JPH0457678A - Abrasive cloth and paper - Google Patents

Abrasive cloth and paper

Info

Publication number
JPH0457678A
JPH0457678A JP16939390A JP16939390A JPH0457678A JP H0457678 A JPH0457678 A JP H0457678A JP 16939390 A JP16939390 A JP 16939390A JP 16939390 A JP16939390 A JP 16939390A JP H0457678 A JPH0457678 A JP H0457678A
Authority
JP
Japan
Prior art keywords
abrasive grains
grain
base material
particle
unit area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16939390A
Other languages
Japanese (ja)
Other versions
JP3008118B2 (en
Inventor
Harumitsu Yasuda
安田 春光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16939390A priority Critical patent/JP3008118B2/en
Priority to TW80109071A priority patent/TW206939B/zh
Publication of JPH0457678A publication Critical patent/JPH0457678A/en
Application granted granted Critical
Publication of JP3008118B2 publication Critical patent/JP3008118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • B24D11/005Making abrasive webs

Abstract

PURPOSE:To increase a slope line force per abrasive grain and to improve a grinding force, by fixing a diamond abrasive grain whose grain size is about 5-400mum in a pattern shape onto a base material with the grain number per unit area being about 2-20% of the grain number per unit area in which it can be filled up most compactly with one layer. CONSTITUTION:A diamond abrasive grain 2 whose grain size is about 5-400mum is fixed to a base material 1 with its grain number per unit area being about 2-20% of the grain number per unit area where it can be filled up most compactly with one layer. A salope line force per particle of the abrasive grain required for polishing a brittle material can be enlarged without accompanying the earlier wear and abrasion of the cutting edge of the abrasive grain 2 by setting the grain number in this range, and yet the tangential resistance namely the reaction force in the tangential direction to the action face of a work can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は研磨布紙に関し、詳しくはガラス。 セラミック、石膏2石材等の脆性材料の研削に適した研
磨布紙に関する。 (従来技術) 従来、この種の研磨布紙は布2紙等の基材上にダイヤモ
ンド砥粒を最密充填に近い状態でランダムに固着して構
成されている。 (発明が解決しようとする課題) しかしながら、従来の研磨布紙で脆性材料(以下ワーク
とも言う)を研磨しようとすると、上記のように砥粒が
最密充填に近い状態であるためワークの作用面に加える
法線力(押付力)を大きくせねばならない。ところが、
このように法線力を大きくして研磨を行なうと、砥粒の
切れ刃が早期に磨滅、磨耗して研磨布紙がワークの作用
面を上すべりし、このため研磨力が著しく低下してワー
クの加工精度が悪くなり、寸法不良等を招いていた。ま
た、研磨布紙がワークの作用面を上すべりすることから
発熱による目詰まりを生じ、さらにはワークに焼けが生
ずる欠点を有していた。 (課題を解決するための手段) 上記課題を解決するため本発明の研磨布紙は、粒径約5
〜約400μmのダイヤモンド砥粒を、単位面積あたり
の粒数が、一層で最密充填できる単位面積あたりの粒数
の約2〜約20%で基材上にパターン状で固着して構成
される。 (作用) 本発明の研磨布紙では粒径約5〜約400μmのダイヤ
モンド砥粒を、単位面積当りの粒数が最密充填での粒数
の約2〜約20%で固着されており、粒数をこのような
範囲に設定したことにより砥粒の切れ刃の早期の磨滅、
磨耗を伴うことなく脆性材料の研磨に要求される砥粒−
粒子当りの法線力を大きくでき、しかも接線抵抗すなわ
ちワークの作用面に対する接線方向の反力を小きくでき
る。又、ダイヤモンド砥粒をパターン状に固着する構成
としたことにより、固着に先立つダイヤモンド砥粒の配
置を容易に精密に行なえ、かつ研磨布紙の全面に亘りム
ラのない配置が可能となる。 (実施例) 次に本発明の実施例を図面を参照して説明する。まず本
発明の第1実施例による研磨布紙を第1図及び第2図を
参照して説明する。 第1図中1は布紙等の基材で、この基材1の上面には複
数のダイヤモンド砥粒からなるドツト状の粒子塊2〜2
が固着されている。粒子塊2〜2は互いに等間隔で配置
されており、これらを構成する個々の砥粒の粒径及び1
00cm”当りの個数は以下の第1表の組合わせから選
択されている。 第1表 ここで、各粒径での砥粒個数(個/100cm”)の最
少値と最大値は一層で最密充填した場合の砥粒個数(個
/100cmりの2%及び20%にそれぞれ対応してい
る。 第2図は粒径160μm2粒子数770個/IQQcm
、のダイヤモンド砥粒を基材上に第1図に示したドツト
状態で固着した状態を倍率×4.5で撮影した写真で、
この場合の各粒子塊を構成する砥粒数は平均9.5個で
ある。 尚、ダイヤモンド砥粒としては上記表に示した以外にも
、5〜400μmの粒径のものであれば如何なる粒径の
ものも利用でき、その砥粒個数(個/ 100 an”
)は先に述べたように、一層で最密充填した場合の2〜
20%の範囲とされる。 又、本実施例のようにドツト状態で配置する場合の各粒
子塊2を構成する砥粒の数は少なくとも2以上であり、
粒径に応じて下記の第2表のように最低数を選択するの
が好ましい。 第2表 本実施例の研磨布紙は粒径5〜400μmのダイヤモン
ド砥粒を単位面積あたりの粒数が一層での最密充填での
粒数の2〜20%で基材1に固着したので、砥粒の切れ
刃の早期の磨耗、磨滅を伴うことなく、脆性材料の研削
、研磨に要求される砥粒−粒子あたりの法線力を大きく
できるので研削、研磨力が向上し、しかも発熱による研
磨布紙の目詰まりが肪止できるのでワークの加工精度が
向上し、さらには熱によるワークの焼けを防止できる。 又、ワークに対する接線抵抗が小さくなるので、砥粒の
基材1からの離脱を防止できる。 さらに、本実施例において、ダイヤモンド砥粒は基材1
に対しドツト状の粒子塊2〜2をなして固着されており
、このようなドツト状の粒子塊2〜2は、基材1に接着
剤を治具を用いて対応するドツト状に塗布し、これにダ
イヤモンド砥粒を重力又は静電気を利用して接着させる
方法、もしくは基材上の全面に接着剤を塗布し、これに
ダイヤモンド砥粒を重力又は静電気を利用してドツト状
に接着させる方法、或いは基材1に接着剤とダイヤモン
ド砥粒を混ぜたものをドツト状に塗布する等の方法によ
り固着できる。このため、粒子塊2〜2の相互間隔及び
粒子塊2自体の寸法を非常に小さな寸法で精度良く設定
できるので、単位面積あたりの粒子数の設定が容易とな
り、又、粒子塊2〜2が基材1上に均一にムラなく分散
した状態を容易に得ることができるので、精度良い研削
。 研磨を行なうことができる。 尚、実際作業にあたっては、ワークの種類(材質、硬度
、結晶構造、密度等)及び研削条件等に応じて、上記粒
子径及び粒子数のうち最適なものが選択される。 又、本実施例の研磨布紙はシート状、ディスク状、ベル
ト状部如何なる形態のものであっても良い。 次に本発明の第2及び第3実施例の研磨布紙を第3図と
第4図及び第5図と第6図をそれぞれ参照して説明する
。尚、これらの実施例はダイヤモンド砥粒の配置が異な
ることを除き、上記第1実施例と同様であり、砥粒の粒
径及び単位面積あたりの粒子数は第1実施例と同様に設
定されている。 本発明の第2実施例を示す第3図において、ダイヤモン
ド砥粒は互いに連続する蜂の巣形状をなした線状の粒子
塊2Aをなして基材1上に固着されている。第4図は粒
