JPH0223684A - High frequency laser oscillator - Google Patents

High frequency laser oscillator

Info

Publication number
JPH0223684A
JPH0223684A JP17448488A JP17448488A JPH0223684A JP H0223684 A JPH0223684 A JP H0223684A JP 17448488 A JP17448488 A JP 17448488A JP 17448488 A JP17448488 A JP 17448488A JP H0223684 A JPH0223684 A JP H0223684A
Authority
JP
Japan
Prior art keywords
discharge
discharge tube
tube
tube axis
electron density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17448488A
Other languages
Japanese (ja)
Inventor
Fumio Sugata
文雄 菅田
Hiromasa Ishiwatari
石渡 裕政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17448488A priority Critical patent/JPH0223684A/en
Publication of JPH0223684A publication Critical patent/JPH0223684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Abstract

PURPOSE:To realize an electron density distribution of axial symmetry which is high at the axis and to acquire a high quality laser beam mode by changing a shape and a position of a slit of an insulator which is provided inside a counter electrode. CONSTITUTION:When a high frequency voltage is applied to opposed electrodes 2, 3 from a high frequency power source 4, high frequency discharge generates inside a discharge tube 1 and excites an excitation medium. Since insulators 24, 25 are provided inside the opposed electrodes 2, 3 through the discharge tube 1, discharge is carried out only between slits 26, 27. As the discharge proceeds centering the tube shaft through the slits 26, 27 in direction of tube shaft center, the discharge direction changes between both side edge positions of the opposed electrodes 2, 3. Therefore, an electron density distribution in x- and y-directions which is averaged in shaft center direction of the discharge tube 1 is high at a radial center which is a shaft center section of the discharge tube 1 and enables production of a high quality laser beam mode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、産業用あるいは医療用などの高周波放電励起
を行う高周波レーザ発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-frequency laser oscillator that performs high-frequency discharge excitation for industrial or medical use.

従来の技術 第5図(a)〜(d)に従来の高周波放電励起を行う高
周波レーザ発振器の一般的な構造の概要を示す。
BACKGROUND OF THE INVENTION FIGS. 5(a) to 5(d) outline the general structure of a conventional high-frequency laser oscillator that performs high-frequency discharge excitation.

第5図(a)は従来の高周波レーザ発振器の概略正面図
、第5図(b)は第5図(a)のA−A断面図、第5図
(e)は放電管の管軸心方向の放電状態図、第5図(d
)〜(r)は放電管における管軸心に直角なx、y方向
を説明する図および管軸心方向に平均化したときのx、
y方向の電子密度の分布特性図である。
FIG. 5(a) is a schematic front view of a conventional high-frequency laser oscillator, FIG. 5(b) is a cross-sectional view taken along line A-A in FIG. 5(a), and FIG. 5(e) is the tube axis of the discharge tube. Discharge state diagram in the direction, Figure 5 (d
) to (r) are diagrams explaining the x and y directions perpendicular to the tube axis in the discharge tube, and x when averaged in the tube axis direction,
FIG. 3 is a distribution characteristic diagram of electron density in the y direction.

第5図(&)において、1は誘電体よりなる管状の放電
管、2.8は放電管】の外壁に密着し、放電管1の管軸
心を中心として相対向するように設けられた対向電極、
4は高周波電源で、対向電極2゜8に接続されている。
In Figure 5 (&), 1 is a tubular discharge tube made of a dielectric material, 2.8 is a discharge tube which is placed in close contact with the outer wall of the discharge tube, and is placed opposite to each other with the axis of the discharge tube 1 as the center. counter electrode,
4 is a high frequency power source, which is connected to the counter electrode 2.8.

