JPH0458003A - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JPH0458003A
JPH0458003A JP16641190A JP16641190A JPH0458003A JP H0458003 A JPH0458003 A JP H0458003A JP 16641190 A JP16641190 A JP 16641190A JP 16641190 A JP16641190 A JP 16641190A JP H0458003 A JPH0458003 A JP H0458003A
Authority
JP
Japan
Prior art keywords
load
valve
signal
turbine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16641190A
Other languages
Japanese (ja)
Inventor
Hiroshi Inada
浩 稲田
Tatsuo Takahashi
高橋 立夫
Kazuteru Ono
和輝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16641190A priority Critical patent/JPH0458003A/en
Publication of JPH0458003A publication Critical patent/JPH0458003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent fluctuation of load on a turbine during the test of opening and closing a valve by providing a load setting bias generation unit for adding a deviation signal from a computing element to a load set value at the time of testing of opening and closing the valve. CONSTITUTION:A load setting bias generation unit 31 calculates deviation of a load set value of a point where a governor valve schedule-controlled next to a governor valve to which the test of opening and closing a valve is to be conducted begins to open, from a load set value of load on a turbine. The deviation is given to an adder 13 as a bias signal GBA. When the test of valve opening and closing of a first governor valve 11a is conducted in 40% loaded state, deviation output from the load setting bias generation unit 31 becomes zero-output, and a second governor valve 11b is schedule-controlled in response to the opening and closing operations of the first governor valve 11a by a correction signal CS of a load fluctuation correcting device 18. Fluctuation of the load on the turbine during the test of valve opening and closing can thus be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、タービン制御装置に係り、特に、タービンの
作動中に加減弁の弁開閉テストを行うようにしたタービ
ン制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a turbine control device, and more particularly, to a turbine control device that performs a valve opening/closing test of a regulating valve during operation of a turbine. Regarding.

(従来の技術) 一般に、タービン負荷は第6図に示すようなタービン制
御装置10により複数の加減弁11a。
(Prior Art) Generally, a turbine load is controlled by a plurality of control valves 11a by a turbine control device 10 as shown in FIG.

11b・・・をスケジュール制御することにより制御さ
れる。このスケジュール制御は、負荷設定器12から送
られる負荷設定信号GBを加算器13、複数の関数発生
器14a、14b・・・、複数の低値選択回路15a、
15b・・・等を介して加減弁開度制御信号O8]、O
32・・・に変換し、この制御信号O8I、O82・・
・により前記複数の加減弁11a、llb・・・からま
す第1の加減弁11aを制御し、第1の加減弁11aが
全開となったら第2の加減弁11bを制御し、さらにこ
のようにして第3の加減弁11C等を順次スケジュール
的に制御するものである。
11b... is controlled by schedule control. In this schedule control, the load setting signal GB sent from the load setting device 12 is sent to an adder 13, a plurality of function generators 14a, 14b, . . . , a plurality of low value selection circuits 15a,
15b...etc., the control valve opening control signal O8], O
32..., and these control signals O8I, O82...
- controls the first regulator valve 11a from the plurality of regulator valves 11a, llb, etc., and when the first regulator valve 11a is fully open, controls the second regulator valve 11b; The third control valve 11C and the like are sequentially controlled according to a schedule.

このようなタービンにおいては、タービンの作動中に複
数の加減弁11a、llb・・・が正常に開閉制御する
か否かを確認するため弁開閉テストが行われる。この弁
開閉テストは、タービンの作動中に複数の加減弁11a
、llb・・・から任意の加減弁を選び、この加減弁に
テスト信号TSを与え、加減弁を開閉させその開閉性能
を確かめるものである。
In such a turbine, a valve opening/closing test is performed to confirm whether or not the plurality of regulating valves 11a, 11b, . . . are normally controlled to open and close during operation of the turbine. This valve opening/closing test is performed on a plurality of control valves 11a during operation of the turbine.
.

そのため、このタービン制御装置10の複数の低値選択
回路1.5 a、15b・・には選択スイッチ16a、
16b・・・を介してテスト信号発生器17が接続され
、選択スイッチ16a、16b・・・により選択された
加減弁か弁開閉テストされるようになっている。
Therefore, the plurality of low value selection circuits 1.5a, 15b, . . . of this turbine control device 10 include selection switches 16a,
A test signal generator 17 is connected through the terminals 16b, . . ., and the valve opening/closing test is performed on the control valve selected by the selection switches 16a, 16b, .

ところで、この弁開閉テストはタービンの作動中に行う
ものであるため、弁開閉テスト中にタビン負萄が変動す
ることかある。この変動を防止するためのタービン制御
装置10には負6丁変動補正装置18が設けられている
By the way, since this valve opening/closing test is performed while the turbine is in operation, the turbine load may fluctuate during the valve opening/closing test. In order to prevent this fluctuation, the turbine control device 10 is provided with a negative six-wheel fluctuation correction device 18.

二の負荷変動補正装置18には、タービン第1段圧力F
SPを検出する圧力検出器19か設けられている。この
圧力検出器〕9が検出する第1段圧力FSPは記憶部2
0と加算器21に送られる。
The second load fluctuation correction device 18 includes a turbine first stage pressure F
A pressure detector 19 for detecting SP is also provided. The first stage pressure FSP detected by this pressure detector]9 is stored in the memory section 2.
0 and is sent to the adder 21.