径260 tl m 、粒子数970個/100an”
のダイヤモンド砥粒を第3図に示した蜂の巣形状の線状
の粒子塊をなして固着した状態を倍率×4.5で撮影し
た写真で、この場合の粒子塊の線の幅は4mmである。 又、本発明の第3実施例を示す第5図において、ダイヤ
モンド砥粒は互いに平行な複数の線状の粒子塊2B〜2
Bをなして基材1上に固着きれている。第6図は粒径2
60μm2粒子数1090個/100an”のダイヤモ
ンド砥粒を第5図に示した互いに平行な複数の線状の粒
子塊をなして基材に固着した状態を倍率×4.5で撮影
した写真で、この場合の各粒子塊の線の幅は4.5rm
である。 又、以上の第2及び第3実施例の粒子塊2A。 2Bのような線状の粒子塊では、その線の幅は粒径の2
倍以上60倍以下に設定される。例えばJIS粒度#4
00の砥粒を用いた場合、その粒径は約40μmである
ので、線の幅は80μm〜2.400μmの範囲に設定
される。 尚、粒子塊2A及び粒子塊2B〜2Bは上記第1実施例
の粒子塊2と同様な方法で基材1に固着できる。 (発明の効果) 本発明の研磨布紙では砥粒の切れ刃の早期の磨耗、磨滅
を伴うことなく、脆性材料の研削、研磨に要求される砥
粒−個あたりの法線力を大きくできるので研削力が向上
し、しかも発熱による目詰まりを防止できるのでワーク
の加工精度が向上し、きらには熱によるワークの焼けを
防止できる。又、ワークに対する接線抵抗が小きくなる
ので砥粒の基材からの離脱を防止できる。さらに砥粒を
パターン状に配置する構成としたことにより、単位面積
あたりの粒子数を容易かつ正確に設定できるので、上記
各効果を有する研磨布紙を容易かつ安価に製造でき、き
らには砥粒を基材上に均一にムラなく分散させることが
できるので、精度良い研削を行なうことができる。
(Industrial Application Field) This invention relates to coated abrasive paper, and specifically to glass. This invention relates to coated abrasive paper suitable for grinding brittle materials such as ceramics and gypsum. (Prior Art) Conventionally, this type of coated abrasive paper has been constructed by randomly fixing diamond abrasive grains on a base material such as cloth paper in a state close to the closest packing. (Problem to be Solved by the Invention) However, when trying to polish a brittle material (hereinafter also referred to as a workpiece) with conventional coated abrasive paper, the abrasive grains are in a close-packed state as described above, so the effect of the workpiece is The normal force (pressing force) applied to the surface must be increased. However,
When polishing is performed with a large normal force in this way, the cutting edge of the abrasive grains wears out and wears out quickly, causing the coated abrasive paper to slide upwards on the working surface of the workpiece, resulting in a significant decrease in polishing power. The machining accuracy of the workpiece deteriorated, leading to dimensional defects. Furthermore, since the coated abrasive paper slides upward on the working surface of the workpiece, clogging occurs due to heat generation, and furthermore, the workpiece has the disadvantage of being burnt. (Means for Solving the Problems) In order to solve the above problems, the coated abrasive paper of the present invention has a particle size of about 5
~Constructed by fixing diamond abrasive grains of approximately 400 μm in a pattern on a base material, with the number of grains per unit area being approximately 2 to approximately 20% of the number of grains per unit area that can be packed in one layer closest to each other. . (Function) In the coated abrasive paper of the present invention, diamond abrasive grains with a particle size of about 5 to about 400 μm are fixed in a number of particles per unit area of about 2 to about 20% of the number of particles in close packing, By setting the number of grains within this range, early wear of the cutting edge of the abrasive grains,
Abrasive grains required for polishing brittle materials without abrasion
The normal force per particle can be increased, and the tangential resistance, that is, the reaction force in the tangential direction to the working surface of the workpiece, can be reduced. Furthermore, by arranging the diamond abrasive grains in a pattern, the diamond abrasive grains can be easily and accurately arranged prior to the fixation, and can be arranged evenly over the entire surface of the coated abrasive paper. (Example) Next, an example of the present invention will be described with reference to the drawings. First, a coated abrasive paper according to a first embodiment of the present invention will be explained with reference to FIGS. 1 and 2. In Fig. 1, 1 is a base material such as cloth paper, and on the upper surface of this base material 1 are dot-shaped particle clusters 2 to 2 made of a plurality of diamond abrasive grains.
is fixed. The particle clusters 2 to 2 are arranged at regular intervals, and the particle diameters of the individual abrasive grains constituting these and 1
The number of abrasive grains per 100 cm" is selected from the combinations shown in Table 1 below. In Table 1, the minimum and maximum values of the number of abrasive grains (pieces/100 cm) for each grain size are the maximum in one layer. The numbers correspond to 2% and 20% of the number of abrasive grains (particles/100cm) when tightly packed. Figure 2 shows a particle size of 160 μm2 and a particle number of 770/IQQcm.