5は全反射鏡、6は一部透過の出力鏡で、放電管1の長
手方向の両端に対向して取り付けられ、出力鏡6から、
矢印】】で示される方向にレーザ光を発振させる。そし
て、この放電管】は内部に送風機9および熱交換器1o
を備えた送気管7・8に接続されて循環的に連通されて
いる。放電管1内にはCo2. N、、 Ha などの
混合ガスが充填されている。この放電管】において、対
向電極2.8に高周波電源4より電圧が印加されると、
放電管1内に放電が起り、その結果002分子が励起さ
れ、全反射鏡5と一部透過の出力鏡6で構成される光共
振器内でレーザ発振が起る。レーザ光の一部は、矢印】
1で示されるように一部透過の出力鏡6より外部に出力
される。放電によりガス温度が上昇するとレーザ出力が
低下するので送風機9によりガスを循環させて熱交換器
】0で冷却を行う。この構造では、第5図((1)に示
すように、放電管】内において放電方向が一定方向に限
定され、第5図(d)に示すようにXおよびy座標を設
定して放電管】の管軸心方向に平均化すると、第5図(
11)(r)に示す電子密度分布となる。
5 is a total reflection mirror, and 6 is a partially transparent output mirror, which are installed opposite to each other at both ends of the discharge tube 1 in the longitudinal direction, and from the output mirror 6,
Laser light is oscillated in the direction indicated by the arrow ]. This discharge tube] has a blower 9 and a heat exchanger 1o inside.
It is connected to the air supply pipes 7 and 8 equipped with the air supply pipes 7 and 8 for circulatory communication. Co2. It is filled with a mixed gas such as N, Ha, etc. In this discharge tube, when a voltage is applied to the counter electrode 2.8 from the high frequency power source 4,
A discharge occurs within the discharge tube 1, and as a result, 002 molecules are excited, and laser oscillation occurs within an optical resonator composed of a total reflection mirror 5 and a partially transmitting output mirror 6. Part of the laser beam is shown by the arrow】
As shown at 1, the light is output to the outside through a partially transparent output mirror 6. As the gas temperature rises due to discharge, the laser output decreases, so the gas is circulated by a blower 9 and cooled by a heat exchanger 0. In this structure, the discharge direction within the discharge tube is limited to a certain direction as shown in Figure 5 ((1)), and the X and Y coordinates are set as shown in Figure 5 (d). ] is averaged in the direction of the tube axis, as shown in Figure 5 (
11) The electron density distribution is shown in (r).

発明が解決しようとする課題 上述のように、従来の高周波放電励起を行う高周波レー
ザ発振器においては、放電方向が一定方向に限定され、
特に、放電管内の電子密度分布が軸対称とならず、良質
のレーザビームモードが得にくいという問題がある。
Problems to be Solved by the Invention As mentioned above, in conventional high-frequency laser oscillators that perform high-frequency discharge excitation, the direction of discharge is limited to a certain direction,
In particular, there is a problem that the electron density distribution within the discharge tube is not axially symmetrical, making it difficult to obtain a high-quality laser beam mode.

本発明は上記問題を解決するもので、放電方向が一定方
向に限定されることがなく、少なくとも放電管の軸心部
に周辺部より高い電子密度分布を形成でき、良質のレー
ザビームモードが得られる高周波レーザ発振器を提供す
ることを目的とするものである。
The present invention solves the above-mentioned problems, and the discharge direction is not limited to a certain direction, and a higher electron density distribution can be formed at least in the axial center of the discharge tube than in the peripheral part, and a high-quality laser beam mode can be obtained. The purpose of this invention is to provide a high frequency laser oscillator that can be used.

課題を解決するための手段 上記問題を解決するために本発明の高周波レーザ発振器
は、誘電体からなる放電管に、この放電管の管軸心を中
心として対向する断面円弧状の対向電極および絶縁体を
、この絶縁体を内側にしてその長さ方向に沿って設け、
前記それぞれの絶縁体に、前記管軸心に対して対称位置
でかつ前記対向電極の両側縁間にわたって変位するとと
もに前記管軸心方向に延びるスリットを形成し、たもの
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the high frequency laser oscillator of the present invention includes a discharge tube made of a dielectric material, a counter electrode having an arcuate cross section and an insulator, which face each other about the tube axis of the discharge tube. a body along its length with the insulator inside;
A slit is formed in each of the insulators at a symmetrical position with respect to the tube axis, displaced across both side edges of the opposing electrode, and extending in the tube axis direction.

また、本発明の高周波レーザ発振器は、誘電体からなる
放電管に、この放電管の管軸心を中心として対向する断
面円弧状の対向電極および絶縁体を、この絶縁体を内側
にして複数対放電管長さ方向に沿って設け、前記それぞ
れの絶縁体に、前記管軸心に対して対称位置でかつ前記
対向電極の両側縁間にわたって変位するとともに前記管
軸心方向に延びるスリットを形成し、前記管軸心方向に
隣接する各対の対向電極の放電管周方向における位置を
互いに変位させたものである。
Furthermore, in the high frequency laser oscillator of the present invention, a discharge tube made of a dielectric material is provided with a plurality of counter electrodes and an insulator having an arcuate cross section and facing each other with the tube axis of the discharge tube as the center, with the insulator inside. A slit is provided along the length direction of the discharge tube, and a slit is formed in each of the insulators at a symmetrical position with respect to the tube axis and displaced between both side edges of the opposing electrode and extending in the tube axis direction, The positions of the pairs of opposing electrodes adjacent in the tube axis direction in the circumferential direction of the discharge tube are displaced from each other.

作用 上記構成により外部からの高周波電源によって対向電極
に電圧が印加されると、対向電極の内側に対応して設置
した絶縁体のスリット間でのみ放電が行われ、しかも対
向電極の両側縁間にわたって変位するような絶縁物のス
リット構造であるため、放電方向を変化させることがで
き、少なくとも放電管の細心部に周辺部より高い電子密
度分布を形成することができて、良質のレーザビームモ
ードを得ることができる。
Effect With the above configuration, when a voltage is applied to the opposing electrode by an external high-frequency power source, a discharge occurs only between the slits of the insulator installed corresponding to the inside of the opposing electrode, and moreover, across both sides of the opposing electrode. Because it has a slit structure made of insulating material that can be displaced, it is possible to change the discharge direction, and at least form a higher electron density distribution in the narrow part of the discharge tube than in the peripheral part, making it possible to produce a high-quality laser beam mode. Obtainable.

さらに、放電管内の電子密度分布が軸対称にできるとと
もに、軸心部に周辺部より高い電子密度分布を形成でき
て、さらに良質のレーザビームモードを得ることができ
る。
Furthermore, the electron density distribution within the discharge tube can be made axially symmetrical, and a higher electron density distribution can be formed in the axial center than in the peripheral part, making it possible to obtain a higher quality laser beam mode.

実施例 以下、本発明の一実施例を図面に基づき説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図(a)は本発明の第1の実施例を示す高周波レー
ザ発振器の概略正面図、第】図(b)は同高周波レーザ
発振器の放電部の要部斜視図である。第1図(a)、(
b)において、1は誘電体からなる放電管で、この放電
管】の外周面には、放電管1の管軸心を中心として対向
する断面円弧状の対向電極2.8が放電管1の長さ方向
に沿って1対設けられ、放電管1の内周面には、対向電
極2.8に対応して、対向電極2.8と同形状のアルミ
ナ(AlaO3)製の絶縁体24.25が設けられ、そ
れぞれの絶縁体24゜25には第1図(e)に示すよう
に管軸心に対して対称位置でかつ対向型fliz、8の
両側縁位置の間にわたって変位するとともに管軸心方向
に延びる波形状のスリット26.27が形成されている
FIG. 1(a) is a schematic front view of a high-frequency laser oscillator showing a first embodiment of the present invention, and FIG. 1(b) is a perspective view of a main part of a discharge section of the same high-frequency laser oscillator. Figure 1 (a), (
In b), reference numeral 1 denotes a discharge tube made of a dielectric material, and a counter electrode 2.8 having an arcuate cross section facing the tube axis of the discharge tube 1 is provided on the outer peripheral surface of the discharge tube. A pair of insulators 24. made of alumina (AlaO3) having the same shape as the counter electrodes 2.8 are provided on the inner peripheral surface of the discharge tube 1 along the length direction, corresponding to the counter electrodes 2.8. 25, each of the insulators 24 and 25 is disposed symmetrically with respect to the tube axis as shown in FIG. Wave-shaped slits 26, 27 extending in the axial direction are formed.

上記構成により、対向電極2.8に高周波電源4により
高周波電圧を印加すると、放電管】内に高周波放電が起
こり、励起媒体を励起せしめる。
With the above configuration, when a high frequency voltage is applied to the counter electrode 2.8 by the high frequency power source 4, a high frequency discharge occurs within the discharge tube, thereby exciting the excitation medium.

このとき、対向電極2.8の内側には放電管1を介して
絶縁体24.25が設けられているため、絶縁体24.
25のスリット26.27の間でのみ放電が行われ、こ
の放電方向は、第1図(d)に示すように、スリット2
6.27により、管軸心を中心に、管軸心方向に進むに
つれて、対向電極2,8の両側縁位置の間にわたって変
化する。そのため、放電管lの管軸心方向に平均化した
x、y方向の電子密度分布は、第1図(r) 、 (g
)に示すように、放電管1の軸心部である径方向中心部
で高い電子密度分布が形成され、良質なレーザビームモ
ードを生み出すことが可能となる。この場合、第1図(
f)、(glのように、放電管1のx、y方向に対して
軸対称の電子密度分布とはなっていないが、中心部で高
い電子密度分布を有することで、従来のものより良質な
レーザビームモードが得られる。
At this time, since the insulators 24.25 are provided inside the counter electrode 2.8 via the discharge tube 1, the insulators 24.25.
The discharge occurs only between the slits 26 and 27 of the slits 25 and 25, and the discharge direction is as shown in FIG. 1(d).
6.27, the position changes between the positions of both side edges of the opposing electrodes 2 and 8 as the center moves in the direction of the tube axis. Therefore, the electron density distribution in the x and y directions averaged in the tube axis direction of the discharge tube l is as shown in Fig. 1 (r), (g
), a high electron density distribution is formed at the radial center, which is the axial center of the discharge tube 1, making it possible to produce a high-quality laser beam mode. In this case, Figure 1 (
f), (Like gl, the electron density distribution is not axially symmetrical with respect to the x and y directions of the discharge tube 1, but it has a high electron density distribution in the center, so it has better quality than the conventional one. A laser beam mode can be obtained.

第2図(a)および(b)は本発明の第2の実施例を示
す高周波レーザ発振器の概略正面図およびその放電部の
要部斜視図である。第2図(a)、 (b)に示すよう
に、放電管】の外周面には、放電管】の管軸心を中心と
して対向する断面円弧状のアルミナ(AJ203)製糖
縁体84.85が放電管1の長さ方向に沿って】対設け
られ、さらにこの絶縁体84.85の外側に同形状の対
向電極2.3が設けられている。絶縁体84.85にも
第】の実施例におけるスリットと同形状のスリット86
.87が形成されている。この構成によっても、第2図
(d)〜(g)に示すように、上記第1の実施例と同じ
作用効果が得られる。
FIGS. 2(a) and 2(b) are a schematic front view of a high-frequency laser oscillator and a perspective view of a main part of its discharge section, showing a second embodiment of the present invention. As shown in FIGS. 2(a) and 2(b), on the outer circumferential surface of the discharge tube, there are alumina (AJ203) molasses 84. are provided in pairs along the length of the discharge tube 1, and counter electrodes 2.3 of the same shape are provided on the outside of the insulators 84, 85. The insulators 84 and 85 also have slits 86 that have the same shape as the slits in the embodiment of No.
.. 87 is formed. With this configuration as well, the same effects as in the first embodiment can be obtained, as shown in FIGS. 2(d) to 2(g).

第1.2の実施例では、レーザビームモードに関して、
従来のものより良質なモードが得られるが、第1図(f
l、(g)、第2図(r) 、 ’(g)に示す電子密
度分布が放電管のx、y方向に対して軸対称になってい
ない。これを改善してさらに良質なレーザビームモード
を得るための実施例として、第3.4の実施例を以下に
示す。
In Example 1.2, regarding the laser beam mode,
Although a mode with better quality than the conventional one can be obtained, Fig. 1 (f
The electron density distributions shown in Figures 1, (g), Figure 2 (r), and '(g) are not axially symmetrical with respect to the x and y directions of the discharge tube. As an example for improving this and obtaining an even better quality laser beam mode, Example 3.4 will be shown below.

第8図(a)は本発明の第8の実施例を示す高周波レー
ザ発振器の放電部の要部斜視図である。この第8の実施
例においては上記第1の実施例と同様の構造の対向電極
および絶縁体力ξ放電管の外周面および内周面に、管軸
心方向で複数対設けられ、管軸心方向に隣接する各対の
対向電極2,8.12゜】8および波形状のスリット4
6.47.56.57を有する絶縁体44.45.54
.55の放電管周方向における位置は互いに90°ずつ
変位するように配設され、第8図(b) 、 ((+)
に示すようになっている。
FIG. 8(a) is a perspective view of a main part of a discharge section of a high frequency laser oscillator showing an eighth embodiment of the present invention. In this eighth embodiment, a plurality of pairs of counter electrodes and insulators having a structure similar to that of the first embodiment are provided on the outer peripheral surface and inner peripheral surface of the discharge tube in the tube axis direction. Each pair of opposing electrodes 2, 8.12°] 8 and a wave-shaped slit 4 adjacent to the
Insulator 44.45.54 with 6.47.56.57
.. 55 in the circumferential direction of the discharge tube are arranged so as to be displaced by 90 degrees from each other, as shown in Fig. 8(b), ((+)
It is shown in the figure below.

この構成によっても、放電管1における対向電極2.8
.]2,18および絶縁体44.45.54.55の各
対の箇所において、上記第1および第2実施例と同様に
作用効果が得られて、放電状態は第8図(dl 、 (
6)のようになり、放電管1の長手方向に平均化したX
、7方向の電子密度分布は、第8図(g)。
Also with this configuration, the counter electrode 2.8 in the discharge tube 1
.. ] 2, 18 and the insulators 44.45.54.55, the same effects as in the first and second embodiments are obtained, and the discharge state is as shown in FIG. 8 (dl, (
6), and the averaged X in the longitudinal direction of the discharge tube 1
, the electron density distribution in seven directions is shown in Figure 8(g).

Φ)に示すように放電管1の径方向中心部で高い電子密
度分布が形成されるとともに、管軸心方向に平均化した
ときのx、y方向の電子密度分布は軸対称となり、−層
良質なレーザビームモードが得られる。
As shown in Φ), a high electron density distribution is formed at the radial center of the discharge tube 1, and when averaged in the tube axis direction, the electron density distribution in the x and y directions becomes axially symmetrical, and the -layer A high quality laser beam mode can be obtained.

第4図(1は本発明の第4の実施例を示す高周波レーザ
発振器の放電部の要部斜視図である。この第4の実施例
においては上記第2の実施例と同様の構造の対向電極お
よび絶縁体が、放電管の外周面に管軸心方向で複数対設
けられ、管軸心方向に隣接する各対の対向電極2,8.
12.18および波形状のスリット66、67、76、
77を有する絶縁体64゜65、74.75の放電管周
方向における位置は互いに90°ずつ変位するように配
設され、第4図(b) 、 (6)に示すようになって
いる。
FIG. 4 (1 is a perspective view of a main part of a discharge section of a high-frequency laser oscillator showing a fourth embodiment of the present invention. In this fourth embodiment, an opposite A plurality of pairs of electrodes and insulators are provided on the outer peripheral surface of the discharge tube in the tube axis direction, and each pair of opposing electrodes 2, 8 .
12.18 and wave-shaped slits 66, 67, 76,
The positions of the insulators 64, 65, 74, and 77 in the circumferential direction of the discharge tube are displaced by 90 degrees from each other, as shown in FIGS. 4(b) and (6).

この構成によっても、第4図(d)〜(h) fこ示す
ような、第8実施例と同様な作用効果が得られ、良質な
レーザビームモードが得られる。
With this configuration as well, the same effects as in the eighth embodiment as shown in FIGS. 4(d) to (h) f can be obtained, and a high-quality laser beam mode can be obtained.

