JPH0458161B2 - - Google Patents

Info

Publication number
JPH0458161B2
JPH0458161B2 JP59104681A JP10468184A JPH0458161B2 JP H0458161 B2 JPH0458161 B2 JP H0458161B2 JP 59104681 A JP59104681 A JP 59104681A JP 10468184 A JP10468184 A JP 10468184A JP H0458161 B2 JPH0458161 B2 JP H0458161B2
Authority
JP
Japan
Prior art keywords
coil
superconducting
magnetic field
field side
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104681A
Other languages
Japanese (ja)
Other versions
JPS60249306A (en
Inventor
Yoshihisa Sato
Shigeru Ioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59104681A priority Critical patent/JPS60249306A/en
Publication of JPS60249306A publication Critical patent/JPS60249306A/en
Publication of JPH0458161B2 publication Critical patent/JPH0458161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、極低温冷媒によつて強制冷却され、
核融合装置、高エネルギー物理用加速器等に用い
られる超電導磁石に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a system that is forcibly cooled by a cryogenic refrigerant,
It relates to superconducting magnets used in nuclear fusion devices, high-energy physics accelerators, etc.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導磁石に用いられる超電導線は第2図に示
す特性図において臨界電流密度J、臨界温度T、
臨界磁界Hを結ぶ曲面に囲まれた内側に於てのみ
超電導特性を示す。
In the characteristic diagram shown in Figure 2, the superconducting wire used in the superconducting magnet has a critical current density J, critical temperature T,
Superconducting properties are exhibited only on the inside surrounded by the curved surface connecting the critical magnetic field H.

このような超電導線をコンジツト内に収納した
超電導導体を用いて大形の強制冷却超電導磁石を
製作する場合、従来は一般にダブルパンケーキ巻
と呼ばれる巻回方式で製作し、超電導導体の口出
し部は入口、出口共にコイル外層側に設けてい
た。従つて極低温冷媒は低磁界側即ち外層側から
注入され、超電導線を冷却しながら温度上昇した
極低温冷媒がコイル内層側即ち高磁界コイル側に
供給されていた。したがつて内層側ほど臨界電流
密度Jが低下してしまう不都合があつた。
When producing a large forced-cooled superconducting magnet using a superconducting conductor in which such superconducting wire is housed in a conduit, conventionally it is produced using a winding method called double pancake winding, and the opening part of the superconducting conductor is Both the inlet and outlet were provided on the outer layer side of the coil. Therefore, the cryogenic refrigerant is injected from the low magnetic field side, that is, the outer layer side, and the cryogenic coolant, whose temperature has increased while cooling the superconducting wire, is supplied to the coil inner layer side, that is, the high magnetic field coil side. Therefore, there was a problem in that the critical current density J decreased toward the inner layer.

また、巻回したコイルの発生する臨界分布はコ
イル最内層に於て最大となりコイル外層側で低磁
界となる。
Further, the critical distribution generated by the wound coil is maximum at the innermost layer of the coil, and the magnetic field becomes lower at the outer layer side of the coil.

つまり同一の超電導導体を用いた場合、たとえ
極低温冷媒の温度がコイル内・外層で同一であつ
たとしてもコイル内層ほど臨界電流密度が低い。
In other words, when the same superconducting conductor is used, even if the temperature of the cryogenic refrigerant is the same in the inner and outer layers of the coil, the inner layer of the coil has a lower critical current density.

従来これらの不都合を除去する為にコイル内層
と外層で超電導導体をグレーデイングしていた。
すなわち種々の超電導導体を条件によつて使い分
けていた。つまり、単純に言えば極低温冷媒の温
度上昇及び磁界増加による内層外側超電導導体の
臨界電流密度低下を超電導導体の太さすなわち内
層側ほど太くすることでカバーしていた。したが
つて従来技術ではグレーデイングの箇所が多くな
り機械的強度が低下し、また不経済であつた。
Conventionally, in order to eliminate these disadvantages, superconducting conductors were graded based on the inner and outer layers of the coil.
In other words, various superconducting conductors were used depending on the conditions. That is, to put it simply, the decrease in critical current density of the inner outer superconducting conductor due to the temperature rise of the cryogenic refrigerant and the increase in the magnetic field was compensated for by increasing the thickness of the superconducting conductor, that is, increasing the thickness toward the inner layer. Therefore, in the prior art, the number of grading points is large, the mechanical strength is reduced, and it is also uneconomical.

〔発生の目的〕[Purpose of occurrence]

本発明は超電導導体のグレーデイングの必要性
が低減された超電導磁石を提供することを目的と
する。
An object of the present invention is to provide a superconducting magnet in which the need for grading of superconducting conductors is reduced.

〔発明の概要〕 本発明の超電導磁石においては極低温冷媒をコ
イルの高磁界側から注入し、コイルの低磁界側か
ら排出することにより同一超電導導体を用いなが
ら、温度差により高磁界側コイルの臨界電流密度
を低磁界側コイルの臨界電流密度に近づけ同じ程
度になるようにする。
[Summary of the Invention] In the superconducting magnet of the present invention, a cryogenic refrigerant is injected from the high magnetic field side of the coil and discharged from the low magnetic field side of the coil, so that while using the same superconducting conductor, the temperature difference between the coils on the high magnetic field side The critical current density is brought close to the critical current density of the low magnetic field side coil so that they are about the same.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。第1図に於
て1は高磁界側超電導コイル、2は低磁界側超電
導コイルであり、これらは互いに接続し、電流及
び極低温冷媒がコイル1,2で直列に流れるよう
にする。
An embodiment of the present invention is shown in FIG. In FIG. 1, 1 is a superconducting coil on the high magnetic field side, and 2 is a superconducting coil on the low magnetic field side, which are connected to each other so that current and cryogenic refrigerant flow in series through the coils 1 and 2.

第1図に於て、3は超電導コイル1,2を収納
するコイル容器であり、超電導コイル1,2の電
磁力をこのコイル容器3で受けもつ構造をとる。
一方、超電導コイル1,2への電流、極低温冷媒
の供給はコイル容器3の上部に設けた電流リード
兼冷媒出入口4,5を介して行う。
In FIG. 1, 3 is a coil container that houses the superconducting coils 1 and 2, and the structure is such that the electromagnetic force of the superconducting coils 1 and 2 is received by the coil container 3.
On the other hand, current and cryogenic refrigerant are supplied to the superconducting coils 1 and 2 through current leads and refrigerant inlets and outlets 4 and 5 provided at the top of the coil container 3.

極低温冷媒は第1図に示す如く電流リード兼冷
媒入口4から注入し、コイル内層側即ち高磁界側
より冷却しながらコイル外層側即ち低磁界側へと
循環する。極低温冷媒はコイル内層から外層に向
かつて流れながらコイル内の発熱をうばい温度上
昇する。高磁界側超電導コイル1に於て極低温冷
媒の温度をT1、低磁界側超電導コイル2に於て
極低温冷媒の温度をT2(但し、T1<T2)とする
と、超電導コイル1,2を形成する超電導導体の
臨界電流密度J−臨界磁界Hの関係は温度Tをパ
ラメータとして第3図のようになる。ここで、コ
イル1,2のうける磁界が同一であればコイル外
層側導体を太くしなければならないことになる
が、幸いなことにコイル内磁界分布はコイル外層
側で低下する。高磁界側超電導コイル1のうける
磁界をH1、低磁界側超電導コイル2のうける磁
界をH2とすると、理想的な場合には第3図に示
す如く、極低温冷媒の温度上昇(T2−T1)によ
るJ−H特性の劣化を経験磁界の減少(H1
H2)により補い、同一導体を用いた内・外層コ
イルにたいして同一の臨界電流密度J0を得ること
ができる。したがつて従来内外層コイルで行なつ
ていたグレーデイングと同一の効果が得られ、従
来技術に比較してグレーデイングによる導体接続
がなくなるので、導体発熱の減少、極低温冷媒の
循環がスムーズになる、機械的強度が増す、機器
がコンパクトになる等種々の利点が得られる。
The cryogenic refrigerant is injected from the current lead and refrigerant inlet 4 as shown in FIG. 1, and is cooled from the inner layer side of the coil, that is, the high magnetic field side, while circulating toward the outer layer side of the coil, that is, the low magnetic field side. As the cryogenic refrigerant flows from the inner layer of the coil toward the outer layer, it eliminates heat generation within the coil and raises its temperature. If the temperature of the cryogenic refrigerant in the high magnetic field side superconducting coil 1 is T 1 and the temperature of the cryogenic refrigerant in the low magnetic field side superconducting coil 2 is T 2 (however, T 1 < T 2 ), then the superconducting coil 1 , 2, the relationship between the critical current density J and the critical magnetic field H is shown in FIG. 3, with temperature T as a parameter. Here, if the magnetic fields received by the coils 1 and 2 are the same, the conductor on the outer layer side of the coil must be made thicker, but fortunately, the magnetic field distribution within the coil decreases on the outer layer side of the coil. Assuming that the magnetic field applied to the high magnetic field side superconducting coil 1 is H 1 and the magnetic field applied to the low magnetic field side superconducting coil 2 is H 2 , in an ideal case, as shown in Figure 3, the temperature rise of the cryogenic refrigerant (T 2 -T 1 ), the J-H characteristic deteriorates due to a decrease in the magnetic field (H 1 -
H 2 ), the same critical current density J 0 can be obtained for the inner and outer coils using the same conductor. Therefore, the same effect as grading that was conventionally performed with inner and outer layer coils can be obtained, and compared to conventional technology, there is no need to connect conductors due to grading, so conductor heat generation is reduced and cryogenic refrigerant circulates smoothly. Various advantages can be obtained, such as increased mechanical strength and compact equipment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては極低温冷
媒を超電導磁石高磁界側から注入し低磁界側へ排
出するようにしたので高磁界部のコイルが低磁界
部のコイルよりもよく冷却され、線材のグレーデ
イングの必要性の低減された強制冷却超電導磁石
を提供することが出来る。
As explained above, in the present invention, the cryogenic refrigerant is injected from the high magnetic field side of the superconducting magnet and discharged to the low magnetic field side, so the coils in the high magnetic field part are cooled better than the coils in the low magnetic field part, and the wire rod A forced cooling superconducting magnet with reduced need for grading can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導磁石の断面
図、第2図は超電導線の特性図、第3図は本発明
の作用を説明する曲線図である。 1…高磁界側超電導コイル、2…低磁界側超電
導コイル、3…コイル容器、4…電流リード兼冷
媒入口、5…電流リード兼冷媒出口、J…臨界電
流密度、T…臨界温度、H…臨界磁界、T1…高
磁界側超電導コイル冷媒温度、T2…低磁界側超
電導コイル冷媒温度。
FIG. 1 is a sectional view of a superconducting magnet according to an embodiment of the present invention, FIG. 2 is a characteristic diagram of a superconducting wire, and FIG. 3 is a curve diagram illustrating the operation of the present invention. 1...High magnetic field side superconducting coil, 2...Low magnetic field side superconducting coil, 3...Coil container, 4...Current lead and refrigerant inlet, 5...Current lead and refrigerant outlet, J...Critical current density, T...Critical temperature, H... Critical magnetic field, T 1 ... superconducting coil refrigerant temperature on the high magnetic field side, T 2 ... superconducting coil refrigerant temperature on the low magnetic field side.

Claims (1)

【特許請求の範囲】[Claims] 1 極低温冷媒を強制的に循環することにより超
電導コイルを冷却する超電導磁石において、極低
温冷媒を超電導コイルの高磁界側から注入し、超
電導コイルの低磁界側から排出して、高磁界側コ
イルの臨界電流密度を低磁界側コイルの臨界電流
密度に近づけ同じ程度にしたことを特徴とする超
電導磁石。
1 In a superconducting magnet that cools a superconducting coil by forcibly circulating a cryogenic coolant, the cryogenic coolant is injected from the high magnetic field side of the superconducting coil, discharged from the low magnetic field side of the superconducting coil, and then cooled by the high magnetic field side of the superconducting coil. A superconducting magnet characterized in that the critical current density of the coil is close to and approximately the same as the critical current density of the low-field side coil.
JP59104681A 1984-05-25 1984-05-25 Superconducting magnet Granted JPS60249306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104681A JPS60249306A (en) 1984-05-25 1984-05-25 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104681A JPS60249306A (en) 1984-05-25 1984-05-25 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPS60249306A JPS60249306A (en) 1985-12-10
JPH0458161B2 true JPH0458161B2 (en) 1992-09-16

Family

ID=14387213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104681A Granted JPS60249306A (en) 1984-05-25 1984-05-25 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS60249306A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629309A (en) * 1979-08-17 1981-03-24 Toshiba Corp Superconductive magnet device
JPS56104681A (en) * 1980-01-07 1981-08-20 Isabel John Robert Golf club bag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148819U (en) * 1981-03-12 1982-09-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629309A (en) * 1979-08-17 1981-03-24 Toshiba Corp Superconductive magnet device
JPS56104681A (en) * 1980-01-07 1981-08-20 Isabel John Robert Golf club bag

Also Published As

Publication number Publication date
JPS60249306A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
EP0877395B1 (en) Superconducting coil
US5623240A (en) Compact superconducting magnet system free from liquid helium
Ašner High field superconducting magnets
US4151498A (en) Combined superconducting coil
Nes et al. Design of a cloverleaf-racetrack dipole demonstrator magnet with dual ReBCO conductor
US4237507A (en) Superconducting magnetic system
Mizuno et al. Fabrication of 5 T magnet using 2G wires directed at maglev application
JPH0458161B2 (en)
US4277769A (en) Arrangement for cooling a superconduction magnet coil winding
CN106710778A (en) Direct cooling superconducting coil and cooling method
US3343111A (en) High field strength magnetic device
Urata et al. A 6 T refrigerator-cooled NbTi superconducting magnet with 180 mm room temperature bore
JPH0590022A (en) Superconducting magnet system
JP2000150224A (en) Excitation control method of superconducting coil
JP3677166B2 (en) Permanent current magnet device for high magnetic field generation
JPS60217610A (en) Superconductive device
JPS6217096A (en) Magnetic field impressing device for drawing up single crystal
Browning et al. A Compact 2.0 T REBCO Magnet for Advanced Photoelectron Microscopy
Kim et al. Further tests of the Argonne 3.3-MJ pulsed superconducting coil and its nonmetallic cryostat
Danby et al. Economical Cryogenic Pulsed Synchrotrons for Very High Energies
Singh et al. Impact of high temperature superconductors on pulsed power systems
Wessel et al. A conduction-cooled, 680-mm-long warm bore, 3-T Nb/sub 3/Sn solenoid for a Cerenkov free electron laser
Patel Analysis of magnetic field and electromagnetic forces in transformer and superconducting magnets
Sumiyoshi et al. AC losses and critical current densities of NbTi/Cu multifilamentary tapes
JP2739159B2 (en) Toroidal magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term