記憶部20は、弁開閉テスト時に、圧力検出器19が検
出する第1段圧力FSPを記憶し、この第1段圧力FS
Pが弁開閉テスト時におけるタービン負荷の基準圧力M
FsPとして加算器21に送るようになっている。また
、加算器2]は前記記憶部20に記憶された基準圧力M
 F S Pとタービンの作動中に検出される前記圧力
検出器19の検出圧力FSPとを比較演算し、その測圧
力の偏差信号DFSPを演算するものである。この偏差
信号DFSPはスイッチ22を介して前記加算器13に
送られ、タービン負荷の補正信号C8として負荷設定信
号GBに加えられ、加減弁11a、11b・・・の補正
制御信号GDとされる。
The storage unit 20 stores the first stage pressure FSP detected by the pressure detector 19 during the valve opening/closing test, and stores the first stage pressure FSP.
P is the reference pressure M of the turbine load during the valve opening/closing test
The signal is sent to the adder 21 as FsP. Further, the adder 2] is a reference pressure M stored in the storage section 20.
F SP and the detected pressure FSP of the pressure detector 19 detected during operation of the turbine are compared and calculated, and a deviation signal DFSP of the measured pressure is calculated. This deviation signal DFSP is sent to the adder 13 via the switch 22, and is added to the load setting signal GB as a turbine load correction signal C8, and is used as a correction control signal GD for the control valves 11a, 11b, . . .

この補正制御信号GDは負荷が0〜25%のときは、第
1の関数発生器14aによって加減弁制御信号ODIか
出力され、負荷が25〜50%のときは第2の関数発生
器14bによって加減弁制御信号OD2か出力され、以
下同様にして負荷か50〜75%、 75〜100%の
ときは順次箱3、第4の関数発生器14c、14dによ
って加減弁制御信号OD3、OD4が出力される。
This correction control signal GD is outputted as the regulating valve control signal ODI by the first function generator 14a when the load is 0 to 25%, and outputted by the second function generator 14b when the load is 25 to 50%. The regulating valve control signal OD2 is output, and in the same manner, when the load is 50 to 75% and 75 to 100%, the regulating valve control signals OD3 and OD4 are sequentially output by the box 3 and the fourth function generators 14c and 14d. be done.

この加減弁制御信号ODI、OD2・・・は前述のよう
に複数の低値選択回路15a、15b・・・に送られる
。各低値選択回路15a、15b・・・ては各関数発生
器14a、14b・・・から送られる加減弁制御信号O
DI、OD2・・・と、テスト信号発生器17あるいは
全開信号発生器23から選択的に送られるテスト信号T
Sあるいは全開信号ASとを選択的に受は入れ、これら
信号のうち低値の信号が選択され、その低値信号が加減
弁開度制御信号O81、O82・・・に変換される。
These regulating valve control signals ODI, OD2, . . . are sent to a plurality of low value selection circuits 15a, 15b, . . . as described above. Each low value selection circuit 15a, 15b... and the regulating valve control signal O sent from each function generator 14a, 14b...
DI, OD2... and the test signal T selectively sent from the test signal generator 17 or the full-open signal generator 23.
S or the full open signal AS is selectively received, the low value signal is selected from these signals, and the low value signal is converted into the adjustment valve opening control signals O81, O82, . . .

この加減弁開度制御信号O3I、O82・・・は前記加
減弁11a、llb・・・に送られ、この加減弁11a
、llb・・・を前述のようにスケジュール的に制御さ
れる。
These regulating valve opening control signals O3I, O82... are sent to the regulating valves 11a, llb..., and the regulating valves 11a, llb...
, llb, . . . are controlled in a scheduled manner as described above.

タービン負荷を40%で制御する場合には、負荷設定器
12から4090負荷の負荷設定(,5号GBが加算器
13を介して関数発生器14a、14b・・・に送られ
る。この設定信号CBにより第1の関数発生器14aか
らタービン負荷の250o分すなわち第1の加減弁全開
信号が加減弁制御信号ODIとして第1の低値選択回路
15aに送られ、第1の加減弁11aが全開させられる
。一方、第2の関数発生器14bからはタービン負荷の
1596分に相当する加減弁制御信号OD2が第2の低
値選択回路15bに送られる。この加減弁制御信号OD
2か第2の加減弁11bに送られ、第2の加減弁11b
がタービン負荷の1590分に相当する開度に制御され
る。
When controlling the turbine load at 40%, the load setting of 4090 loads (No. 5 GB is sent from the load setter 12 to the function generators 14a, 14b, . . . via the adder 13. This setting signal The CB sends a 250° portion of the turbine load, that is, a first regulating valve fully open signal, from the first function generator 14a to the first low value selection circuit 15a as a regulating valve control signal ODI, and the first regulating valve 11a is fully opened. On the other hand, the second function generator 14b sends a regulating valve control signal OD2 corresponding to 1596 minutes of the turbine load to the second low value selection circuit 15b.This regulating valve control signal OD
2 or the second control valve 11b, and the second control valve 11b
is controlled to an opening corresponding to 1590 minutes of turbine load.

