JPH04572B2 - - Google Patents

Info

Publication number
JPH04572B2
JPH04572B2 JP61067195A JP6719586A JPH04572B2 JP H04572 B2 JPH04572 B2 JP H04572B2 JP 61067195 A JP61067195 A JP 61067195A JP 6719586 A JP6719586 A JP 6719586A JP H04572 B2 JPH04572 B2 JP H04572B2
Authority
JP
Japan
Prior art keywords
spring
heat insulating
insulating support
support device
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61067195A
Other languages
Japanese (ja)
Other versions
JPS62224904A (en
Inventor
Takashi Murai
Akemi Hijikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61067195A priority Critical patent/JPS62224904A/en
Priority to DE19863632490 priority patent/DE3632490A1/en
Publication of JPS62224904A publication Critical patent/JPS62224904A/en
Priority to US07/163,128 priority patent/US4838033A/en
Publication of JPH04572B2 publication Critical patent/JPH04572B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、断熱支持装置、特に、極低温温度
範囲で用いられる超電導機器等の断熱支持装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat insulating support device, and particularly to a heat insulating support device for superconducting equipment and the like used in the cryogenic temperature range.

〔従来の技術〕[Conventional technology]

第3図および第4図に示されているものは、例
えば、「マニユフアクチヤー オブ ア 6−m
スーパーコンダクテイング ソレノイド イン
デイレクトリー クールド バイ スーパークリ
テイカル ヘリウム」アドバンシーズ イン ク
ライオジエニツク エンジニアリング
(「manufacture of a 6−m
superconducting solenoid indirectly cooled by
supercritical helium」、advance in cryogenic
Engineering)、Vol.27、P109−117、(1982)に
示された従来の超電導機器用クライオスタツトの
概略断面図および断熱支持装置断面図である。
What is shown in FIGS. 3 and 4 is, for example, a 6-m
SUPERCONDUCTING SOLENOID INDIRECTLY COOLED BY SUPERCRITICAL HELIUM Advances in Cryogenic Engineering (manufacture of a 6-m
superconducting solenoid indirectly cooled by
supercritical helium”, advance in cryogenic
27, P109-117, (1982), a schematic cross-sectional view of a conventional cryostat for superconducting equipment, and a cross-sectional view of a heat insulating support device.

図において、符号1は超電導コイル、2は超電
導コイル1の冷却寒剤である液体ヘリウム、3は
超電導コイル1および液体ヘリウム2を収容する
極低温槽であるヘリウム槽、4はヘリウム槽3を
真空断熱するための真空槽、5はヘリウム槽3を
断熱支持するための断熱支持体、6は断熱支持体
5をヘリウム槽3に取り付けるための座、7は断
熱支持体5を真空槽4に取り付けるための支持
棒、8は支持棒7を真空槽4に垂直に支持するた
めのフランジ、9はヘリウム槽3の熱収縮により
断熱支持体5および支持棒7に過大な張力が加わ
るのを防ぐための線形ばね、10は線形ばね9を
押えるための押え板、11は線形ばね9を散逸さ
せないための座、12は断熱支持体5および支持
棒7の取付時にこれらが緩まないように線形ばね
9を少し撓ませて初期張力を与えるためのナツ
ト、13および14は真空槽4内の真空気密を保
持するためのOリング、15は断熱支持装置を保
護するためのカバーである。
In the figure, 1 is a superconducting coil, 2 is liquid helium, which is a cooling agent for superconducting coil 1, 3 is a helium tank, which is a cryogenic tank that houses superconducting coil 1 and liquid helium 2, and 4 is vacuum insulation of helium tank 3. 5 is a heat insulating support for adiabatic support of the helium tank 3; 6 is a seat for attaching the heat insulating support 5 to the helium tank 3; 7 is for attaching the heat insulating support 5 to the vacuum tank 4. 8 is a flange for vertically supporting the support rod 7 in the vacuum chamber 4; 9 is a flange for preventing excessive tension from being applied to the heat insulating support 5 and the support rod 7 due to thermal contraction of the helium chamber 3; A linear spring, 10 is a holding plate for holding down the linear spring 9, 11 is a seat for preventing the linear spring 9 from dissipating, and 12 is a holding plate for holding the linear spring 9 so that the heat insulating support 5 and the support rod 7 do not loosen when they are installed. Nuts 13 and 14 are used to provide initial tension by slightly bending, O-rings 13 and 14 are used to maintain vacuum tightness within the vacuum chamber 4, and 15 is a cover that protects the heat insulating support device.

