JPH0457447B2 - - Google Patents

Info

Publication number
JPH0457447B2
JPH0457447B2 JP61268118A JP26811886A JPH0457447B2 JP H0457447 B2 JPH0457447 B2 JP H0457447B2 JP 61268118 A JP61268118 A JP 61268118A JP 26811886 A JP26811886 A JP 26811886A JP H0457447 B2 JPH0457447 B2 JP H0457447B2
Authority
JP
Japan
Prior art keywords
machining
time
stage
electrode
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61268118A
Other languages
Japanese (ja)
Other versions
JPS63123627A (en
Inventor
Atsushi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26811886A priority Critical patent/JPS63123627A/en
Publication of JPS63123627A publication Critical patent/JPS63123627A/en
Publication of JPH0457447B2 publication Critical patent/JPH0457447B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、放電加工装置の改良に関するもの
である。 〔従来の技術〕 従来、この種の装置として第2図に示すものが
あつた。第2図において、電極1と被加工物2を
加工槽3内の加工液4の中で対向させ、加工電流
供給手段5から供給されるパルス電流を加工間〓
に通電することにより上記被加工物2を加工す
る。電極1はスライダ6、ボールネジ7を介して
サーボモータ8と結ばれており、サーボモータ8
の回転運動は電極1の上下運動に変換される。こ
の際、上記電極1と被加工物2との間の電圧は電
圧測定手段9により測定され、その電圧の大小に
よりサーボ手段10からサーボモータ8に対し信
号が出力され、電極1と被加工物2との間〓の距
離を制御している。 また、電極1の位置はリニアエンコーダ11に
より読み取られ、位置検出手段12に入力され
る。該位置検出手段12は、あらかじめ、加工位
置記憶手段13に設定してある各加工条件ごとの
電極送り深さの所望値と、リニアエンコーダ11
により読み取られた位置とを比較し、所望深さに
達した時に信号を加工条件切換手段14に出力す
る。該加工条件切換手段14は、加工電流供給手
段5内の抵抗器等で構成される加工条件設定手段
15で、加工順に設定された加工条件を順に切り
換えてゆくスイツチ16から成る。該スイツチ1
6は各加工条件ごとに設定された所望深さに達す
ると、加工位置検出手段12から出力される信号
により1段づつ切り換わつてゆくものである。 通常の放電加工において、所望の面あらさに仕
上げる時には、最初からその仕上の条件で加工す
ると電気的エネルギーが小さいため、非常に加工
時間を要する。そのために、電気的エネルギーが
大きく、加工面あらさが荒く、加工速度の大きい
荒加工条件で、加工する部分の大部分を取り除
く。 その次に、エネルギーを徐々に小さくしてゆき
少しづつ加工深さを深くし、面あらさを細かくし
てゆくのが普通である。この様子を第3図に示
す。同図aでは第1条件の加工を示し、電極送り
深さd1まで荒加工を行なう。その後同図bのよう
に第2、第3の条件に順に切り換え、それぞれ、
電極送り深さd2,d3まで加工する。このように、
順に電気エネルギーを小さくしてゆき、同図cの
ように、最後の第nの条件に切り換え、所望加工
深さdより、この条件の固有クリアランスgn手
前のdnまで電極1を送り込めば、所望面あらさ、
所望深さに仕上げることができる。この時、加工
段数nは、多いほど加工時間は短縮されることが
確かめられているが、通常、加工条件切り換えの
繁雑さから数段程度である。 この例では、あらかじめ、n段の加工条件が加
工条件設定手段15に設定され、また、それぞれ
の条件の時の電極送り深さが加工深さ記憶手段1
3に設定されており、ある加工条件で、電極1が
所望の深さに達すると次の加工条件に切り換え、
その条件での所望深さまで加工するという動作を
n段に対し行なうわけである。そして、最終の第
n段目の加工が所望深さに達すると位置検出手段
12は、サーボ手段10に働きかけ、主軸を上昇
させるように動作し加工は終了となる。 このような加工を行う場合、第1加工(荒加
工)のあと、第2加工、第3加工と順に加工が進
むごとに各条件ステツプ毎の加工時間は増加して
ゆき、最終の第n加工では最も時間を要するのが
普通である。また、仕上加工の面あらさを小さく
すればするほどこの傾向は著しくなる。これは、
放電加工の場合、加工条件を切り換えた際には、
新しい条件は前の条件よりもエネルギーが小さ
く、そのままでは放電しないために、電極1を降
下させて加工を続行する。ところが、電極1をあ
る程度まで降下させても放電しない状態が続き、
さらに降下させれば放電を開始するが、いつたん
放電を開始すれば加工粉が生成されて極間に充満
され、その加工粉によるみかけ上の加工間〓が狭
くなり、いわゆる二次放電を起こす。そのため加
工量が増加してしまうという性質がある。従つ
て、仕上加工などでわずかの加工量の時には、送
り込み量が少ないと全く放電せずに終了してしま
い、送り込み量が少し多いと極端に加工量が増え
てしまうという欠点をもつている。また、さら
に、上記に加えて、最終加工では加工時間が長い
ために、その間に機械が温度変化による熱変位を
起し、電極位置が降下して送り込み量が設定値以
上に増えたり、逆に電極位置が上昇して送り込み
量が設定値以下に減少してしまい、必要以上に加
工時間が長くなつたり、加工面が仕上がらなくな
る現象が起こり得る。最近では放電加工後、磨き
を実施せず放電加工面をそのまま利用する金型等
が増えつつあり、特に、面あらさのばらつきも加
工時間と共に問題となつて来ている。 この問題を解決するために、最終の第n加工の
み加工深さで制御せず、ある一定の加工時間だけ
加工し、面あらさを仕上げるような加工方法が考
えられてきた。例えば、特公昭60−3933号公報に
記載の技術がそれに該当する。この技術は、多段
加工における加工条件の切替方式を荒加工、中加
工、仕上加工と順次変更する際に、所望する深さ
まで達したことを検出すると、電極の送り量によ
つて加工条件が切替えられ、その後、仕上加工が
開始されると、設定された所望の加工時間経過
後、加工が終了したと判定し、加工を終了させる
ものである。 この種の技術は、仕上加工を行う際に加工時間
の設定によつて加工を行い、加工時間の無駄をな
くすことができる。 また、この方法では、最終加工条件のエネルギ
ーは小さいために、加工形状、加工深さをほとん
ど変えることなく面あらさだけを細かくすること
が可能であり、上記の問題も同時に解決できる。 ところが、現実ではこの最終加工させる加工時
間を決定することは非常に熟練を要し、難かしい
ものである。なぜならば、これは、電極1の大き
さ、加工深さ、電極1の形状により大巾に変るか
らである。そのために、設定を間違えると、必要
以上の時間を設定したり、面あらさが仕上がらな
いまま終了したりする問題がある。 そこでn段の加工をする際、第n−1段目の加
工に要した加工時間を計測し、それを基にn段目
の加工に必要な加工時間を演算し、その時間だけ
第n加工を行なう装置が発明されている(特願昭
60−032162号)。つまり、これは、加工ごとに最
終加工に必要な加工時間をその前段の加工時間を
基に自動的に決定しようとするものである。 〔発明が解決しようとする問題点〕 しかしながら、従来の装置では、第n−1段目
の取り代の設定などにより、n−1段目の加工時
間の測定には大きなばらつきがあり、最適な設定
ができない場合があるという問題点があつた。 この発明は上記のような問題点を解消するため
になされたもので、最終加工の加工時間の設定が
自動的にできるとともに、加工条件が変つても設
定し直す必要がない放電加工装置を得ることを目
的とする。 〔問題点を解決するための手段〕 この発明の係る放電加工装置は、多段の加工を
行う際、最終段の前の複数段の加工に要した加工
時間を計測し、これら複数個の加工時間を基に、
最終団の加工に必要な加工時間を演算してその時
間だけ最終段の加工を行うようにしたものであ
る。 〔作用〕 この発明においては、最終段加工の前の複数個
の加工に要したそれぞれの時間を複数の時間計測
手段によりそれぞれ計測し、これらの計測された
複数個の加工時間を基に、最終段加工で必要な加
工時間を演算手段により決定し、時間設定手段及
びタイマにより上記演算手段により決定した時間
だけ最終段加工を行う。 〔発明の実施例〕 以下、この発明の一実施例を図について説明す
る。第1図において、第2図と同一符号は同一部
分を示す。位置検出手段12の出力は加工条件切
換手段40の中のスイツチ16に働き、加工条件
を順に切り換えてゆくが、このスイツチ16は、
スイツチ17にも連動しており順に切り換えてゆ
く。このスイツチ17の端子は、n−m,n−m
+1,……,n−1は加工時間計測手段19内の
複数(m個)の時間計測手段(19n−m)〜
(19n−1)に、nはタイマ22に接続されてい
る。また、1,2,……,n−m−1はどこにも
接続されていない。 加工条件が第n−m段に切り換わつた時、スイ
ツチ17はn−m端子に接続され、直流電源18
の電圧が加工時間計測手段(19n−m)に印加さ
れる。該加工時間計測手段(19n−m)は直流電