また、他の関数発生器14c、14dから低値選択回路
15c、15dに送られる加減弁制御指令OD3、OD
4は零出力であるから、加減弁11c、lldは全閉状
態に保持される。このようにしてタービンが2つの加減
弁11a、llbの開閉制御により409oの負荷、て
制御される(第7図参照)。
Further, the control valve control commands OD3, OD sent from the other function generators 14c, 14d to the low value selection circuits 15c, 15d
4 is a zero output, the control valves 11c and 11d are kept fully closed. In this way, the turbine is controlled with a load of 409o by controlling the opening and closing of the two control valves 11a and llb (see FIG. 7).

つぎに、このタービンの作動中に加減弁]1bの弁開閉
テストを行う場合につき説明する。ます、選択スイッチ
16bが操作され(第8図(a))、テスト信号発生器
17が低値選択回路15bに接続され、第8図(C)に
示すような特性のテスト信号TSが低値選択回路15b
に送られる。また、スイッチ22が閉じられ(第8図(
b)) 、負荷変動補正装置18が加算器13に接続さ
れる。
Next, a case will be described in which a valve opening/closing test of the control valve 1b is performed while the turbine is in operation. First, the selection switch 16b is operated (FIG. 8(a)), the test signal generator 17 is connected to the low value selection circuit 15b, and the test signal TS having the characteristics as shown in FIG. 8(C) is set to a low value. Selection circuit 15b
sent to. Also, the switch 22 is closed (Fig. 8 (
b)) A load fluctuation correction device 18 is connected to the adder 13.

負荷変動補正装置18か加算器13に接続されると、ま
ず、タービンの第1段圧力FSPが圧力検出器19によ
り検出され、その検出圧力FSPが記憶部20に記憶さ
れ、タービン負荷409oの基準圧力MFSPか設定さ
れる。この基準圧力MFSPが設定された後、タービン
の第1段圧力FSPか基準圧力MFSPとともに加W器
21に送られる。この加算器21ではタービン負荷すな
わちタービンの第1段圧力FSPの変動か前記基準圧力
MFSPと比較演算され、その偏差15号か加算器13
に送られる。
When the load fluctuation correction device 18 is connected to the adder 13, the first stage pressure FSP of the turbine is detected by the pressure detector 19, and the detected pressure FSP is stored in the storage unit 20, and is used as a reference for the turbine load 409o. Pressure MFSP is set. After this reference pressure MFSP is set, it is sent to the energizer 21 together with the first stage pressure FSP of the turbine or the reference pressure MFSP. In this adder 21, the variation in the turbine load, that is, the first stage pressure FSP of the turbine, is compared with the reference pressure MFSP, and the difference No. 15 is calculated in the adder 13.
sent to.

選択スイッチ16bの操作当初は、テスト信号TSが加
減弁制御信号OD2より大きいため、タービン負荷は加
減弁制御信号OD2より制御され、第2の加減弁]]b
はテスト開始前と同し開度に保持されている。そのため
、タービンの第1段圧力FSPは変化がなく前記基準圧
力MFSPと同じであるので偏差信号DFSPは生じな
い。
At the beginning of the operation of the selection switch 16b, the test signal TS is larger than the regulator control signal OD2, so the turbine load is controlled by the regulator control signal OD2, and the second regulator]]b
is maintained at the same opening as before the test started. Therefore, the first stage pressure FSP of the turbine does not change and is the same as the reference pressure MFSP, so the deviation signal DFSP is not generated.

小時間後、テスト信号TSか加減弁制御信号OD2より
小さくなると、低値選択回路15bかテスト信号TSを
選択する(第8図(e))。この選択により加減弁11
bはテスト信号TSを受けて閉まり始める。加減弁11
bか閉まり始めると、タービン負荷が減少させられ、こ
のタービン負荷の減少か圧力検出器19により検出され
加算器21に送られる。加算器21てはこの検出圧力F
SPと基準圧力M F S Pとか比較演算され、その
偏差信号DFSPか取り出され、これか補正信号C8と
して加算器13に送られる。この補正信号C8は加算器
13て負荷設定信号GBに加算され、この加算信号が加
減弁]]b等の制御補正信号GDとされる。この制御補
正信号GDは関数発生器14a、14b−・・に送られ
(第8図(d))、第3の関数発生器14c、第3の低
値選択回路15cを介して第3の加減弁11cが開方向
に制御され、タービン負荷の減少が補正される(第8図
(f))。
After a short time, when the test signal TS becomes smaller than the control valve control signal OD2, the low value selection circuit 15b selects the test signal TS (FIG. 8(e)). With this selection, the control valve 11
b begins to close upon receiving the test signal TS. Control valve 11
When the pressure sensor b begins to close, the turbine load is reduced, and this reduction in the turbine load is detected by the pressure detector 19 and sent to the adder 21. The adder 21 calculates this detected pressure F.
A comparison calculation is made between SP and the reference pressure MFSP, and a deviation signal DFSP is taken out and sent to the adder 13 as a correction signal C8. This correction signal C8 is added to the load setting signal GB by an adder 13, and this added signal is used as a control correction signal GD for control valves]]b, etc. This control correction signal GD is sent to the function generators 14a, 14b, etc. (FIG. 8(d)), and is sent to the third adjustment signal GD via the third function generator 14c and the third low value selection circuit 15c. The valve 11c is controlled in the opening direction to compensate for the decrease in the turbine load (FIG. 8(f)).

