え、このキャリアで前記isを変
調する。以下ゲートドライブ回路16にPWMゲート信号
を入力して、インバータ9を制御することについてはす
でに説明したとおりである。CBの開放信号があったと
きは、キャリア周波数は電源周波数と同一周期となり、
isによるPWM信号は幅変調された一つの矩形波パルス
となり、インバータ9を制御する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
The present invention will be described. 4 denote the same parts.
The configuration of the circuit shown in FIG. 1 and that shown in FIG. 4 are different from those shown in FIG. 1 in that a PWM carrier frequency switching circuit 20 is provided, and the switching circuit 20 increases a carrier frequency by a CB input signal. Frequency carrier,
The carrier frequency is input to the PWM gate control circuit 15.
When the system bus 4 is stationary, the PWM gate control circuit 15
Late phase inputs, or advanced phase reactive power signal i s is modulated by the power supply frequency and the same frequency of the carrier, Figure 3
Each emit one pulse PWM signal half cycle having a pulse width according to the magnitude of i s as shown in, and input to the gate drive circuit 16, controls the inverter 9. For i s is lagging input to PWM gate control circuit 15, to produce the inverter current advances in current as shown in FIG. 3, and generates a rectangular wave, and supplying reactive power, i s progresses For phases,
Similarly, as shown in FIG. 3, the inverter current generates a rectangular wave so as to generate a delayed current, and the inverter 9 is controlled to consume the reactive power. Voltage variation caused by inrush current switching-on or the like of a train, for example by CB-on signal, switches the carrier frequency to an integer multiple of the power frequency in the PWM carrier frequency switching circuit 20 modulates the i s in the carrier. The control of the inverter 9 by inputting the PWM gate signal to the gate drive circuit 16 is as described above. When there is a CB release signal, the carrier frequency has the same cycle as the power supply frequency,
PWM signal by the i s becomes one of the square wave pulses width modulation, controls the inverter 9.

【0005】[0005]

【発明の効果】以上説明したように、本発明は定常時は
矩形波出力としてスイッチングロスを低減し、過渡変動
時(電車の切替投入等)の突入電流に伴う電圧変動のみ
を、PWM高速制御することにより瞬時電圧低下を抑制
する。さらに定常状態になれば、矩形波出力にもどすこ
とにより、スイッチングロスを低減する。よって過渡的
な電圧変動を抑制し、なおかつ総合運転損失を低減する
ことで、インバータの運転の高効率化ができる。
As described above, according to the present invention, the switching loss is reduced as a rectangular wave output in the steady state, and only the voltage fluctuation caused by the rush current during the transient fluctuation (such as switching on the train) is controlled by the PWM high-speed control. By doing so, the instantaneous voltage drop is suppressed. Further, when a steady state is reached, the switching loss is reduced by returning to a rectangular wave output. Accordingly, the efficiency of the inverter operation can be increased by suppressing the transient voltage fluctuation and reducing the total operation loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例をブロック図で示す。FIG. 1 shows an embodiment of the present invention in a block diagram.

【図2】本発明の過渡時におけるPWM出力波形を示
す。
FIG. 2 shows a PWM output waveform during a transition according to the present invention.

【図3】本発明の定常時におけるPWM出力波形を示
す。
FIG. 3 shows a PWM output waveform in a steady state according to the present invention.

【図4】従来の静止形無効電力補償装置をブロック図で
示す。
FIG. 4 is a block diagram showing a conventional static var compensator.

【符号の説明】[Explanation of symbols]