This is a photograph taken at a magnification of 4.5 of diamond abrasive grains fixed on a base material in the dot state shown in Figure 1.
In this case, the average number of abrasive grains constituting each particle agglomerate is 9.5. In addition to the diamond abrasive grains shown in the table above, diamond abrasive grains of any particle size from 5 to 400 μm can be used.
) is 2~ in the case of close packing in a single layer, as mentioned earlier.
It is said to be in the range of 20%. Further, when the abrasive grains are arranged in a dotted manner as in this embodiment, the number of abrasive grains constituting each particle cluster 2 is at least 2 or more,
It is preferable to select the minimum number according to the particle size as shown in Table 2 below. Table 2 The coated abrasive paper of this example had diamond abrasive grains with a grain size of 5 to 400 μm fixed to the base material 1 in a number of grains per unit area of 2 to 20% of the number of grains in the closest packing in one layer. Therefore, the normal force per abrasive grain required for grinding and polishing brittle materials can be increased without premature wear and abrasion of the cutting edge of the abrasive grain, which improves the grinding and polishing power. Since clogging of the coated abrasive paper due to heat generation can be prevented, the machining accuracy of the workpiece can be improved, and furthermore, it is possible to prevent the workpiece from being burnt due to heat. Furthermore, since the tangential resistance to the workpiece is reduced, detachment of the abrasive grains from the base material 1 can be prevented. Furthermore, in this example, the diamond abrasive grains
The dot-shaped particle clusters 2 to 2 are fixed to the base material 1 by applying adhesive to the base material 1 in corresponding dot shapes using a jig. , a method of adhering diamond abrasive grains to this using gravity or static electricity, or a method of applying adhesive to the entire surface of the base material and adhering diamond abrasive grains to it in a dot shape using gravity or static electricity. Alternatively, it can be fixed by a method such as applying a mixture of adhesive and diamond abrasive grains to the base material 1 in dots. Therefore, the mutual spacing between the particle agglomerates 2-2 and the dimensions of the particle agglomerates 2 themselves can be set with very small dimensions with high accuracy, making it easy to set the number of particles per unit area, and the particle agglomerates 2-2 It is possible to easily obtain a uniformly and evenly dispersed state on the base material 1, allowing for highly accurate grinding. Can be polished. In the actual work, the optimum particle size and number of particles are selected depending on the type of workpiece (material, hardness, crystal structure, density, etc.) and grinding conditions. Further, the coated abrasive paper of this embodiment may be in any form such as a sheet, a disk, or a belt. Next, coated abrasive papers according to second and third embodiments of the present invention will be explained with reference to FIGS. 3 and 4, and FIGS. 5 and 6, respectively. These examples are the same as the first example above, except that the arrangement of the diamond abrasive grains is different, and the grain size of the abrasive grains and the number of particles per unit area are set in the same way as in the first example. ing. In FIG. 3 showing a second embodiment of the present invention, diamond abrasive grains are fixed on a base material 1 in the form of linear particle clusters 2A in a honeycomb shape that are continuous with each other. Figure 4 shows a particle size of 260 tl m and a particle number of 970/100an.
This is a photograph taken at a magnification of 4.5 of diamond abrasive grains fixed together in the honeycomb-shaped linear particle cluster shown in Figure 3. In this case, the width of the line of the particle cluster is 4 mm. . Further, in FIG. 5 showing the third embodiment of the present invention, the diamond abrasive grains are formed into a plurality of linear particle clusters 2B to 2 parallel to each other.
It forms a shape B and is completely fixed on the base material 1. Figure 6 shows particle size 2