源18の電圧が印加されている間、つまり、第n
−m条件で加工している間だけ時間を計測するよ
うになつており、その計測結果が第n−m段加工
に要した時間Tn−mとなる。電極1が所望深さ
dn−mに達すると位置検出手段12から加工条
件切換手段14に信号が出力され、次の第n−m
+1加工条件に切り換わる。この加工条件時も同
様に、加工に要した時間が加工時間計測手段
(19n−m+1)で計測される。この動作がm回
くり返され、m個の加工時間がそれぞれの計測装
置により計測され、Tn−m,Tn−m+1,……
Tn−1となる。第n−1段の加工により電極1
が所望深さdn−1に達すると、それまでと同様
に位置検出手段12から加工条件切換手段14に
信号が出力され、最後の第n加工条件に切り換わ
る。これと同時に、スイツチ17も端子n−1か
らnに切り換わり上記加工時間計測手段19の動
作は終了する。計測されたm個の加工時間Tn−
m〜Tn−1は加工時間演算手段20に与えられ、
次の演算を行う。即ち、第n−m,……第n−
2,第n−1段目に要したm個の加工時間Tn−
m,……,Tn−2,Tn−1により、最終の第n
段目の加工に必要な加工時間Tnを算出する。 この根拠となる実験の一例を示すと、次のよう
である。 加工対象としては、2辺が19×14mmのキヤビテ
イが6個で、その総面積が15.9cm2、加工深さが
1.2mmの電極送り代を設定して最適放電加工した
結果得られた加工時間を示すものである。 [実験結果]
[Industrial Field of Application] The present invention relates to improvement of electrical discharge machining equipment. [Prior Art] Conventionally, there has been a device of this type as shown in FIG. In FIG. 2, an electrode 1 and a workpiece 2 are placed opposite each other in a machining liquid 4 in a machining tank 3, and a pulse current supplied from a machining current supply means 5 is applied to the workpiece 2 during machining.
The workpiece 2 is machined by supplying current to the machine. The electrode 1 is connected to a servo motor 8 via a slider 6 and a ball screw 7.
The rotational movement of the electrode 1 is converted into an up-and-down movement of the electrode 1. At this time, the voltage between the electrode 1 and the workpiece 2 is measured by the voltage measuring means 9, and depending on the magnitude of the voltage, the servo means 10 outputs a signal to the servo motor 8, and the voltage between the electrode 1 and the workpiece 2 is measured. The distance between 2 and 2 is controlled. Further, the position of the electrode 1 is read by the linear encoder 11 and inputted to the position detection means 12. The position detection means 12 detects the desired value of the electrode feed depth for each machining condition set in advance in the machining position storage means 13 and the linear encoder 11.
When the desired depth is reached, a signal is output to the processing condition switching means 14. The machining condition switching means 14 is a machining condition setting means 15 comprised of a resistor, etc. in the machining current supply means 5, and consists of a switch 16 that sequentially switches the machining conditions set in the machining order. The switch 1
6, when a desired depth set for each machining condition is reached, the depth is switched one stage at a time by a signal output from the machining position detection means 12. In normal electrical discharge machining, when finishing a surface to a desired surface roughness, it takes a long time to process the surface if the finishing conditions are used from the beginning because the electrical energy is small. For this purpose, most of the part to be machined is removed under rough machining conditions that require high electrical energy, a rough machined surface, and a high machining speed. Next, it is normal to gradually reduce the energy, deepen the machining depth little by little, and refine the surface roughness. This situation is shown in FIG. Figure a shows machining under the first condition, in which rough machining is performed up to the electrode feed depth d1 . Then, as shown in Figure b, switch to the second and third conditions in order, respectively.
Machining is carried out to electrode feeding depths d 2 and d 3 . in this way,
By decreasing the electric energy in order, and switching to the last n-th condition as shown in c in the same figure, if the electrode 1 is fed from the desired machining depth d to dn before the specific clearance gn under this condition, the desired machining depth is achieved. Roughness,
It can be finished to the desired depth. At this time, it has been confirmed that the machining stage number n is larger, the machining time is shortened, but it is usually about several stages due to the complexity of changing the machining conditions. In this example, n stages of machining conditions are set in advance in the machining condition setting means 15, and the electrode feed depth under each condition is the machining depth storage means 1.
3, and when the electrode 1 reaches the desired depth under a certain machining condition, it switches to the next machining condition.