次に上記従来装置の動作について説明する。 Next, the operation of the above conventional device will be explained.

超電導コイル1はヘリウム槽3に固定されてお
り、ヘリウム槽3は断熱支持体5および支持棒7
によつて真空槽4から支持されている。ヘリウム
槽3は、液体ヘリウム2が入つていない状態では
常温であり、また、液体ヘリウム2が満たされる
と約4.2〓(−269℃)という極低温になるため、
大きく熱収縮する。線形ばね9は、この熱収縮に
より断熱支持体5および支持棒7に大きな張力が
働くのを緩和させるとともに、ヘリウム槽3の熱
収縮により生ずる力と同程度の小さな外力に対し
てヘリウム槽3の偏位が許容範囲内に収まるよう
に、そのばね定数を選定し、配設されている。
The superconducting coil 1 is fixed to a helium tank 3, and the helium tank 3 is connected to a heat insulating support 5 and a support rod 7.
It is supported from the vacuum chamber 4 by. The helium tank 3 is at room temperature when there is no liquid helium 2 in it, and when it is filled with liquid helium 2, it becomes extremely cold at about 4.2〓 (-269℃).
Significant heat shrinkage. The linear spring 9 relieves the large tension exerted on the heat insulation support 5 and the support rod 7 due to this thermal contraction, and also protects the helium tank 3 from a small external force similar to the force caused by the thermal contraction of the helium tank 3. The spring constant is selected and arranged so that the deflection is within a permissible range.

〔発両明が解決しようとする問題点〕[Problems that both inventions aim to solve]

従来の断熱支持装置は、以上のように構成され
ているので、偏心電磁力等の大きな外力に対して
は、超電導コイル1を介してヘリウム槽3が大き
く偏位し、許容範囲を逸脱してしまうという問題
点を有している。
Since the conventional heat insulating support device is configured as described above, in response to a large external force such as an eccentric electromagnetic force, the helium tank 3 is largely deflected via the superconducting coil 1, and the helium bath 3 is out of the allowable range. It has the problem of being stored away.

また、ヘリウム槽3の偏位量を小さく、許容範
囲内に収めるために、線形ばね9のばね定数を大
きくすると、ヘリウム槽3の熱収縮によつて生ず
る張力が緩和されず、このため、断熱支持体5お
よび支持棒7は、その断面積を大きくして構造強
度を向上させなければならず、その結果は、断熱
支持体5および支持棒7を伝つて常温の真空槽4
からヘリウム槽3へ流入する熱量が増加して、そ
の断熱性能を劣化させてしまう問題点を有してい
る。
In addition, if the spring constant of the linear spring 9 is increased in order to keep the amount of deviation of the helium tank 3 small and within the allowable range, the tension generated by the thermal contraction of the helium tank 3 will not be alleviated, and therefore the insulation The support body 5 and the support rod 7 must have a large cross-sectional area to improve their structural strength, and as a result, the vacuum chamber 4 at normal temperature is transmitted through the heat insulation support body 5 and the support rod 7.
The problem is that the amount of heat flowing into the helium tank 3 increases, degrading its heat insulation performance.

この発明は、上記のような問題点を解決するた
めになされたもので、断熱性能を損わず、しか
も、ヘリウム槽3が冷却された後に大きな外力が
作用しても、被支持体が許容範囲外へ偏位しない
ような断熱支持装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it does not impair the heat insulation performance, and even if a large external force is applied after the helium bath 3 is cooled, the supported body can tolerate The purpose is to obtain a heat insulating support device that does not deviate out of range.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る断熱支持装置は、ヘリウム槽の
熱収縮により断熱支持体および支持棒に大きな張
力が働くのを緩和するための小さなばね定数と、
熱収縮後に作用する大きな外力によるヘリウム槽
の偏位を抑制するための大きなばね定数との両ば
ね定数を直列に併わせ持つ非線形ばねを従来装置
の線形ばねに代えて配設したものである。
The heat insulation support device according to the present invention has a small spring constant for relieving the large tension exerted on the heat insulation support body and the support rod due to thermal contraction of the helium tank;
In place of the linear spring in the conventional device, a nonlinear spring is installed that has both a large spring constant and a large spring constant in series to suppress the displacement of the helium tank due to the large external force that acts after heat shrinkage.