This is a photograph taken at a magnification of 4.5 of the state in which diamond abrasive grains with a particle size of 1090 particles/100 an'' of 60 μm2 are fixed to a base material in a plurality of mutually parallel linear particle clusters shown in Fig. 5. In this case, the width of the line of each particle mass is 4.5rm
It is. Moreover, the particle agglomerates 2A of the above second and third embodiments. In a linear particle agglomerate like 2B, the width of the line is 2 times the particle size.
It is set to a value greater than or equal to 60 times. For example, JIS grain size #4
When using No. 00 abrasive grains, the grain size is about 40 μm, so the line width is set in the range of 80 μm to 2.400 μm. Incidentally, the particle agglomerates 2A and particle agglomerates 2B to 2B can be fixed to the base material 1 in the same manner as the particle agglomerates 2 of the first embodiment. (Effect of the invention) The coated abrasive paper of the present invention can increase the normal force per abrasive grain required for grinding and polishing brittle materials without premature wear and abrasion of the cutting edge of the abrasive grain. This improves the grinding force and prevents clogging due to heat generation, which improves the machining accuracy of the workpiece and, moreover, prevents the workpiece from burning due to heat. Furthermore, since the tangential resistance to the workpiece is reduced, separation of the abrasive grains from the base material can be prevented. Furthermore, by arranging the abrasive grains in a pattern, the number of grains per unit area can be set easily and accurately, making it possible to easily and inexpensively manufacture coated abrasive paper that has the above effects. Since the grains can be uniformly and evenly distributed on the base material, highly accurate grinding can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例による研磨布紙の一部を示
す平面図、第2図は第1実施例の構成を実際に適用した
研磨布紙の一部の拡大写真、第3図は本発明の第2実施
例による研磨布紙の一部を示す平面図、第4図は第2実
施例の構成を実際に適用した研磨布紙の一部の拡大写真
、第5図は本発明の第3実施例による研磨布紙の一部を
示す平面図、第6図は第3実施例の構成を実際に適用し
た研磨布紙の一部の拡大写真である。 1・・・基材 2.2A、2B・・・粒子塊 特許出願人       安  1) 春  光代理人
   弁理士   清  水  義  久1・・・基材 2.2A、2B  ・粒子塊 手続補装置(方式) 1.事件の表示 平成2年特許願第169393号 2、発明の名称 研摩布紙 3、補正をする者 事件との関係 特許出願人 住 所 愛知県豊田市保見ケ丘6丁目1番地2補正明細
書 1、発明の名称 研磨布紙 2、特許請求の範囲 粒径約5〜約400μmのダイヤモンド砥粒を、単位面
積あたりの粒数が、一層で#密充填できる単位面積あた
りの粒数の約2〜約20%で基材上にパターン状で固着
したことを特徴とする研磨布紙。 3、発明の詳細な説明 (産業上の利用分野) この発明は研磨布紙に関し、詳しくはガラス。 セラミック、石膏2石材等の脆性材料の研削に適した研
磨布紙に関する。 (従来技術) 従来、この種の研磨布紙は布2紙等の基材上にダイヤモ
ンド砥粒を最密充填に近い状態でランダムに固着して構
成されている。 (発明が解決しようとする課題) しかしながら、従来の研磨布紙で脆性材料(以下ワーク
とも言う)を研磨しようとすると、上記のように砥粒が
最密充填に近い状態であるためワークの作用面に加える
法線力(押付力)を大きくせねばならない。ところが、
このように法線力を大きくして研磨を行なうと、砥粒の
切れ刃が早期に磨滅、磨耗して研磨布紙がワークの作用
面を上すべりし、このため研磨力が著しく低下してワー
クの加工精度が悪くなり、寸法不良等を招いていた。ま
た、研磨布紙がワークの作用面を上すべりすることから
発熱による目詰まりを生じ、さらにはワークに焼けが生
ずる欠魚を有していた。 (課題を解決するための手段) 上記課題を解決するため本発明の研磨布紙は、粒径約5
〜約400μmのダイヤモンド砥粒を、単位面積あたり
の粒数が、一層で最密充填できる単位面積あたりの粒数
の約2〜約20%で基材上にパターン状で固着して構成
される。 (作用) 本発明の研磨布紙では粒径約5〜約400μmのダイヤ
モンド砥粒を、単位面積当りの粒数が最密充填での粒数
の約2〜約20%で固着きれており、粒数をこのような
範囲に設定したことにより砥粒の切れ刃の早期の磨滅、
磨耗を伴うことなく脆性材料の研磨に要求される砥粒−
粒子当りの法線力を大きくでき、しかも接線抵抗すなわ
ちワークの作用面に対する接線方向の反力を小さくでき
る。又、ダイヤモンド砥粒をパターン状に固着する構成
としたことにより、固着に先立つダイヤモンド砥粒の配
置を容易に精密に行なえ、かつ研磨布紙の全面に亘りム
ラのない配置が可能となる。 (実施例) 次に本発明の実施例を図面を参照して説明する。まず本
発明の第1実施例による研磨布紙を第1図を参照して説
明する。 第1図中1は布紙等の基材で、この基材1の上面には複
数のダイヤモンド砥粒からなるドツト状の粒子塊2〜2
が固着きれている。粒子塊2〜2は互いに等間隔で配置
されており、これらを構成する個々の砥粒の粒径及びl
QQcm”当りの個数は以下の第1表の組合わせから選
択されている。 第1表 ここで、各粒径での砥粒個数(個/100cm”)の最
少値と最大値は一層で最密充填した場合の砥粒個数(個
/100aTl”)の2%及び20%にそれぞれ対応し
ている。 第1図は粒径160μm2粒子数770個/IQQcm
、のダイヤモンド砥粒を基材上にドツト状態で固着した
状態を倍率×4.5で撮影した写真を図化したもので、
この場合の各粒子塊を構成する砥粒数は平均9.5個で
ある。 尚、ダイヤモンド砥粒としては上記表に示した以外にも
、5〜400μmの粒径のものであれば如何なる粒径の
ものも利用でき、その砥粒個数(個/100Cm”)は
先に述べたように、一層で最密充填した場合の2〜20
%の範囲とされる。 又、本実施例のようにドツト状態で配置する場合の各粒
子塊2を構成する砥粒の数は少なくとも2以上であり、
粒径に応じて下記の第2表のように最低数を選択するの
が好ましい。 第2表 本実施例の研磨布紙は粒径5〜400μmのダイヤモン
ド砥粒を単位面積あたりの粒数が一層での最密充填での
粒数の2〜20%で基材1に固着したので、砥粒の切れ
刃の早期の磨耗、磨滅を伴うことなく、脆性材料の研削
、研磨に要求される砥粒−粒子あたりの法線力を大きく
できるので研削、研磨力が向上し、しかも発熱による研
磨布紙の目詰まりが防止できるのでワークの加工精度が
向上し、さらには熱によるワークの焼けを防止できる。 又、ワークに対する接線抵抗がノ」1さくなるので、砥
粒の基材1からの離脱を防止できる。 さらに、本実施例において、ダイヤモンド砥粒は基材1
に対しドツト状の粒子塊2〜2をなして固着されており
、このようなドツト状の粒子塊2〜2は、基材1に接着
剤を治具を用いて対応するドツト状に塗布し、これにダ
イヤモンド砥粒を重力又は静電気を利用して接着させる
方法、もしくは基材1の全面に接着剤を塗布し、これに
ダイヤモンド砥粒を重力又は静電気を利用してドツト状
に接着させる方法、或いは基材1に接着剤とダイヤモン
ド砥粒を混ぜたものをドツト状に塗布する等の方法によ
り固着できる。このため、粒子塊2〜2の相互間隔及び
粒子塊2自体の寸法を非常に小さな寸法で精度良く設定
できるので、単位面積あたりの粒子数の設定が容易とな
り、又、粒子塊2〜2が基材1上に均一にムラなく分散
した状態を容易に得ることができるので、精度良い研削