The operation of machining to the desired depth under these conditions is performed for n stages. Then, when the final n-th stage machining reaches the desired depth, the position detection means 12 acts on the servo means 10 to raise the main shaft, and the machining ends. When performing such machining, the machining time for each condition step increases as the machining progresses in order from the first machining (rough machining) to the second machining and then to the third machining. This is usually the one that takes the most time. Moreover, the smaller the surface roughness of the finishing process, the more remarkable this tendency becomes. this is,
In the case of electric discharge machining, when changing machining conditions,
Since the new condition has less energy than the previous condition and no discharge occurs under the new condition, the electrode 1 is lowered to continue machining. However, even if electrode 1 was lowered to a certain level, no discharge continued.
If it is lowered further, electric discharge will start, but once electric discharge is started, machining powder will be generated and filled between the machining holes, and the apparent machining distance due to the machining powder will become narrower, causing so-called secondary discharge. . Therefore, there is a tendency that the amount of processing increases. Therefore, when the amount of machining is small, such as in finishing machining, if the amount of feed is small, the process will end without any discharge, and if the amount of feed is slightly large, the amount of machining will increase dramatically. Furthermore, in addition to the above, because the machining time is long in the final machining, the machine undergoes thermal displacement due to temperature changes during that time, which causes the electrode position to drop and the feed amount to increase beyond the set value, or vice versa. As the electrode position rises, the feed amount decreases below the set value, which may cause the machining time to become longer than necessary or the machined surface to be unfinished. Recently, there has been an increase in the number of molds that use the electrical discharge machined surface as it is without polishing after electrical discharge machining, and in particular, variations in surface roughness are becoming a problem as the machining time increases. In order to solve this problem, a machining method has been devised in which only the final n-th machining is performed for a certain machining time without controlling the machining depth to finish the surface roughness. For example, the technique described in Japanese Patent Publication No. 60-3933 falls under this category. This technology switches the machining conditions according to the feed rate of the electrode when it detects that the desired depth has been reached when changing the machining condition switching method in multi-stage machining sequentially from rough machining, semi-machining, and finishing machining. After that, when finishing machining is started, it is determined that the machining has been completed after a set desired machining time has elapsed, and the machining is terminated. This type of technology can eliminate wasted processing time by setting the processing time during finishing processing. In addition, in this method, since the energy of the final machining condition is small, it is possible to make only the surface roughness finer without changing the machining shape or machining depth, and the above problems can be solved at the same time. However, in reality, determining the machining time for this final machining requires great skill and is difficult. This is because this varies widely depending on the size of the electrode 1, the processing depth, and the shape of the electrode 1. Therefore, if the setting is incorrect, there is a problem that a longer time than necessary may be set or the process may end without finishing the surface roughness. Therefore, when performing n-stage machining, measure the machining time required for the n-1th stage machining, calculate the machining time required for the n-stage machining based on that, and use that time for the n-th machining. A device for performing this has been invented (Patent Application
No. 60-032162). In other words, this is an attempt to automatically determine the machining time required for final machining for each machining process based on the machining time of the preceding stage. [Problems to be solved by the invention] However, with conventional equipment, there is a large variation in the measurement of the machining time of the n-1th stage due to the setting of the machining allowance of the n-1th stage, and it is difficult to find the optimal one. There was a problem that settings could not be made in some cases. This invention was made to solve the above-mentioned problems, and provides an electrical discharge machining device that can automatically set the machining time for final machining and does not require resetting even if machining conditions change. The purpose is to [Means for Solving the Problems] When performing multi-stage machining, the electric discharge machining apparatus according to the present invention measures the machining time required for multiple stages of machining before the final stage, and calculates the machining time of these multiple stages. Based on
The machining time required for machining the final batch is calculated and the final stage machining is performed for that time. [Operation] In this invention, each time required for processing a plurality of pieces before the final stage processing is measured by a plurality of time measuring means, and the final processing time is calculated based on the measured processing times of the plurality of pieces. The machining time required for the stage machining is determined by the calculation means, and the final stage machining is performed by the time setting means and the timer for the time determined by the calculation means. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. In FIG. 1, the same symbols as in FIG. 2 indicate the same parts. The output of the position detection means 12 acts on the switch 16 in the machining condition switching means 40, which sequentially switches the machining conditions.
It is also linked to switch 17 and is switched in order. The terminals of this switch 17 are nm, nm
+1, ..., n-1 are multiple (m) time measuring means (19n-m) in the machining time measuring means 19.
(19n-1), n is connected to the timer 22. Further, 1, 2, . . . , nm-1 are not connected to anything. When the processing conditions are switched to the nmth stage, the switch 17 is connected to the nm terminal, and the DC power supply 18 is connected.
A voltage of 19nm is applied to the machining time measuring means (19nm). The processing time measuring means (19n-m) is operated while the voltage of the DC power supply 18 is applied, that is, the processing time measuring means (19n-m)
The time is measured only while machining is performed under -m conditions, and the measurement result becomes the time Tn-m required for the nm-th stage machining. Electrode 1 is at the desired depth
When reaching dn-m, a signal is output from the position detection means 12 to the machining condition switching means 14, and the next n-m
Switches to +1 machining conditions. Similarly, under these machining conditions, the time required for machining is measured by the machining time measuring means (19n-m+1). This operation is repeated m times, and m machining times are measured by each measuring device, Tn-m, Tn-m+1,...
It becomes Tn-1. Electrode 1 is formed by processing at the n-1th stage.
When the depth reaches the desired depth dn-1, a signal is outputted from the position detection means 12 to the machining condition switching means 14 as before, and the machining condition is switched to the last n-th machining condition. At the same time, the switch 17 is also switched from terminal n-1 to terminal n, and the operation of the machining time measuring means 19 is completed. Measured machining time Tn−
m~Tn-1 is given to the machining time calculation means 20,
Perform the following calculation. That is, n-m, ... n-th
2. m processing time Tn- required for the n-1st stage
m, ..., Tn-2, Tn-1, the final nth
Calculate the machining time Tn required for machining each step. An example of an experiment that serves as the basis for this is as follows. The objects to be machined were six cavities with two sides of 19 x 14 mm, a total area of 15.9 cm 2 and a machining depth.
This shows the machining time obtained as a result of optimal electrical discharge machining with an electrode feed allowance of 1.2 mm. [Experimental result]

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば加工ごとに、
最終段加工に必要な加工時間をその前の複数段の
加工に要した加工時間を基に決定するように構成
したので、設定が困難とされていた最終加工の加
工時間の設定が自動的にでき、さらに、電極の大
きさ、形状、加工深さなどが変わつても設定し直
す必要がなく、熟練を必要とせず、均一な加工を
実施することができるとともに、上記加工条件設
定の誤差を少なくできる放電加工装置が得られる
効果がある。
As described above, according to this invention, each processing
Since the machining time required for the final stage machining is determined based on the machining time required for the previous multiple stages, the machining time for the final stage, which was difficult to set, can now be set automatically. In addition, even if the electrode size, shape, machining depth, etc. change, there is no need to reset the settings, and uniform machining can be performed without the need for skill. This has the effect of providing an electrical discharge machining device that can be reduced in size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による放電加工装
置を示す構成図、第2図は従来装置を示す構成
図、第3図は加工方法、加工状態を説明する図で
ある。 図中、1は電極、2は被加工物、12は加工位
置検出手段、14は加工条件切換手段、19は加
工時間計測手段、20は加工時間演算手段、21
は加工時間設定手段、22はタイマである。な
お、図中、同一符号は同一、又は相当部分を示
す。
FIG. 1 is a block diagram showing an electric discharge machining apparatus according to an embodiment of the present invention, FIG. 2 is a block diagram showing a conventional apparatus, and FIG. 3 is a diagram illustrating a machining method and a machining state. In the figure, 1 is an electrode, 2 is a workpiece, 12 is a machining position detection means, 14 is a machining condition switching means, 19 is a machining time measuring means, 20 is a machining time calculating means, 21
2 is a processing time setting means, and 22 is a timer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 加工液を介して対向した電極と被加工物間に
パルス電圧を印加して放電加工を行う放電加工装
置において、 被加工物に対して多段加工を行う際、各段ごと
の電極位置があらかじめ設定した所望深さまで達
したことを検出する位置検出手段と、 前記位置検出手段の出力により、加工条件を次
段の加工条件に切換える加工条件切換手段と、 最終段加工前に、それまでの各段の加工に要し
た各時間を計測する時間計測手段と、 前記時間計測手段によつて測定された各加工時
間のうちから選択した初期段の加工に要した時間
を除く複数個の各加工時間を各定数倍し、その総
和を得るように演算処理する演算手段と、 前記演算手段により演算された結果を最終段の
加工時間として設定する時間設定手段と、 最終段の加工条件に切換えてから加工を開始
し、前記加工時間設定手段により設定された加工
時間だけ加工して最終段加工を終了するタイマと を具備することを特徴とする放電加工装置。
[Claims] 1. In an electrical discharge machining device that performs electrical discharge machining by applying a pulse voltage between opposing electrodes and a workpiece via a machining fluid, when performing multi-stage machining on the workpiece, each stage a position detecting means for detecting that each electrode position has reached a preset desired depth; a machining condition switching means for switching the machining conditions to the next stage machining conditions based on the output of the position detecting means; and before the final stage machining. , a time measuring means for measuring each time required for each stage of machining up to that point, and excluding the time required for machining the initial stage selected from among the machining times measured by the time measuring means. a calculation means for multiplying each of the plurality of machining times by a constant and calculating the sum thereof; a time setting means for setting the result calculated by the calculation means as the machining time for the final stage; An electric discharge machining apparatus comprising: a timer that starts machining after switching to machining conditions, machining for a machining time set by the machining time setting means, and then terminating the final stage machining.
JP26811886A 1986-11-11 1986-11-11 Device for electric discharge machining Granted JPS63123627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26811886A JPS63123627A (en) 1986-11-11 1986-11-11 Device for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26811886A JPS63123627A (en) 1986-11-11 1986-11-11 Device for electric discharge machining