このようにして、加減弁11bか全開し、所定時間経過
すると、テスト信号TSは徐々に全開信号まで変化し、
加減弁〕1bの開度も徐々に弁テスト前の開度に戻り、
弁開閉テストか終了する。
In this way, the control valve 11b is fully opened, and after a predetermined period of time has elapsed, the test signal TS gradually changes to a fully open signal.
The opening degree of control valve] 1b gradually returned to the opening degree before the valve test,
Valve opening/closing test ends.

(発明が解決しようとする課題) 上述のように従来のタービン制御装置ではタービンが作
動中に加減弁の弁開閉テストが行われる。
(Problems to be Solved by the Invention) As described above, in the conventional turbine control device, a valve opening/closing test of the control valve is performed while the turbine is in operation.

しかし、この弁開閉テストにおいてタービン第1段圧力
FSPはフィードバックによる比例制御なので負荷設定
信号GBとタービン負荷(Load)とが定常位置偏差
分の誤差を生じることがある。
However, in this valve opening/closing test, since the turbine first stage pressure FSP is proportionally controlled by feedback, there may be an error between the load setting signal GB and the turbine load (Load) by the amount of the steady position deviation.

また、この弁開閉テストは、タービン負荷の変動を生じ
ることがある。例えば、タービン負荷を40%の中間負
荷で加減弁11bの弁開閉テストを行うと、テスト信号
TSにより加減弁]1bか途中から閉められる。この閉
操作によりタービン負荷が減少させられ、負荷変動補正
装置]8がら発生する補正信号C8か負荷設定信号GB
に加えられ、補正制御信号GDを増大させる。しかし、
この補正制御信号CDが増大しても、補正信号C8が小
さいので加減弁11cを開く値の加減弁制御信号OD3
まで達しない。
Additionally, this valve opening/closing test may cause fluctuations in the turbine load. For example, when a valve opening/closing test of the regulator valve 11b is performed at an intermediate turbine load of 40%, the regulator valve 1b is closed halfway by the test signal TS. The turbine load is reduced by this closing operation, and a correction signal C8 or a load setting signal GB is generated from the load fluctuation correction device]8.
is added to increase the correction control signal GD. but,
Even if this correction control signal CD increases, since the correction signal C8 is small, the control valve control signal OD3 has a value that opens the control valve 11c.
It does not reach.

加減弁11bの閉制御かしばらく行われ、タビン負荷が
さらに減少させられると、負荷変動補正装置18からの
補正信号C8がさらに増大する。
When the control valve 11b is closed for a while and the turbine load is further reduced, the correction signal C8 from the load fluctuation correction device 18 further increases.

この補正信号C8がタービン負荷の1096分に相当す
る値を越えるようになると、初めて第3の関数発生器1
4cから加減弁制御信号OD3か出力され、加減弁11
cがこの加減弁制御信号OD3により初めてスケジュー
ル制御されるようになり(第8図(f)のd部)、ター
ビン負荷の減少が補正される。
When this correction signal C8 exceeds a value corresponding to 1096 minutes of turbine load, the third function generator 1
The regulator valve control signal OD3 is output from 4c, and the regulator valve 11
c is now scheduled to be controlled for the first time by this control valve control signal OD3 (section d in FIG. 8(f)), and the decrease in turbine load is corrected.

それゆえ、タービン負荷か40%の場合では、補正指令
C8がタービン負荷の109o分に達するまで加減弁1
1cか開かれず、タービン負荷を一時的に減少させると
gう問題がある。この現象は中間で行う他の加減弁のテ
ストを行うときでも同様な問題が生じる。
Therefore, when the turbine load is 40%, the adjustment valve 1 is operated until the correction command C8 reaches 109 degrees of the turbine load.
1c is not opened and there is a problem when the turbine load is temporarily reduced. This phenomenon also causes a similar problem when testing other control valves in the middle.

本発明は、上記の問題を解決するために加減弁の弁開閉
テスト中にタービン負荷を減少させないようにしたター
ビン負荷制御装置を得るにある。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a turbine load control device that does not reduce the turbine load during a valve opening/closing test of a regulating valve.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、負荷設定信号によりスケジュール制御される
複数の加減弁の任意の加減弁をタービン作動中に弁開閉
テストを行なうとともに、その弁開閉テスト時にタービ
ン負荷の変動を補止するようにしたタービン制御装置に
おいて、弁開閉テストを行う加減弁の次にスケジュール
制御される加減弁か開き始める点の負荷設定値と上記弁
開閉テスト開始時の負荷設定値との偏差を演算する演算
器を有し、前記弁開閉テスト時に上記演算器からの偏差
信号が正のときその偏差信号を前記負荷設定値に加算す
る負荷設定バイアス発生部を設けたものである。
(Means for Solving the Problems) The present invention performs a valve opening/closing test on any one of a plurality of regulating valves that are schedule-controlled by a load setting signal during turbine operation, and also performs a valve opening/closing test on a turbine load during the valve opening/closing test. In a turbine control device designed to compensate for fluctuations, the load setting value at the point at which the regulating valve that is scheduled to be controlled next to the regulating valve that performs the valve opening/closing test starts to open is compared with the load setting value at the start of the valve opening/closing test. A load setting bias generating section is provided, which has a calculation unit that calculates a deviation, and adds the deviation signal to the load setting value when the deviation signal from the calculation unit is positive during the valve opening/closing test.