。 研磨を行なうことができる。 尚、実際作業にあたっては、ワークの種類(材質、硬度
、結晶構造、密度等)及び研削条件等に応じて、上記粒
子径及び粒子数のうち最適なものが選択される。 又、本実施例の研磨布紙はシート状、ディスク状、ベル
ト状等如何なる形態のものであっても良い。 次に本発明の第2及び第3実施例の研磨布紙を第2図及
び第3図をそれぞれ参照して説明する。 尚、これらの実施例はダイヤモンド砥粒の配置が異なる
ことを除き、上記第1実施例と同様であり、砥粒の粒径
及び単位面積あたりの粒子数は第1実施例と同様に設定
されている。 本発明の第2実施例を示す第2図において、ダイヤモン
ド砥粒は互いに連続する蜂の巣形状をなした線状の粒子
塊2Aをなして基材1上に固着されている。 第2図は粒径260μm2粒子数970個/IQQcm
”のダイヤモンド砥粒を蜂の巣形状の線状の粒子塊をな
して固着した状態を倍率×4.5で撮影した写真を図化
したもので、この場合の粒子塊の線の幅は4III11
である。 又、本発明の第3実施例を示す第3図において、ダイヤ
モンド砥粒は互いに平行な複数の線状の粒子塊2B〜2
Bをなして基材1上に固着されている。 第3図は粒径260μm9粒子数1090個/lQQc
m’のダイヤモンド砥粒を互いに平行な複数の線状の粒
子塊をなして基材に固着した状態を倍率×4.5で撮影
した写真を図化したもので、この場合の各粒子塊の線の
幅は4.5Iである。 又、以上の第2及び第3実施例の粒子塊2A。 2Bのような線状の粒子塊では、その線の幅は粒径の2
倍以上60倍以下に設定される。例えばJIs粒度#4
00の砥粒を用いた場合、その粒径は約40μmである
ので、線の幅は80t1m〜2.400μmの範囲に設
定される。 尚、粒子塊2A及び粒子塊2B〜2Bは上記第1実施例
の粒子塊2と同様な方法で基材1に固着できる。 (発明の効果) 本発明の研磨布紙では砥粒の切れ刃の早期の磨耗、磨滅
を伴うことなく、脆性材料の研削、研磨に要求される砥
粒−個あたりの法線力を大きくできるので研削力が向上
し、しかも発熱による目詰まりを防止できるのでワーク
の加工精度が向上し、さらには熱によるワークの焼けを
防止できる。又、ワークに対する接線抵抗が小さくなる
ので砥粒の基材からの離脱を防止できる。さらに砥粒を
パターン状に配置する構成としたことにより、単位面積
あたりの粒子数を容易かつ正確に設定できるので、上記
各効果を有する研磨布紙を容易かつ安価に製造でき、さ
らには砥粒を基材上に均一にムラなく分散させることが
できるので、精度良い研削を行なうことができる。
FIG. 1 is a plan view showing a part of the coated abrasive paper according to the first embodiment of the present invention, FIG. 2 is an enlarged photograph of a part of the coated abrasive paper to which the structure of the first embodiment is actually applied, and FIG. The figure is a plan view showing a part of the coated abrasive paper according to the second embodiment of the present invention, FIG. 4 is an enlarged photograph of a part of the coated abrasive paper to which the structure of the second embodiment is actually applied, and FIG. A plan view showing a part of the coated abrasive paper according to the third embodiment of the present invention, and FIG. 6 is an enlarged photograph of a part of the coated abrasive paper to which the structure of the third embodiment is actually applied. 1...Base material 2.2A, 2B...Particle agglomerate patent applicant Yasu 1) Mitsu Haru agent Patent attorney Yoshihisa Shimizu 1...Base material 2.2A, 2B - Particle agglomerate procedure auxiliary device ( Method) 1. Display of the case 1990 Patent Application No. 169393 2, Name of the invention Abrasive Cloth 3, Person making the amendment Relationship to the case Patent applicant Address 6-1-2 Homigaoka, Toyota City, Aichi Prefecture Amended Specification 1. Name of the invention Coated abrasive paper 2. Claims A coated abrasive paper with diamond abrasive grains having a grain size of about 5 to about 400 μm, the number of grains per unit area being about 2, which is the number of grains per unit area that can be densely packed in a single layer. A coated abrasive paper characterized in that about 20% of the paper is adhered to a substrate in a pattern. 3. Detailed Description of the Invention (Field of Industrial Application) This invention relates to coated abrasive paper, and specifically to glass. This invention relates to coated abrasive paper suitable for grinding brittle materials such as ceramics and gypsum. (Prior Art) Conventionally, this type of coated abrasive paper has been constructed by randomly fixing diamond abrasive grains on a base material such as cloth paper in a state close to the closest packing. (Problem to be Solved by the Invention) However, when trying to polish a brittle material (hereinafter also referred to as a workpiece) with conventional coated abrasive paper, the abrasive grains are in a close-packed state as described above, so the effect of the workpiece is The normal force (pressing force) applied to the surface must be increased. However,
When polishing is performed with a large normal force in this way, the cutting edge of the abrasive grains wears out and wears out quickly, causing the coated abrasive paper to slide upwards on the working surface of the workpiece, resulting in a significant decrease in polishing power. The machining accuracy of the workpiece deteriorated, leading to dimensional defects. In addition, since the abrasive coated paper slides upward on the working surface of the workpiece, clogging occurs due to heat generation, and furthermore, the workpiece has cracks that cause burns. (Means for Solving the Problems) In order to solve the above problems, the coated abrasive paper of the present invention has a particle size of about 5
~Constructed by fixing diamond abrasive grains of approximately 400 μm in a pattern on a base material, with the number of grains per unit area being approximately 2 to approximately 20% of the number of grains per unit area that can be packed in one layer closest to each other. . (Function) In the coated abrasive paper of the present invention, diamond abrasive grains with a grain size of about 5 to about 400 μm can be fixed at a grain number per unit area of about 2 to about 20% of the number of grains in the closest packing. By setting the number of grains within this range, early wear of the cutting edge of the abrasive grains,
Abrasive grains required for polishing brittle materials without abrasion
The normal force per particle can be increased, and the tangential resistance, that is, the reaction force in the tangential direction to the working surface of the workpiece can be reduced. Furthermore, by arranging the diamond abrasive grains in a pattern, the diamond abrasive grains can be easily and accurately arranged prior to the fixation, and can be arranged evenly over the entire surface of the coated abrasive paper. (Example) Next, an example of the present invention will be described with reference to the drawings. First, a coated abrasive paper according to a first embodiment of the present invention will be explained with reference to FIG. In Fig. 1, 1 is a base material such as cloth paper, and on the upper surface of this base material 1 are dot-shaped particle clusters 2 to 2 made of a plurality of diamond abrasive grains.
is completely stuck. The particle clusters 2 to 2 are arranged at regular intervals, and the particle diameter and l of the individual abrasive grains constituting them are
The number of abrasive grains per 100cm" is selected from the combinations shown in Table 1 below. In Table 1, the minimum and maximum values of the number of abrasive grains (pieces/100cm") for each grain size are the maximum in one layer. This corresponds to 2% and 20%, respectively, of the number of abrasive grains (particles/100aTl") in the case of close packing. Figure 1 shows a particle size of 160 μm2 and a particle number of 770/IQQcm.
This is a diagram of a photograph taken at a magnification of 4.5 of diamond abrasive grains fixed as dots on a base material.
In this case, the average number of abrasive grains constituting each particle agglomerate is 9.5. In addition to the diamond abrasive grains shown in the table above, any particle size from 5 to 400 μm can be used, and the number of abrasive grains (pieces/100 cm") is as described above. As shown in the figure, 2 to 20 when packed in a single layer.
% range. Further, when the abrasive grains are arranged in a dotted manner as in this embodiment, the number of abrasive grains constituting each particle cluster 2 is at least 2 or more,
It is preferable to select the minimum number according to the particle size as shown in Table 2 below. Table 2 The coated abrasive paper of this example had diamond abrasive grains with a grain size of 5 to 400 μm fixed to the base material 1 in a number of grains per unit area of 2 to 20% of the number of grains in the closest packing in one layer. Therefore, the normal force per abrasive grain required for grinding and polishing brittle materials can be increased without premature wear and abrasion of the cutting edge of the abrasive grain, which improves the grinding and polishing power. Since clogging of the coated abrasive paper due to heat generation can be prevented, the machining accuracy of the workpiece can be improved, and furthermore, the workpiece can be prevented from being burnt due to heat. Further, since the tangential resistance to the workpiece is reduced by 1, it is possible to prevent the abrasive grains from separating from the base material 1. Furthermore, in this example, the diamond abrasive grains