1 電源 2 系統インピーダンス(XL) 3 負荷 4 系統母線 5 負荷電圧検出PT 6 負荷電流検出CT 7 PT 8 変圧器 9 インバータ 10 コンデンサ 11 系統電圧一定制御回路 12 電力揺動制御回路 13 PLL(同期回路) 14 無効電流制御回路 15 PWMゲート制御回路 16 ゲートドライブ回路 17 インバータ電流検出CT 18,19 加算器 20 PWMキャリア周波数切替回路 21 インバータ発生無効電力検出回路 DESCRIPTION OF SYMBOLS 1 Power supply 2 System impedance (XL) 3 Load 4 System bus 5 Load voltage detection PT 6 Load current detection CT 7 PT 8 Transformer 9 Inverter 10 Capacitor 11 System voltage constant control circuit 12 Power fluctuation control circuit 13 PLL (synchronous circuit) 14 Reactive current control circuit 15 PWM gate control circuit 16 Gate drive circuit 17 Inverter current detection CT 18, 19 Adder 20 PWM carrier frequency switching circuit 21 Inverter generated reactive power detection circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 系統母線の電圧変動を抑制するため、系
統母線にインバータを接続し、該インバータより前記母
線に進相、または遅相電流を流入させて前記母線の電圧
変動を抑制する静止形無効電力補償装置において、系統
母線電圧と負荷電流より負荷無効電力信号を求める回路
と、系統電圧を系統電圧基準値と比較してその差信号を
求める回路と、前記両回路よりの出力信号を加算する回
路と、前記加算された信号より前記インバータの出力無
効信号を差し引く回路と、前記差し引かれた信号とキャ
リア信号によりPWM制御を行うPWMゲート制御回路
と該ゲート制御回路におけるキャリア周波数を電源周波
数に対する半サイクル1コの矩形波より外部信号により
高速キャリア周波数に切替えるPWMキャリア周波数切
替回路を備え、前記PWM制御回路からの出力信号をゲ
ートドライブ回路に導入してインバータを運転すること
を特徴とする静止形無効電力補償装置。
1. A static type in which an inverter is connected to a system bus in order to suppress a voltage fluctuation of a system bus, and a leading or lagging current flows from the inverter into the bus to suppress the voltage fluctuation of the bus. In the reactive power compensator, a circuit for obtaining a load reactive power signal from a system bus voltage and a load current, a circuit for comparing a system voltage with a system voltage reference value to obtain a difference signal therebetween, and adding output signals from both circuits. A circuit for subtracting the output invalid signal of the inverter from the added signal, a PWM gate control circuit for performing PWM control using the subtracted signal and a carrier signal, and a carrier frequency in the gate control circuit for a power supply frequency. A PWM carrier frequency switching circuit for switching to a high-speed carrier frequency by an external signal from a square wave of one half cycle; A static var compensator wherein an inverter is operated by introducing an output signal from a PWM control circuit to a gate drive circuit.
JP4163502A 1992-05-29 1992-05-29 Static var compensator Expired - Fee Related JP2830619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4163502A JP2830619B2 (en) 1992-05-29 1992-05-29 Static var compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4163502A JP2830619B2 (en) 1992-05-29 1992-05-29 Static var compensator

Publications (2)

Publication Number Publication Date
JPH05333953A JPH05333953A (en) 1993-12-17
JP2830619B2 true JP2830619B2 (en) 1998-12-02

Family

ID=15775085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4163502A Expired - Fee Related JP2830619B2 (en) 1992-05-29 1992-05-29 Static var compensator

Country Status (1)

Country Link
JP (1) JP2830619B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448700B2 (en) 2004-01-09 2010-04-14 富士通株式会社 Broadband pulse width modulation circuit and optical amplifier using the same
JP5278026B2 (en) * 2009-02-19 2013-09-04 富士電機株式会社 Reactive power compensator and control method of reactive power compensator
JP5321119B2 (en) * 2009-02-19 2013-10-23 富士電機株式会社 Reactive power compensator and control method of reactive power compensator
JP5362657B2 (en) * 2010-06-28 2013-12-11 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JPH05333953A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
Kim et al. New control scheme for AC-DC-AC converter without DC link electrolytic capacitor
JP2760666B2 (en) Method and apparatus for controlling PWM converter
Pollack Advanced pulsewidth modulated inverter techniques
US4489371A (en) Synthesized sine-wave static generator
JP2009124836A (en) Controller of uninterrupted power supply system
TWI657648B (en) Power supply device and power supply system using the same
JP2624793B2 (en) Control device for PWM boost converter
JP2830619B2 (en) Static var compensator
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
JP2003180035A (en) Circuit for switching synchronism of inverter
Maswood A PWM voltage source inverter with PI controller for instantaneous motor current control
JPS6132915B2 (en)
JPH05184154A (en) Parallel operation controller for ac output converter
JP3227009B2 (en) AC electric vehicle control device
JPH10225144A (en) Method of controlling gate of three-arm ups
JP2866526B2 (en) Reactive power compensator
JP6868927B1 (en) 3-pulse PWM control method for three-phase inverter
JPH11146564A (en) Power converter
KR20040040530A (en) Parallel control system of single-phase inverter
JP2771937B2 (en) Power converter start-up controller
JPH07212977A (en) Reactive power compensator
JPH02285941A (en) Uninterruptible power supply
JPH0634582B2 (en) Inverter parallel operation controller
JPH08116674A (en) Single phase pwm converter controller
JPH11299245A (en) Control method of converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees