JPH0458120A - Polarized light measuring instrument - Google Patents

Polarized light measuring instrument

Info

Publication number
JPH0458120A
JPH0458120A JP17099890A JP17099890A JPH0458120A JP H0458120 A JPH0458120 A JP H0458120A JP 17099890 A JP17099890 A JP 17099890A JP 17099890 A JP17099890 A JP 17099890A JP H0458120 A JPH0458120 A JP H0458120A
Authority
JP
Japan
Prior art keywords
light
analyzer
sample
polarization
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17099890A
Other languages
Japanese (ja)
Inventor
Masato Noguchi
正人 野口
Takeshi Ishikawa
剛 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP17099890A priority Critical patent/JPH0458120A/en
Priority to US07/721,694 priority patent/US5257092A/en
Publication of JPH0458120A publication Critical patent/JPH0458120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the polarized state of luminous flux which has specific divergence without making any mechanical scanning by assuming that variation in the intensity of the quantity of light detected by a light receiving means due to the rotation of an analyzer is sine-shaped variation and judging the polarized states of the luminous flux at parts corresponding to respective picture elements from sampled intensity. CONSTITUTION:This instrument is equipped with a light source part 10 which makes the linear polarized light having specific divergency incident on an optical element 20 as a sample 20, the analyzer 30 which is provided rotatably in the optical path of luminous flux transmitted through the sample 20, a two-dimensional image sensor 40 such as a CCD sensor which photodetects the luminous flux transmitted through the analyzer 30, a frame memory 50 where the output of the image sensor 40 is stored after being A/D-converted, a computer 60 which analyzes the data in the frame memory 50 when at least the analyzer is set at three different angles, and a display 70 which displays the analytic result. Consequently, the polarized state of the luminous flux which is diverged as specified can be inputted as two-dimensional information without any mechanical scanning and the field of polarization of the whole luminous flux can be measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、所定の広がりをもって入射する光束の偏光
状態を測定する装置に関するものである。 [従来の技術及び発明が解決しようとする課題]従来か
ら、平行平面板等の被検物の偏光特性を測定するために
、偏光測定装置が用いられている。 従来の偏光測定装置は、細い光束を発生する光源と受光
素子との間に偏光子と検光子とを配置し、これらの偏光
板の間に被検物をセットし、検光子を回転させつつ透過
光量を検出する構成である。 検出光量と検光子の回転角度とから、少なくとも透過し
た偏光の偏光楕円の傾きを求めることができる。 しかしながら、上述した従来の偏光測定装置は、1本の
ビームにより測定を実行しているため、二次元的な情報
を得るためには試料を機械的に走査させるための機構が
必要とな番ハ 装置が複雑になると共に、測定に時間が
かかるという問題がある。 また、従来の装置は直径1mm程度の光束を利用して測
定を行っていたため、走査する場合の分解能も光束径と
同一の程度しか得ることができず、精密な測定ができな
いという問題がある。 [発明の目的] この発明は、上記の課題に鑑みてなされたものであり、
所定の広がりを持った光束の偏光状態を機械走査せずに
測定することができ、しかも、測定に対する空間的な分
解能が高い偏光測定装置を提供することを目的とする。 [課題を解決するための手段] この発明に係る偏光測定装置は、上記目的を達成させる
ため、二次元に配列した画素を有して所定の広がりのあ
る偏光を受光する受光手段と、受光手段の手前に設けら
れ、透過光量を変化させるために回転される検光子と、