ここで、第8および第4の実施例で用いる複数対の対向
電極を、第8図(i)に示すように、対向電極2,8の
両側縁位置での放電方向の交差角度をθとした場合に8
60°/2θの数の対となった対向電極を互にθずつず
らして放電管1に設置することで、放電管】内をすべて
放電範囲として網羅することができ、1.7方向だけで
なく放電管の円形平面内ですべて軸対称の電子密度とな
り、さら憂こ良質のレーザビームモードを得ることがで
きる。
Here, as shown in FIG. 8(i), the intersection angle of the discharge direction at both side edge positions of the opposing electrodes 2 and 8 is set to θ. 8 if
By installing pairs of opposing electrodes in the number of 60°/2θ in the discharge tube 1, shifted by θ from each other, the entire area within the discharge tube can be covered as a discharge range, and it is possible to cover the entire discharge range in only 1.7 directions. Instead, the electron density is all axially symmetrical within the circular plane of the discharge tube, making it possible to obtain a laser beam mode of even better quality.

なお、本実施例では、アルミナ(Al*Os )を絶縁
体の一例として説明したが、その他にシリカ(SiO□
)。
In this example, alumina (Al*Os) was explained as an example of an insulator, but silica (SiO□
).

チタン酸バリウム、酸化チタンなどの絶縁体を用いても
同様の効果が得られる。
A similar effect can be obtained by using an insulator such as barium titanate or titanium oxide.