(作 用) 負荷設定器の負荷設定信号を受けて複数の加減弁がスケ
ジュール制御され、タービン負荷が制御される。このタ
ービンの作動中に前記複数の加減弁から任意の加減弁が
選択され、その加減弁の弁開閉テストが行なわれる。
(Function) In response to the load setting signal from the load setting device, multiple control valves are scheduled and controlled to control the turbine load. During operation of the turbine, an arbitrary control valve is selected from the plurality of control valves, and a valve opening/closing test of the control valve is performed.

弁開閉テスト時、そのテスト直前の負荷設定値とこの弁
開閉テストを行う加減弁の次にスケジュール制御される
加減弁が開き始める点の負荷設定値との偏差か演算され
る。この偏差出力は負荷設定信号および補正信号に加算
され、その加算信号により次のスケジュール制御される
加減弁が開方向に制御され、弁開閉テスト中のタービン
負荷の変動が防止さされる。
During a valve opening/closing test, the deviation between the load setting value immediately before the test and the load setting value at the point at which the regulating valve that is scheduled to be controlled next to the regulating valve that performs this valve opening/closing test starts to open is calculated. This deviation output is added to the load setting signal and the correction signal, and the added signal controls the regulating valve to be controlled in the next schedule in the opening direction, thereby preventing fluctuations in the turbine load during the valve opening/closing test.

(実施例) 以下本発明タービン制御装置の一実施例を第1図、第2
図および第3図について説明する。この第1図における
タービン負荷制御装置30は基本的構成が第6図で説明
した従来のタービン制御装置10とほぼ同様であるので
同一部分は同一符号を付し詳細な説明は省略する。
(Example) An example of the turbine control device of the present invention is shown in Figs. 1 and 2 below.
The figure and FIG. 3 will be explained. The basic configuration of the turbine load control device 30 shown in FIG. 1 is almost the same as that of the conventional turbine control device 10 explained in FIG.

本発明のタービン制御装置30には負荷設定バイアス発
生部31が設けられている。この負荷設定バイアス発生
部31は第2図に示すように弁開閉テストが行なわれる
加減弁の次ぎにスケジュール制御される加減弁か開き始
める点の負荷設定値とタービン負荷の負荷設定値との偏
差を演算し、その偏差をバイアス信号GBAとして前記
加算器13に与えるものである。
The turbine control device 30 of the present invention is provided with a load setting bias generating section 31. As shown in FIG. 2, this load setting bias generating section 31 generates a difference between the load setting value at the point where the regulating valve, which is scheduled to be controlled next to the regulating valve on which the valve opening/closing test is performed, starts to open and the load setting value of the turbine load. is calculated, and the deviation thereof is given to the adder 13 as a bias signal GBA.

この負荷設定バイアス発生部31は複数の加減弁11a
、llb・・・に対応する複数のバイアス発生部31a
、31b・・・が設けられている。これらは同一である
のでバイアス発生部31bについて説明する。
This load setting bias generating section 31 includes a plurality of control valves 11a.
, llb, . . .
, 31b... are provided. Since these are the same, the bias generating section 31b will be explained.

バイアス発生部31bは、加算器32b1正方向リミッ
タ−33bと制御スイッチ34bとから構成されている
。この加算器32bは、負荷設定信号GBを受けるとと
もに加減弁11bの最大制御出力すなわち次にスケジュ
ール制御される加減弁11cが開き始める点の負荷設定
値GBである負荷設定信号OP3を受は入れ、負荷設定
値CBと負荷設定信号OP3との偏3vasか演算され
る。この偏差DGSは正方向リミッタ−33bに送られ
る。この正方向リミッタ−33bは偏差DO8すなわち
負荷設定信号OP3が負荷設定値GBより大きな正の値
であると、その偏差出力DOSが出力され、偏差DGS
すなわち負荷設定指令OP3が負荷設定信号GBより小
さな負の値あるいは同し値であると、その偏差出力DG
Sか零出力として出力される。この正方向リミッタ−3
3bの出力は制御スイッチ34bに送られる。
The bias generating section 31b includes an adder 32b1, a positive direction limiter 33b, and a control switch 34b. The adder 32b receives the load setting signal GB and also receives the load setting signal OP3 which is the maximum control output of the regulating valve 11b, that is, the load setting value GB at the point at which the regulating valve 11c to be subjected to the next schedule control starts to open. The difference 3vas between the load setting value CB and the load setting signal OP3 is calculated. This deviation DGS is sent to the forward limiter 33b. This positive direction limiter 33b outputs the deviation output DOS when the deviation DO8, that is, the load setting signal OP3 is a positive value larger than the load setting value GB, and the deviation DGS
In other words, if the load setting command OP3 is a smaller negative value than the load setting signal GB or the same value, the deviation output DG
S or output as zero output. This forward limiter-3
The output of 3b is sent to control switch 34b.

制御スイッチ34bは、低値選択回路15bがテスト信
号TSを選択し、加減弁11bが弁開閉テストされると
きに閉路される。この閉路により正方向リミッタ−33
bの偏差出力DOSが偏差補正指令BAGとして前記加
算器13に送られる。
The control switch 34b is closed when the low value selection circuit 15b selects the test signal TS and the regulating valve 11b is tested for opening and closing. Due to this closed circuit, the forward limiter 33
The deviation output DOS of b is sent to the adder 13 as a deviation correction command BAG.

このように構成したタービン負荷制御装置30において
、前述のようにタービン負荷を4026で制御運転され
るときの加減弁11bを開閉テストする場合につき説明
する。
In the turbine load control device 30 configured in this manner, a case will be described in which an opening/closing test is performed on the regulator valve 11b when the turbine load is controlled in step 4026 as described above.