検光子を少なくとも3つの異なる角度に設定し、各設定
角度での受光手段の各画素毎の強度をサンプリングする
サンプリング手段と、検光子の回転による受光手段の検
出光量の強度変化を正弦的な変化であると仮定し、サン
プリングした強度により各画素に対応する部分の光束の
偏光状態を判断する解析手段とを備えることを特徴とす
る。
(Industrial Application Field) The present invention relates to a device for measuring the polarization state of a beam of light that enters with a predetermined spread. [Prior Art and Problems to be Solved by the Invention] Conventionally, a polarization measuring device has been used to measure the polarization characteristics of a test object such as a plane-parallel plate. A conventional polarization measurement device places a polarizer and an analyzer between a light source that generates a narrow beam of light and a light receiving element, sets the object to be measured between these polarizers, and measures the amount of transmitted light while rotating the analyzer. This is a configuration that detects. From the amount of detected light and the rotation angle of the analyzer, at least the slope of the polarization ellipse of the transmitted polarized light can be determined. However, since the conventional polarization measurement device described above performs measurement using a single beam, a mechanism for mechanically scanning the sample is required in order to obtain two-dimensional information. There are problems in that the device becomes complicated and the measurement takes time. Furthermore, since conventional devices perform measurements using a light beam with a diameter of about 1 mm, the resolution during scanning can only be obtained to the same extent as the diameter of the light beam, which poses the problem of not being able to perform precise measurements. [Object of the invention] This invention was made in view of the above problems, and
It is an object of the present invention to provide a polarization measuring device that can measure the polarization state of a light beam having a predetermined spread without mechanical scanning and has high spatial resolution for measurement. [Means for Solving the Problems] In order to achieve the above object, the polarization measuring device according to the present invention includes a light receiving means that has two-dimensionally arranged pixels and receives polarized light with a predetermined spread, and a light receiving means. an analyzer that is provided in front of the analyzer and rotated to change the amount of transmitted light;
A sampling means that sets the analyzer at at least three different angles and samples the intensity of each pixel of the light receiving means at each set angle, and a sinusoidal change in the intensity of the amount of light detected by the light receiving means due to rotation of the analyzer. The present invention is characterized by comprising an analysis means for determining the polarization state of a portion of the light beam corresponding to each pixel based on the sampled intensity.

【作用】[Effect]

上記構成によれば、所定の広がりを持つ光束の偏光状態
を二次元的な情報として機械走査せずに取り込むことが
でき、いうなれば光束全体の偏光の場を測定することが
できる。
According to the above configuration, the polarization state of a light beam having a predetermined spread can be captured as two-dimensional information without mechanical scanning, and in other words, the polarization field of the entire light beam can be measured.

【実施例】【Example】

以下、この発明を図面に基づいて説明する。 第1図は、この発明に係る偏光測定装置の一実施例を示
す構成図である。 この装置は、所定の広がりを持った直線偏光を試料20
である光学素子に入射させる光源部10と、試料20を
透過した光束の光路内に回転自在に設けられた検光子3
0と、検光子30を透過した光束を受光するCCDセン
サ等の二次元のイメージセンサ40と、このイメージセ
ンサ40の出力をA/D変換して記憶するフレームメモ
リ50と、少なくとも検光子が3つの異なる角度に設定
された際に記憶されたフレームメモリ50のデータを解
析するためのコンピュータ60と、解析された結果を表
示するデイスプレィ70とを備えている。 光源部10は、直線偏光を発生するレーザー装置、ある
いは偏光状態がランダムな光束を発する光源と偏光子と
の組み合せた光源11と、この光源から発した光束の径
を拡大するビームエキスパンダー12とにより構成され
る。 検光子30は、モータ31により自動的に回転され、回
転角度は角度センサ32によりコンピュータ60に入力
される。 上記の装置を用いて試料の偏光特性を測定する場合、光
源部10と検光子30との間に試料20を配置し、光源
を点灯させて光束を透過させると共に、検光子30を回
転させる。 コンピュータ60は、角度センサ32の出力から検光子
30の回転角度が所定の値となった時点でイメージセン
サの出力をサンプリングし、フレームメモリ50に記憶
させる。検光子30の回転による光束の強度変化は、正
弦的であると仮定できるため、少なくとも3回の測定を
行うことにより、各画素毎に光束の偏光状態を測定する
ことができる。 第2図は、上記の構成の検光子30とイメージセンサ4
0との間に結像レンズ41を設け、試料20の像がイメ
ージセンサ40上に形成されるよう構成した例を示して
いる。 次に、偏光測定の原理について説明する。 楕円偏光を表現する場合には、第3図に示すように、光
の進行方向に対向した面内での電界ベクトルの先端の描
く楕円の長半径a1  短半径b、傾きψの3つのパラ
メータが必要である。  a、bの何れか一方がOの場
合には直線偏光、a=bの場合には円偏光となる。 上記の楕円偏光を検光子を介して受光した場合の強度工
は、検光子の回転角度をθとして、(1)式%式% 強度工は、検光子30の回転角度θの変化に応じ、理想
的には第4図に示したように正弦に変化する。 ここで強度の最大値Imax、  最小値1a+inは
、それぞれ以下の式で表すことができる。 I++ax = C2 Imin  =  b2 (1)式には、偏光特性を表すα、β、ψの3つの未知
変数が存在するため、少なくとも3つの異なる角度位置
に検光子30を回転させた際の出力強度■を測定するこ
とにより、3つの未知数の値を求めることができる。こ
こでは、計算を簡単にするために、45°毎に4回の測
定を行うこととする。4回の測定による強度IO,I4
5.190. l135は、それぞれ3つの変数に対し
て以下のような関係がある。 ■0−α+β・cos(−2ψ):α+β・cos2ψ
I45 = a +β・C08(90°−2ψ):α 
+β−5in2ψl90−α+β・cos(180°−
2ψ)=α−β・cos2ψ1135 = a +β・
cos(135°−2ψ)=α−β・5in2ψこれら
の強度は、イメージセンサ40の各画素毎に独立したデ
ータとして測定され、測定を行う4つの角度毎に画像情
報としてフレームメモリ50に記憶される。コンピュー
タ60は、4回の測定が終了した時点で、4つの強度デ
ータを用い、下式に従って各画素毎に偏光特性を表現す
る変数を求める。 IO+I45+I90+1135 α  = 解析が終了すると、例えば偏光の傾きψの角度を明暗の
階調に変換してデイスプレィ70に表示し、あるいはド
ツトの大きさに変換してプリントアウトする。解析され
た上記の変数は、画素毎の単一データとしてではなく、
隣接する画素に対する相対的な相違として意味を持ち、
この相違を表示することにより、試料の偏光特性のバラ
ツキを全体として視覚的に捉えることができる。 なお、測定の分解能は、イメージセンサ40の画素数に
依存するが、近時の画素の高密度化に鑑みれば、従来の
直径1mm単位での測定と比較してかなり精度の高い測
定を行うことができる。 上記の測定において試料表面の汚れ等によりノイズが存
在する場合には、傾きψについては正確に求めることが
できるが、α、βは正確には求めることができない。 例えば、試料上のノイズのないポイントPとノイズのあ
るポイントQとを設定すると、ポイントPからの光束を
受光するイメージセンサの画素からは、第5図にPで示
したような正弦波が出力され、ポイントQに対応する画
素からは第5図にQで示すような正弦波が出力される。 これらの正弦波は、ノイズの有無により振幅が異なるが
、波長は同一であり、2つの正弦波の位相差、すなわち
傾きψPとψQとの差は正確に求めることができる。 一方、ノイズの影響が無視できるときには、すなわち、
α、βの値の信頼性が高いときには、直線偏光を入射さ
せた試料からの射出光に基づき、常光線と異常光線との
位相差を求めることにより、試料の複屈折の情報をも得
ることができる。 また、上記の実施例では、試料からの射出光を測定する
例についてのみ述べたが、この発明の適用範囲はこの例
には限られず、例えば、より一般的に、所定の広がりを
持つ偏光の測定、すなわち発光側の構成を問わず、光束
そのものの偏光特性を測定する場合にも有効である。 [効果] 以上説明したように、この発明の偏光測定装置によれば
、所定の広がりを持つ光束の偏光状態を、光束を機械走
査させることなく一度に捉える二とができ、機械的な構
成を単純化すると共に、処理時間を短縮することができ
る。 また、1本の光線を走査させるよりも、測定の分解能を
高めることができる。
The present invention will be explained below based on the drawings. FIG. 1 is a configuration diagram showing an embodiment of a polarization measuring device according to the present invention. This device transmits linearly polarized light with a predetermined spread to the sample 20.
A light source unit 10 that makes the light enter an optical element, and an analyzer 3 that is rotatably provided in the optical path of the light beam that has passed through the sample 20.
0, a two-dimensional image sensor 40 such as a CCD sensor that receives the light beam transmitted through the analyzer 30, a frame memory 50 that A/D converts and stores the output of the image sensor 40, and at least the analyzer 3 The frame memory 50 includes a computer 60 for analyzing data stored in the frame memory 50 when set at two different angles, and a display 70 for displaying the analyzed results. The light source section 10 includes a light source 11 that is a combination of a laser device that generates linearly polarized light or a light source that emits a light beam with a random polarization state and a polarizer, and a beam expander 12 that expands the diameter of the light beam emitted from this light source. configured. The analyzer 30 is automatically rotated by a motor 31, and the rotation angle is input to the computer 60 by an angle sensor 32. When measuring the polarization characteristics of a sample using the above device, the sample 20 is placed between the light source section 10 and the analyzer 30, the light source is turned on to transmit the light beam, and the analyzer 30 is rotated. The computer 60 samples the output of the image sensor when the rotation angle of the analyzer 30 reaches a predetermined value based on the output of the angle sensor 32, and stores it in the frame memory 50. Since it can be assumed that the intensity change of the light flux due to the rotation of the analyzer 30 is sinusoidal, the polarization state of the light flux can be measured for each pixel by performing measurements at least three times. FIG. 2 shows the analyzer 30 and image sensor 4 having the above configuration.
An example is shown in which an imaging lens 41 is provided between the sample 20 and the image sensor 40 so that an image of the sample 20 is formed on the image sensor 40. Next, the principle of polarization measurement will be explained. When expressing elliptically polarized light, as shown in Figure 3, the three parameters of the ellipse drawn by the tip of the electric field vector in the plane opposite to the direction of light travel: major axis a1, minor axis b, and slope ψ. is necessary. When either a or b is O, the light becomes linearly polarized, and when a=b, the light becomes circularly polarized. The intensity when the above elliptically polarized light is received through an analyzer is expressed by formula (1), where the rotation angle of the analyzer is θ. Ideally, it changes sinusoidally as shown in FIG. Here, the maximum value Imax and the minimum value 1a+in of the intensity can be respectively expressed by the following formulas. I++ax = C2 Imin = b2 Since there are three unknown variables α, β, and ψ representing polarization characteristics in equation (1), the output intensity when the analyzer 30 is rotated to at least three different angular positions By measuring (2), the values of the three unknowns can be found. Here, in order to simplify the calculation, it is assumed that measurements are performed four times at every 45°. Intensity IO, I4 from 4 measurements
5.190. l135 has the following relationships for each of the three variables. ■0−α+β・cos(−2ψ): α+β・cos2ψ
I45 = a + β・C08 (90°-2ψ): α
+β-5in2ψl90-α+β・cos(180°-
2ψ)=α−β・cos2ψ1135=a+β・
cos(135°-2ψ)=α-β·5in2ψ These intensities are measured as independent data for each pixel of the image sensor 40, and are stored in the frame memory 50 as image information for each of the four measurement angles. Ru. When the four measurements are completed, the computer 60 uses the four intensity data to find a variable expressing the polarization characteristic for each pixel according to the following formula. IO+I45+I90+1135 α = When the analysis is completed, for example, the angle of the polarization inclination ψ is converted into a bright/dark gradation and displayed on the display 70, or converted into the size of a dot and printed out. The above variables analyzed are not as single data per pixel, but
It has meaning as a relative difference to adjacent pixels,
By displaying this difference, it is possible to visually grasp the variation in the polarization characteristics of the sample as a whole. Note that the measurement resolution depends on the number of pixels of the image sensor 40, but in view of the recent increase in pixel density, it is possible to perform measurements with considerably higher precision than the conventional measurement in units of 1 mm in diameter. I can do it. If noise is present in the above measurement due to dirt or the like on the sample surface, the slope ψ can be accurately determined, but α and β cannot be accurately determined. For example, if a point P without noise and a point Q with noise are set on the sample, the pixel of the image sensor that receives the light flux from point P will output a sine wave as shown by P in Figure 5. The pixel corresponding to point Q outputs a sine wave as shown by Q in FIG. These sine waves have different amplitudes depending on the presence or absence of noise, but have the same wavelength, and the phase difference between the two sine waves, that is, the difference between the slopes ψP and ψQ, can be accurately determined. On the other hand, when the influence of noise can be ignored, that is,
When the reliability of the values of α and β is high, information on the birefringence of the sample can also be obtained by determining the phase difference between the ordinary ray and the extraordinary ray based on the light emitted from the sample into which linearly polarized light is incident. I can do it. Further, in the above embodiment, only the example of measuring the light emitted from the sample was described, but the scope of application of the present invention is not limited to this example. It is also effective for measurement, that is, for measuring the polarization characteristics of the light beam itself, regardless of the configuration of the light emitting side. [Effects] As explained above, according to the polarization measuring device of the present invention, the polarization state of a light beam having a predetermined spread can be captured at once without mechanically scanning the light beam, and the mechanical configuration can be simplified. It is possible to simplify the process and shorten the processing time. Furthermore, the measurement resolution can be improved compared to scanning with a single light beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る偏光測定装置の一実施例を示す
説明図、第2図は第1実施例の変形例を示す説明図、第
3図は偏光楕円を示すグラフ、第4図及び第5図は検光
子の回転による受光手段の受光量変化を示すグラフであ
る。 10・・・レーザー光源 20・・・試料 30・・・検光子 31・・・モータ 32・・・角度センサ 40・・・イメージセンサ 50・・・フレームメモリ 60・・・コンピュータ
FIG. 1 is an explanatory diagram showing one embodiment of the polarization measuring device according to the present invention, FIG. 2 is an explanatory diagram showing a modification of the first embodiment, FIG. 3 is a graph showing a polarization ellipse, and FIG. FIG. 5 is a graph showing changes in the amount of light received by the light receiving means due to rotation of the analyzer. 10... Laser light source 20... Sample 30... Analyzer 31... Motor 32... Angle sensor 40... Image sensor 50... Frame memory 60... Computer

Claims (3)

【特許請求の範囲】[Claims] (1)二次元に配列した画素を有して所定の広がりのあ
る偏光を受光する受光手段と、 該受光手段の手前に設けられ、透過光量を変化させるた
めに回転される検光子と、 該検光子を少なくとも3つの異なる角度に設定し、各設
定角度での受光手段の各画素毎の強度をサンプリングす
るサンプリング手段と、 前記検光子の回転による受光手段の検出光量の強度変化
を正弦的な変化であると仮定し、サンプリングした強度
により各画素に対応する部分の光束の偏光状態を判断す
る解析手段とを備えることを特徴とする偏光測定装置。
(1) A light-receiving means having two-dimensionally arranged pixels and receiving polarized light with a predetermined spread; an analyzer provided in front of the light-receiving means and rotated to change the amount of transmitted light; sampling means for setting the analyzer at at least three different angles and sampling the intensity of each pixel of the light receiving means at each set angle; 1. A polarization measurement device comprising: analysis means for determining the polarization state of a portion of the light beam corresponding to each pixel based on the sampled intensity, assuming that the change is a change in polarization measurement device.
(2)所定の広がりのある直線偏光を試料に入射させる
光源部と、 二次元に配列した画素を有して、試料を透過した光束を
受光する受光手段と、 前記試料と前記受光手段との間に、光束の進行方向に対
してほぼ平行な軸回りに回転自在に設けられた検光子と
、 該検光子を少なくとも3つの異なる角度に設定し、各設
定角度での受光手段の各画素毎の強度をサンプリングす
るサンプリング手段と、 前記検光子の回転による受光手段の検出光量の強度変化
を正弦的な変化であると仮定し、サンプリングした強度
により各画素に対応する部分の試料の偏光特性を判断す
る解析手段とを備えることを特徴とする偏光測定装置。
(2) a light source unit that makes linearly polarized light with a predetermined spread enter the sample; a light receiving unit that has two-dimensionally arranged pixels and receives the light beam that has passed through the sample; and a combination of the sample and the light receiving unit. In between, there is an analyzer rotatably provided around an axis substantially parallel to the traveling direction of the light flux, and the analyzer is set at at least three different angles, and each pixel of the light receiving means at each set angle is Assuming that the change in intensity of the amount of light detected by the light receiving means due to the rotation of the analyzer is a sinusoidal change, the polarization characteristics of the sample in the portion corresponding to each pixel are determined by the sampled intensity. A polarization measuring device characterized by comprising: an analysis means for making a determination.
(3)前記受光手段は、前記試料で反射された光束を受
光することを特徴とする請求項2に記載の偏光測定装置
(3) The polarization measuring device according to claim 2, wherein the light receiving means receives the light beam reflected by the sample.
JP17099890A 1990-06-27 1990-06-27 Polarized light measuring instrument Pending JPH0458120A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17099890A JPH0458120A (en) 1990-06-27 1990-06-27 Polarized light measuring instrument
US07/721,694 US5257092A (en) 1990-06-27 1991-06-26 Apparatus for measuring polarization and birefringence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17099890A JPH0458120A (en) 1990-06-27 1990-06-27 Polarized light measuring instrument

Publications (1)

Publication Number Publication Date
JPH0458120A true JPH0458120A (en) 1992-02-25

Family

ID=15915220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17099890A Pending JPH0458120A (en) 1990-06-27 1990-06-27 Polarized light measuring instrument

Country Status (1)

Country Link
JP (1) JPH0458120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772013A (en) * 1993-09-01 1995-03-17 Photo Device Kk Ellipsometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772013A (en) * 1993-09-01 1995-03-17 Photo Device Kk Ellipsometer

Similar Documents

Publication Publication Date Title
US5257092A (en) Apparatus for measuring polarization and birefringence
US7092093B2 (en) Polarization bearing detection type two-dimensional light reception timing detecting device and surface form measuring device using the same
KR100875873B1 (en) Impurity concentration tester and test method of semiconductor
KR101698022B1 (en) Achromatic rotating-element ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
JPH0660912B2 (en) Voltage detector
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
KR20010091030A (en) Method of evaluating an anisotropic thin film and an evaluating apparatus
JPH05142141A (en) Thin film measuring instrument
JPH0663867B2 (en) Interfering device for wavefront condition detection
JP3159743B2 (en) Polarization and birefringence measurement device
JP3365474B2 (en) Polarizing imaging device
KR101830188B1 (en) Apparatus for biometic information
KR100336696B1 (en) Apparatus and method for detecting polarization
KR100951110B1 (en) Line Scan Type High Resolution Ellipsometer
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
JP3095231B2 (en) Polarization measurement device and phase plate measurement device
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
JPH0458120A (en) Polarized light measuring instrument
JP2003035613A (en) Residual stress inspection device for light pervious substance
JP2997299B2 (en) Birefringence measurement method
JPH11119107A (en) Interference microscope device
JP3436704B2 (en) Birefringence measuring method and apparatus therefor
JPH05281137A (en) Double-refraction measuring apparatus
JPH11132940A (en) Apparatus and method for measurement of birefringence