発明の効果 以上、本発明によれば、対向電極の内側に設はすこ絶縁
体のスリット形状および位置を変えることで、放電方向
が一定方向に限定されることがなく、放電管の軸心部が
高電子密度となる電子密度の分布状態を自由につくり出
せ、特に軸心部が高電子密度の軸対称の電子密度分布に
することにより良質なレーザビームモードが得られる。
As described above, according to the present invention, by changing the shape and position of the slit of the insulator provided inside the counter electrode, the direction of discharge is not limited to a fixed direction, and the axial center of the discharge tube A high-quality laser beam mode can be obtained by freely creating an electron density distribution state in which the electron density is high, and by creating an axially symmetrical electron density distribution with a high electron density particularly at the axial center.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第1の実施例を示す高周波レー
ザ発振器の概略正面図、第1図(b)は同高周波レーザ
発振器の放電部の要部斜視図、第1図(C)は第1図(
a)のB−B断面図、第1図(d3は放電管の管軸心方
向の放電状態図、第1図(61〜(glは放電管におけ
る管軸心に直角なx、y方向を説明する図および管軸心
方向に平均化したときのX、7方向の電子密度の分布特
性図、第2図(a)は本発明の第2の実施例を示す高周
波レーザ発振器の概略正面図、第2図(b)は同高周波
レーザ発振器の放電部の要部斜視図、第2図(c)は第
2図(IL)のC−C断面図、第2図(d3は放電管の
管軸心方向の放電状態図、第2図(e)〜(戯は放電管
における管軸心に直角なx、y方向を説明する図および
管軸心方向に平均化したときの1.7方向の電子密度の
分布特性図、第8図(a)は本発明の第8の実施例を示
す高周波レーザ発振器の放電部概観図、第8図(b)(
clは第8図(a3のD−DおよびE−E断面図、第8
図(d](e)は放電管の管軸心方向の放電状態図、第
8図(f)〜(11)は放電管における管軸心に直角な
X、7方向を説明する図および管軸心方向に平均化した
ときのx、y方向の電子密度分布図、第8図(i)は複
数対の対向電極および絶縁体の設置条件を説明する概略
断面図、第4図(a)は本発明の第4の実施例を示す高
周波レーザ発振器の放電部概観図、第4図(b) (1
1)は第4図(a)のF−FおよびG−C断面図、第4
図(d) (e)は放電管の管軸心方向の放電状態図、
第4図(fl〜(ト))は放電管における管軸心に直角
なXIF方向を説明する図および管軸心方向に平均化し
たときのx、y方向の電子密度分布特性図、餡5図(a
)は従来の高周波レーザ発振器を示す概略正面図、第5
図(b)は第5図(&)のA−A断面図、第5図(e)
は放電管の管軸心方向の放電状態図、第5図(d)〜(
f)は放電管における管軸心に直角なx、y方向を説明
する図および管軸心方向に平均化したときの!、7方向
の電子密度分布特性図である。 1・・・放電管、2.8.12.38・・・対向電極、
24゜25、84.85.44.45.54.55.6
4.65.74.75・・・絶縁体、26.27.86
.87.46.47.56.57.66゜67、76、
77・・・スリット。
FIG. 1(a) is a schematic front view of a high-frequency laser oscillator showing a first embodiment of the present invention, FIG. 1(b) is a perspective view of a main part of a discharge section of the same high-frequency laser oscillator, and FIG. ) is shown in Figure 1 (
BB sectional view of a), Figure 1 (d3 is a diagram of the discharge state in the tube axis direction of the discharge tube, Figure 1 (61 ~ (gl is the x, y direction perpendicular to the tube axis of the discharge tube) An explanatory diagram, a distribution characteristic diagram of the electron density in the X and seven directions when averaged in the tube axis direction, and FIG. 2(a) is a schematic front view of a high-frequency laser oscillator showing a second embodiment of the present invention. , FIG. 2(b) is a perspective view of the main part of the discharge section of the same high-frequency laser oscillator, FIG. 2(c) is a sectional view taken along line C-C in FIG. 2(IL), and FIG. Discharge state diagram in the tube axis direction, Figures 2(e) to (d) are diagrams explaining the x and y directions perpendicular to the tube axis in the discharge tube, and 1.7 when averaged in the tube axis direction. FIG. 8(a) is a distribution characteristic diagram of the electron density in the direction, and FIG.
cl is shown in Figure 8 (D-D and E-E sectional views of a3,
Figures (d) and (e) are diagrams of the discharge state in the tube axis direction of the discharge tube, and Figures 8 (f) to (11) are diagrams explaining the X and 7 directions perpendicular to the tube axis in the discharge tube, and the tube Figure 8 (i) is a diagram of the electron density distribution in the x and y directions when averaged in the axial direction; Figure 8 (i) is a schematic cross-sectional diagram illustrating the installation conditions of multiple pairs of opposing electrodes and insulators; Figure 4 (a) FIG. 4(b) is an overview diagram of a discharge section of a high frequency laser oscillator showing a fourth embodiment of the present invention.
1) is the FF and G-C sectional view of Fig. 4(a),
Figures (d) and (e) are diagrams of the discharge state in the tube axis direction of the discharge tube,
Figure 4 (fl~(g)) is a diagram explaining the XIF direction perpendicular to the tube axis in the discharge tube and a characteristic diagram of the electron density distribution in the x and y directions when averaged in the tube axis direction. Figure (a
) is a schematic front view showing a conventional high-frequency laser oscillator;
Figure (b) is a sectional view taken along line A-A in Figure 5 (&), Figure 5 (e)
are discharge state diagrams in the tube axis direction of the discharge tube, Fig. 5(d) to (
f) is a diagram explaining the x and y directions perpendicular to the tube axis in the discharge tube, and when averaged in the tube axis direction! , is an electron density distribution characteristic diagram in seven directions. 1...Discharge tube, 2.8.12.38...Counter electrode,
24°25, 84.85.44.45.54.55.6
4.65.74.75...Insulator, 26.27.86
.. 87.46.47.56.57.66゜67, 76,
77...slit.

Claims (1)