まず、選択スイッチ16bを操作し、テスト信号発生W
17を低値選択回路15bに接続しく第4図(a)) 
、スイッチ22を閉し負荷変動補正装置18を加算器1
3に接続する(第4図(b))。
First, operate the selection switch 16b to generate the test signal W.
17 to the low value selection circuit 15b (Fig. 4(a)).
, the switch 22 is closed and the load fluctuation correction device 18 is connected to the adder 1.
3 (Fig. 4(b)).

これによりテスト信号発生器17からのテスト信号TS
か低値選択回路15bに送られる(第4図(C))。
As a result, the test signal TS from the test signal generator 17
or is sent to the low value selection circuit 15b (FIG. 4(C)).

このとき、圧力検出器19かタービンの第1段圧力FS
Pを検出し、この検出圧力FSPか記憶部17に記憶さ
れ、このタービン出力か40%のときの基準圧力〜fF
sPとして設定される。その後、圧力検出器19が検出
する第1段圧力FSPと基準圧力MFSPとが加算器2
1により比較演算される。これは従来のものと同様であ
る。
At this time, the pressure detector 19 or the first stage pressure FS of the turbine
P is detected, this detected pressure FSP is stored in the storage unit 17, and the reference pressure when the turbine output is 40% ~ fF
Set as sP. After that, the first stage pressure FSP detected by the pressure detector 19 and the reference pressure MFSP are added to the adder 2.
A comparison operation is performed using 1. This is similar to the conventional one.

また、負荷設定バイアス発生部3]には負荷設定値GB
と加減弁11cが開き始める点の負荷設定信号OP3と
が加算器32bに送られ、負荷設定値GBと負荷設定信
号OP3と偏差出力DSGすなわちタービン負荷の10
96分の負荷か演算される。この偏差出力DSGは正方
向リミッタ33bに送られ、この偏差出力DSGか制御
スイッチ34bに送られる。
In addition, the load setting bias generator 3] also has a load setting value GB.
and the load setting signal OP3 at the point where the control valve 11c starts to open are sent to the adder 32b, and the load setting value GB, the load setting signal OP3 and the deviation output DSG, that is, 10 of the turbine load are sent to the adder 32b.
A load of 96 minutes is calculated. This deviation output DSG is sent to the forward limiter 33b, and this deviation output DSG is sent to the control switch 34b.

低値選択回路15bがテスト信号TSを受け、このテス
ト信号TSか負荷設定値GBより低くなると(第4図(
e)) 、加減弁11bか閉め始められる。このとき制
御スイッチ34bか閉められ、正方向リミッタ−33b
から偏差出力DSGか加算器13に加えられる(第4図
(d))。この偏差出力DSGが負荷設定値GBに加算
されると、この加算信号は丁度次ぎの加減弁11cを開
き始める加減弁制御信号と等しくなり、この加減弁制御
信号が第3の関数発生器15c1第3の低値選択回路1
6c、i3の加減弁11cに送られる。
The low value selection circuit 15b receives the test signal TS, and when the test signal TS becomes lower than the load setting value GB (see FIG.
e)), the regulating valve 11b begins to close. At this time, the control switch 34b is closed, and the forward limiter 33b
The deviation output DSG is added to the adder 13 (FIG. 4(d)). When this deviation output DSG is added to the load setting value GB, this addition signal becomes equal to the regulating valve control signal that just starts opening the next regulating valve 11c, and this regulating valve control signal is applied to the third function generator 15c1. 3 low value selection circuit 1
6c, and is sent to the control valve 11c of i3.

この状態で第2の加減弁11bが徐々に閉しられると、
負荷変動補正装置18からの補正信号C8が加減弁制御
信号に加えられ、第3の加減弁11cが徐々に解方向に
制御され(第4図(f))、タービン負荷の減少か補正
される。それゆえ、タービン負荷が変動かない状態で弁
開閉テストが行なわれる。
When the second control valve 11b is gradually closed in this state,
The correction signal C8 from the load fluctuation correction device 18 is added to the control valve control signal, and the third control valve 11c is gradually controlled in the direction of release (FIG. 4(f)), thereby correcting the reduction in the turbine load. . Therefore, the valve opening/closing test is performed under conditions where the turbine load does not fluctuate.

また、このようにして第2の加減弁11bか全開し、所
定時間経過すると、ナス1号TSは徐々に全開状態にな
り、第2の加減弁11bの開度が徐々に弁テスト前の開
度に戻る。そこで、選択スイッチ16bを切り替えれば
、全開信号発生器23の全開信号ASがか第2の低値選
択回路16bに送られ、弁テスト前の状態に復帰する。
In addition, in this way, the second regulating valve 11b is fully opened, and after a predetermined period of time, the eggplant No. 1 TS gradually becomes fully open, and the opening degree of the second regulating valve 11b gradually changes from the opening before the valve test. Return to degree. Therefore, when the selection switch 16b is switched, the full open signal AS from the full open signal generator 23 is sent to the second low value selection circuit 16b, and the state before the valve test is restored.

このようにして、加減弁11bの弁開閉テストをタービ
ン負荷が変動ない状態で行うことができる。
In this way, the valve opening/closing test of the control valve 11b can be performed in a state where the turbine load does not fluctuate.