The dot-shaped particle clusters 2 to 2 are fixed to the base material 1 by applying adhesive to the base material 1 in corresponding dot shapes using a jig. , a method of adhering diamond abrasive grains to this using gravity or static electricity, or a method of applying an adhesive to the entire surface of the base material 1 and adhering diamond abrasive grains to it in a dot shape using gravity or static electricity. Alternatively, it can be fixed by a method such as applying a mixture of adhesive and diamond abrasive grains to the base material 1 in dots. Therefore, the mutual spacing between the particle agglomerates 2-2 and the dimensions of the particle agglomerates 2 themselves can be set with very small dimensions with high accuracy, making it easy to set the number of particles per unit area, and the particle agglomerates 2-2 It is possible to easily obtain a uniformly and evenly dispersed state on the base material 1, allowing for highly accurate grinding. Can be polished. In the actual work, the optimum particle size and number of particles are selected depending on the type of workpiece (material, hardness, crystal structure, density, etc.) and grinding conditions. Further, the coated abrasive paper of this embodiment may be in any form such as a sheet, a disc, or a belt. Next, coated abrasive papers according to second and third embodiments of the present invention will be explained with reference to FIGS. 2 and 3, respectively. These examples are the same as the first example above, except that the arrangement of the diamond abrasive grains is different, and the grain size of the abrasive grains and the number of particles per unit area are set in the same way as in the first example. ing. In FIG. 2 showing a second embodiment of the present invention, diamond abrasive grains are fixed on a base material 1 in the form of linear particle clusters 2A in a honeycomb shape that are continuous with each other. Figure 2 shows a particle size of 260 μm2 and a particle count of 970/IQQcm.
This is a diagram of a photograph taken at a magnification of 4.5 of diamond abrasive grains fixed in a honeycomb-shaped linear particle cluster, and the width of the line of the particle cluster in this case is 4III11.
It is. Further, in FIG. 3 showing the third embodiment of the present invention, the diamond abrasive grains are formed into a plurality of linear particle clusters 2B to 2 parallel to each other.
B is fixed on the base material 1. Figure 3 shows particle size 260μm9 number of particles 1090/lQQc
This is a diagram of a photograph taken at a magnification of 4.5 of a state in which diamond abrasive grains of m' are fixed to a base material in a plurality of parallel linear particle agglomerates, and each particle agglomeration in this case is The width of the line is 4.5I. Moreover, the particle agglomerates 2A of the above second and third embodiments. In a linear particle agglomerate like 2B, the width of the line is 2 times the particle size.
It is set to a value greater than or equal to 60 times. For example, JIs grain size #4
When using No. 00 abrasive grains, the grain size is about 40 μm, so the width of the line is set in the range of 80t1m to 2.400 μm. Incidentally, the particle agglomerates 2A and particle agglomerates 2B to 2B can be fixed to the base material 1 in the same manner as the particle agglomerates 2 of the first embodiment. (Effect of the invention) The coated abrasive paper of the present invention can increase the normal force per abrasive grain required for grinding and polishing brittle materials without premature wear and abrasion of the cutting edge of the abrasive grain. This improves the grinding force and prevents clogging due to heat generation, which improves the machining accuracy of the workpiece and furthermore prevents the workpiece from burning due to heat. Furthermore, since the tangential resistance to the workpiece is reduced, separation of the abrasive grains from the base material can be prevented. Furthermore, by arranging the abrasive grains in a pattern, the number of particles per unit area can be set easily and accurately, making it possible to easily and inexpensively manufacture coated abrasive paper that has the above effects. can be uniformly and evenly dispersed on the base material, allowing for highly accurate grinding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例による研磨布紙の一部を示
す平面図、第2図は本発明の第2実施例による研磨布紙
の一部を示す平面図、第3図は本発明の第3実施例によ
る研磨布紙の一部を示す平面図である。 1・・・基材 2.2A、2B・・・粒子塊
FIG. 1 is a plan view showing a part of the coated abrasive paper according to the first embodiment of the present invention, FIG. 2 is a plan view showing a part of the coated abrasive paper according to the second embodiment of the present invention, and FIG. FIG. 7 is a plan view showing a part of a coated abrasive paper according to a third embodiment of the present invention. 1... Base material 2.2A, 2B... particle mass

Claims (1)

【特許請求の範囲】[Claims] 粒径約5〜約400μmのダイヤモンド砥粒を、単位面
積あたりの粒数が、一層で最密充填できる単位面積あた
りの粒数の約2〜約20%で基材上にパターン状で固着
したことを特徴とする研磨布紙。
Diamond abrasive grains with a grain size of about 5 to about 400 μm were fixed in a pattern on a base material, with the number of grains per unit area being about 2 to about 20% of the number of grains per unit area that could be packed closest in one layer. An abrasive coated paper characterized by:
JP16939390A 1990-06-27 1990-06-27 Abrasive cloth paper Expired - Lifetime JP3008118B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16939390A JP3008118B2 (en) 1990-06-27 1990-06-27 Abrasive cloth paper
TW80109071A TW206939B (en) 1990-06-27 1991-11-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16939390A JP3008118B2 (en) 1990-06-27 1990-06-27 Abrasive cloth paper

Publications (2)

Publication Number Publication Date
JPH0457678A true JPH0457678A (en) 1992-02-25
JP3008118B2 JP3008118B2 (en) 2000-02-14

Family

ID=15885770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16939390A Expired - Lifetime JP3008118B2 (en) 1990-06-27 1990-06-27 Abrasive cloth paper

Country Status (1)

Country Link
JP (1) JP3008118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003116A1 (en) 2010-07-02 2012-01-05 3M Innovative Properties Company Coated abrasive articles
RU2605721C2 (en) 2011-12-29 2016-12-27 3М Инновейтив Пропертиз Компани Coated abrasive tool

Also Published As

Publication number Publication date
JP3008118B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
EP0331344B1 (en) Abrasive sheeting having individually positioned abrasive granules
US7108596B2 (en) Coated abrasives with indicia
KR100796184B1 (en) Abrasive tools made with a self-avoiding abrasive grain array
US7004823B2 (en) Multi-zone grinding and/or polishing sheet
EP0991499B1 (en) Superabrasive cutting surface
US7828633B1 (en) Sanding element
JPH09512756A (en) Abrasive material products
RU2008110905A (en) TOOL WITH POLISHING SURFACE FROM SINTERED MATTER AND METHOD FOR ITS MANUFACTURE
ATE137154T1 (en) STRUCTURED GRINDING ARTICLE
JP2009285829A (en) Patterned grinding tool
JP2000343436A (en) Grinding wheel and manufacture thereof
JPH0457678A (en) Abrasive cloth and paper
US3913279A (en) Grinding or polishing devices
JP3000377B2 (en) Abrasive cloth paper
JPS626952B2 (en)
JP3008119B2 (en) Abrasive cloth paper
KR960003850Y1 (en) Abrasive sheet
JP2003175464A (en) Grinding wheel
JP2004243465A (en) Diamond lapping surface plate
JP3241813U (en) polishing pad
JP2003175469A (en) Conditioning disc, manufacturing method therefor, and polisher
JPH10315121A (en) Surface grinding device
JP2543660B2 (en) Diamond dresser
JPH10151572A (en) Abrasive cloth and paper
CN1532026A (en) Grinding pad finishing device and its producing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11