【特許請求の範囲】 1、誘電体からなる放電管に、この放電管の管軸心を中
心として対向する断面円弧状の対向電極および絶縁体を
、絶縁体を内側にしてその長さ方向に沿つて設け、前記
それぞれの絶縁体に、前記管軸心に対して対称位置でか
つ前記対向電極の両側縁間にわたつて変位するとともに
前記管軸心方向に延びるスリットを形成した高周波レー
ザ発振器。 2、誘電体からなる放電管に、この放電管の管軸心を中
心として対向する断面円弧状の対向電極および絶縁体を
、絶縁体を内側にして複数対、放電管長さ方向に沿つて
設け、前記それぞれの絶縁体に、前記管軸心に対して対
称位置でかつ前記対向電極の両側縁間にわたつて変位す
るとともに前記管軸心方向に延びるスリットを形成し、
前記管軸心方向に隣接する各対の対向電極の放電管周方
向における位置を互いに変位させた高周波レーザ発振器
[Claims] 1. A discharge tube made of a dielectric material is provided with a counter electrode having an arcuate cross section and an insulator that face each other about the axis of the discharge tube in the longitudinal direction of the discharge tube, with the insulator inside. A high-frequency laser oscillator, wherein a slit is formed in each insulator along the tube axis, the slit being disposed symmetrically with respect to the tube axis, extending between both side edges of the opposing electrode, and extending in the tube axis direction. 2. A discharge tube made of a dielectric material is provided with a plurality of pairs of counter electrodes and insulators having an arcuate cross section and facing each other with the tube axis of the discharge tube as the center, with the insulators on the inside, along the length direction of the discharge tube. , forming a slit in each of the insulators at a symmetrical position with respect to the tube axis, displaced between both side edges of the opposing electrode, and extending in the tube axis direction;
A high-frequency laser oscillator in which the positions of each pair of opposing electrodes adjacent in the tube axis direction in the discharge tube circumferential direction are displaced from each other.
JP17448488A 1988-07-12 1988-07-12 High frequency laser oscillator Pending JPH0223684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17448488A JPH0223684A (en) 1988-07-12 1988-07-12 High frequency laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17448488A JPH0223684A (en) 1988-07-12 1988-07-12 High frequency laser oscillator

Publications (1)

Publication Number Publication Date
JPH0223684A true JPH0223684A (en) 1990-01-25

Family

ID=15979293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17448488A Pending JPH0223684A (en) 1988-07-12 1988-07-12 High frequency laser oscillator

Country Status (1)

Country Link
JP (1) JPH0223684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458003A (en) * 1990-06-25 1992-02-25 Toshiba Corp Turbine control device
JPH11330591A (en) * 1998-04-03 1999-11-30 Trumpf Lasertechnik Gmbh High-frequency excitation gas laser and laser tube for gas laser
WO2000046891A1 (en) * 1999-02-03 2000-08-10 Trumpf Lasertechnik Gmbh Laser with device for modifying the distribution of laser light intensity across the laser beam cross-section

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458003A (en) * 1990-06-25 1992-02-25 Toshiba Corp Turbine control device
JPH11330591A (en) * 1998-04-03 1999-11-30 Trumpf Lasertechnik Gmbh High-frequency excitation gas laser and laser tube for gas laser
WO2000046891A1 (en) * 1999-02-03 2000-08-10 Trumpf Lasertechnik Gmbh Laser with device for modifying the distribution of laser light intensity across the laser beam cross-section
US6539045B1 (en) 1999-02-03 2003-03-25 Trumpf Lasertechnik Gmbh Laser with device for modifying the distribution of laser light intensity across the laser beam cross-section

Similar Documents

Publication Publication Date Title
US4375690A (en) Multi-phase silent discharge gas laser apparatus
JPS603170A (en) Silent discharge type gas laser device
JPH0223684A (en) High frequency laser oscillator
JPH11317558A (en) Laser resonator
JPS61280689A (en) Gas laser apparatus
US5379317A (en) Microwave-excited slab waveguide laser with all metal sealed cavity
US3396301A (en) Gas laser tube having a hollow elongated cathode electrode
JPS6037189A (en) Silent discharge exciting coaxial type laser oscillator
JPS6364070B2 (en)
JP2640345B2 (en) Gas laser oscillation device
JPS61281569A (en) Optical oscillator and laser
JPH03500832A (en) pentagonal ring laser gyro
JPH03208385A (en) Microwave excitation power laser
JPH0234196B2 (en) GASUREEZASOCHI
JPS5849644Y2 (en) Waveguide gas laser tube
JPS60169178A (en) Gas laser device
JPH01115178A (en) High-frequency discharge excitation type gas laser device
JPH0661701A (en) 90× twisted waveguide with step
JPS62260377A (en) Gas laser device
JPH01183179A (en) Electrode structure for laser oscillator
JPH02199883A (en) Gas laser device
JPH05291663A (en) Gas laser
JPH0240973A (en) Gas laser oscillator
JPH0437078A (en) Gas laser oscillator
JPH02281670A (en) High frequency excitation gas laser oscillation device