なお、前述のように40%負4I状態で第1の加減弁1
1aの弁開閉テストを行う場合には、負(Sj段設定バ
イアス発生31からの偏差出力が零出力となり、負荷変
動補正装置18の補正信号C8により、第1の加減弁1
1aの開閉動作に対応して第2の加減弁11bがスケジ
ュール制御され、タービン負荷の変動も補正信号C8に
より補正されながら弁開閉テストか行なわれる。
In addition, as mentioned above, in the 40% negative 4I state, the first regulating valve 1
When performing the valve opening/closing test 1a, the negative (deviation output from the Sj stage setting bias generation 31 becomes zero output, and the correction signal C8 of the load fluctuation correction device 18 causes the first control valve 1
The second control valve 11b is scheduled to be controlled in response to the opening/closing operation of the valve 1a, and a valve opening/closing test is performed while fluctuations in the turbine load are corrected by the correction signal C8.

第5図は、第1図で示したタービン制御装置30の他の
変形実施例を示すものである。この変形実施例では負荷
設定バイアス発生部31の偏差出力を1つの信号として
加算器13に与える代わりに、各バイアス発生部31a
、31b。
FIG. 5 shows another modified embodiment of the turbine control device 30 shown in FIG. In this modified embodiment, instead of giving the deviation output of the load setting bias generation section 31 to the adder 13 as one signal, each bias generation section 31a
, 31b.

31 c =−の偏差出力DSGI、DSC2、DSC
31 c = - deviation output DSGI, DSC2, DSC
.

3・・・を各関数発生器14a、14b、14 c 、
−の入力部間に設けた加算器35a、35b、35c・
・に加え、各関数発生器1.4 a、]−4b、14c
をそれぞれの偏差出力DSG1、DSC2、DSC3に
より制御したものである。このようにすると、偏差出力
DSGI、DSC2、DSC3・・・が関数変換をすべ
き関数発生器14a、14b・・・に送られ、その偏差
出力DSGI、DSC2、D S G 3−・・を低値
選択回路15a、15b、、を介して各加減弁11a、
llb・・・に与えるから、関数発生器14a、14b
・・・の制御負担を区別して行うことができる。この制
御によっても前記実施例と同様にタービン負荷の変動を
無い状態で弁開閉テストが行なわれる。
3... to each function generator 14a, 14b, 14c,
Adders 35a, 35b, 35c, and
・In addition to each function generator 1.4 a, ]-4b, 14c
are controlled by the respective deviation outputs DSG1, DSC2, and DSC3. In this way, the deviation outputs DSGI, DSC2, DSC3... are sent to the function generators 14a, 14b... that should perform function conversion, and the deviation outputs DSGI, DSC2, DSG3-... are sent to the function generators 14a, 14b... Each control valve 11a, via value selection circuits 15a, 15b, .
Since it is given to llb..., the function generators 14a and 14b
. . . The control burden can be differentiated. With this control as well, the valve opening/closing test is performed without fluctuations in the turbine load, as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明タービン制御装置は、タービンの作動中に弁開閉
テストするものにおいて、このテストを行う加減弁の次
のスケジュール制御を行う加減弁が開き始める点の負荷
設定信号とテスト開始時の負荷設定信号との偏差を演算
し、弁開閉テスト時、この偏差信号が正のときの偏差信
号を次のスケジュール制御を行う加減弁に負荷設定値、
補正信号とともに加えるようにしたから、タービン負荷
の変動に伴う補正信号が直ちに次のスケジュール制御を
行う加減弁に加えられ、この加減弁を補正制御する。そ
のため、弁開閉テスト中のタービン負荷の変動を防止す
ることができる。
The turbine control device of the present invention performs a valve opening/closing test during operation of a turbine, and provides a load setting signal at the point when the regulating valve that performs the next schedule control of the regulating valve that performs this test starts to open, and a load setting signal at the start of the test. During the valve opening/closing test, the deviation signal when this deviation signal is positive is used as the load setting value for the control valve that performs the next scheduled control.
Since the correction signal is added together with the correction signal, the correction signal accompanying the fluctuation of the turbine load is immediately applied to the control valve that performs the next schedule control, and the control valve is corrected. Therefore, fluctuations in the turbine load during the valve opening/closing test can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明タービン制御装置の主要部を示すブロッ
ク線図、第2図は第1図の負荷設定バイアス発生部を示
すブロック線図、第3図および第4図はは第1図装置の
作動を説明する説明図、第5図は第1図装置の他の実施
例を示すブロック線図、第6図は従来のタービン制御装
置の主要部を示すブロック線図、第7図および第8図は
は第5図装置の作動を説明する説明図である。 10.30.40・・・タービン制御装置、11a、1
1b、] I C,1,1d=、加減弁、1.2 、、
、負荷設定器、13.21.32b、35a、35b。 35 c−=加算器、14a、14b、14c。 14 d =−関数発生器、15g、15b、15c。 15 d =−・低値選択回路、16a、16b、16
c、16d・・・選択スイッチ、17・・・テスト信号
発生部、18・・・負荷変動防止装置、19・・・圧力
検出器、20・・・記憶部、22・・・スイッチ、23
・・・全開信号発生器、31・・・負荷設定バイアス発
生部、31a131b、31C・・・バイアス発生部、
33b・・正方向リミッタ−134b・・・制御スイッ
チ。
FIG. 1 is a block diagram showing the main parts of the turbine control device of the present invention, FIG. 2 is a block diagram showing the load setting bias generating section of FIG. 1, and FIGS. 3 and 4 are the device shown in FIG. 1. 5 is a block diagram showing another embodiment of the device shown in FIG. 1, FIG. 6 is a block diagram showing the main parts of a conventional turbine control device, and FIGS. FIG. 8 is an explanatory diagram illustrating the operation of the device shown in FIG. 5. 10.30.40... Turbine control device, 11a, 1
1b,] I C, 1, 1d=, control valve, 1.2,,
, load setter, 13.21.32b, 35a, 35b. 35 c-=adder, 14a, 14b, 14c. 14 d =-function generator, 15g, 15b, 15c. 15 d =-・Low value selection circuit, 16a, 16b, 16
c, 16d...Selection switch, 17...Test signal generator, 18...Load fluctuation prevention device, 19...Pressure detector, 20...Storage unit, 22...Switch, 23
...Full-open signal generator, 31...Load setting bias generation section, 31a131b, 31C...Bias generation section,
33b... Positive direction limiter - 134b... Control switch.