Publications (2)

Publication Number Publication Date
JPS63123627A JPS63123627A (en) 1988-05-27
JPH0457447B2 true JPH0457447B2 (en) 1992-09-11

Family

ID=17454138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26811886A Granted JPS63123627A (en) 1986-11-11 1986-11-11 Device for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS63123627A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089840A1 (en) * 2008-01-11 2009-07-23 Siemens Aktiengesellschaft Method and device for controlled edm machining

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603933A (en) * 1983-06-22 1985-01-10 Toyota Motor Corp Production of cam shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603933A (en) * 1983-06-22 1985-01-10 Toyota Motor Corp Production of cam shaft

Also Published As

Publication number Publication date
JPS63123627A (en) 1988-05-27

Similar Documents

Publication Publication Date Title
JP4015148B2 (en) Control device for wire electric discharge machine
US4213834A (en) Electrochemical working method and system for effecting same
Kaneko et al. Three-dimensional numerically controlled contouring by electric discharge machining with compensation for the deformation of cylindrical tool electrodes
JPH0653032U (en) Equipment for cleaning the erosion zone during electrolytic corrosion drilling
JPH0457447B2 (en)
US7598470B2 (en) Sinker electric discharge machining method and apparatus
US4527034A (en) Electrode positioning method and apparatus for NC-EDM
JPH0457454B2 (en)
US4885066A (en) Electrolytic finishing method
US4257865A (en) Electrochemical working method and system for effecting same
US5276302A (en) EDM apparatus current efficiency control technique
JPS59169717A (en) Electric discharge machining device
US4229636A (en) Spark erosion machining process
JPS6119372B2 (en)
SU1220730A1 (en) Method of controlling the process of machining
Valentincic et al. Machining parameters selection for varying surface in EDM
JPH0852619A (en) Device and method for electric discharge machining
SU860975A1 (en) Method of electric discharge working
JP3807189B2 (en) Additional processing method and apparatus by electric discharge
JPH078456B2 (en) Electric discharge machine
JPS62130130A (en) Numerically controlled electric discharge machining device
JPH0125656B2 (en)
EP0034033A1 (en) Electric motor drive control system
JPS63267118A (en) Finishing method by electrochemical machining
JPH01188230A (en) Finishing method based on electrochemical machining and its device