Claims (1)

【特許請求の範囲】[Claims] 負荷設定信号によりスケジュール制御される複数の加減
弁の任意の加減弁をタービン作動中に弁開閉テストを行
なうとともに、その弁開閉テスト時にタービン負荷の変
動を補正するようにしたタービン制御装置において、弁
開閉テストを行う加減弁の次にスケジュール制御される
加減弁が開き始める点の負荷設定値と上記弁開閉テスト
開始時の負荷設定値との偏差を演算する演算器を有し、
前記弁開閉テスト時に上記演算器からの偏差信号が正の
ときその偏差信号を前記負荷設定値に加算する負荷設定
バイアス発生部を設けたタービン制御装置。
In a turbine control device that performs a valve opening/closing test of a plurality of regulating valves that are schedule-controlled by a load setting signal during turbine operation, and also corrects fluctuations in turbine load during the valve opening/closing test. It has a computing unit that calculates the deviation between the load setting value at the point where the regulating valve, which is scheduled to be controlled next to the regulating valve that performs the opening/closing test, starts to open and the load setting value at the time when the valve opening/closing test starts,
A turbine control device comprising: a load setting bias generating section that adds a deviation signal from the arithmetic unit to the load setting value when the deviation signal from the arithmetic unit is positive during the valve opening/closing test.
JP16641190A 1990-06-25 1990-06-25 Turbine control device Pending JPH0458003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16641190A JPH0458003A (en) 1990-06-25 1990-06-25 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16641190A JPH0458003A (en) 1990-06-25 1990-06-25 Turbine control device

Publications (1)

Publication Number Publication Date
JPH0458003A true JPH0458003A (en) 1992-02-25

Family

ID=15830927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16641190A Pending JPH0458003A (en) 1990-06-25 1990-06-25 Turbine control device

Country Status (1)

Country Link
JP (1) JPH0458003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037816A (en) * 2012-08-20 2014-02-27 Toshiba Corp Valve control device and valve control method
US9278885B2 (en) 2001-05-17 2016-03-08 Essilor International Compagnie Generale D'optique Method for preparing a glass convenient for trimming, a glass thus obtained, and method for trimming such a glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223684A (en) * 1988-07-12 1990-01-25 Matsushita Electric Ind Co Ltd High frequency laser oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223684A (en) * 1988-07-12 1990-01-25 Matsushita Electric Ind Co Ltd High frequency laser oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278885B2 (en) 2001-05-17 2016-03-08 Essilor International Compagnie Generale D'optique Method for preparing a glass convenient for trimming, a glass thus obtained, and method for trimming such a glass
JP2014037816A (en) * 2012-08-20 2014-02-27 Toshiba Corp Valve control device and valve control method

Similar Documents

Publication Publication Date Title
US4509110A (en) Method and apparatus for detecting failures in a control system
JP5271380B2 (en) Flow compensation for turbine control valve testing
US20110264281A1 (en) Method and system of on-tool and on-site mfc optimization providing consistent response
US4562528A (en) Backup control apparatus
US4724865A (en) Control circuit for proportional electro-hydraulic fluid control valves
JPH0458003A (en) Turbine control device
EP1004060B1 (en) Method for preventing windup in pid controllers employing nonlinear gain
JP4475027B2 (en) Turbine control device, control method thereof, and turbine system
US5638863A (en) Amplifying system for solenoid controlled proportion valve
JP3057635B2 (en) Valve positioner
Leephakpreeda Sensorless DC motor drive via optimal observer‐based servo control
JPH0849505A (en) Steam valve testing device
JP2749977B2 (en) Turbine valve test equipment
JPH01279304A (en) Integral proportion compensator for servo control system
JPH03267507A (en) Test circuit for turbine valve
JP2965658B2 (en) Turbine control method
JPH0264802A (en) Optimum parameter adjustment device for controller
JPH1130108A (en) Turbine control device
JPH0215302A (en) Control device for process apparatus
SU1640667A1 (en) On-off pulsed controller
SU1201530A1 (en) Method of automatic power unit regulation
JP2601926B2 (en) Multiplexed excitation controller
JPH01310404A (en) Tester
JPS63284603A (en) Process plant controller
JPH05195708A (en) Automatic control device for steam turbine valve switching