〔作 用〕[Effect]

この発明における断熱支持装置は、ヘリウム槽
の熱収縮に対して小さなばね定数を有する部分の
ばねが撓んで熱収縮に対応し、また、ヘリウム槽
の熱収縮後に大きな外力が作用した場合には、大
きいばね定数を有する部分のばねがこれに対応し
て撓み、ヘリウム槽の偏位を許容範囲内に留め
る。従つて、この状態でも、極端な大きな荷重は
断熱支持体や支持棒にかからない。
In the heat insulation support device according to the present invention, the spring of the portion having a small spring constant bends to cope with the heat contraction of the helium tank, and when a large external force is applied after the heat contraction of the helium tank, The spring in the section with the larger spring constant deflects correspondingly to keep the helium bath deflection within a permissible range. Therefore, even in this state, no extremely large load is applied to the heat insulating support or support rod.

〔実施例〕〔Example〕

以下、この発明をその一実施例を示す図に基づ
いて説明する。
The present invention will be explained below based on the drawings showing one embodiment thereof.

第1図において、線形ばね9を除く各部分は上
記した従来装置の構成と同等のものである。
In FIG. 1, each part except the linear spring 9 has the same structure as the conventional device described above.

符号21は第2図に示す特性を有する非線形ば
ねである。すなわち、第2図において、線22は
ばね定数が小さなk1であるばねのばね特性線であ
り、23はばね定数が大きなk3であるばねのばね
特性線である。
Reference numeral 21 is a nonlinear spring having the characteristics shown in FIG. That is, in FIG. 2, line 22 is a spring characteristic line of a spring with a small spring constant k1 , and line 23 is a spring characteristic line of a spring with a large spring constant k3 .

P0は初期張力、δ0は初期張力によるばねの変形
量、Δhはヘリウム槽の熱収縮量、P1,δ1はそれ
ぞれヘリウム槽熱収縮後にばねに加わつている荷
重およびばねの変形量、Pecはヘリウム槽の熱収
縮後にヘリウム槽に作用する外力、Δecは外力
Pecによるばねの変形量、P3,δ3はそれぞれ外力
が作用している場合のばねに加わつている荷重お
よびばねの変形量である。
P 0 is the initial tension, δ 0 is the amount of deformation of the spring due to the initial tension, Δh is the amount of thermal contraction of the helium tank, P 1 and δ 1 are the load applied to the spring and the amount of deformation of the spring after the thermal contraction of the helium tank, respectively, Pec is the external force that acts on the helium tank after the helium tank heat shrinks, and Δec is the external force
The amount of deformation of the spring due to Pec, P 3 and δ 3 are the load applied to the spring and the amount of deformation of the spring when an external force is applied, respectively.

ここで、大きな方のばね定数k3は熱収縮後のヘ
リウム槽の許容偏位量Δaに対し、 Δec=Pec/k3Δa となるように選定する。また、小さな方のばね定
数k1は断熱支持体5および支持棒7の取付時に、
これらが緩まない範囲内で最小張力が得られる値
を選定する。
Here, the larger spring constant k 3 is selected so that Δec=Pec/k 3 Δa is satisfied with respect to the allowable deviation amount Δa of the helium tank after heat contraction. In addition, the smaller spring constant k 1 is determined by
Select a value that provides the minimum tension within a range that does not loosen these.

この実施例は上記のように構成されているが、
次にその動作について説明する。
This embodiment is configured as described above, but
Next, its operation will be explained.

あらかじめ、ヘリウム槽3の熱収縮量Δhを残
してばね定数の小さな領域で変形させ、断熱支持
体5および支持棒7が緩まないように初期張力
P0を与えておく。このような状態で、ヘリウム
槽3が熱収縮すると、断熱支持体5および支持棒
7には力が生じるが、ばね定数は小さいため、そ
の生じる力は小さなものとなつている。
In advance, the helium bath 3 is deformed in a region with a small spring constant, leaving a thermal contraction amount Δh, and the initial tension is set so that the heat insulation support 5 and the support rod 7 do not loosen.
Give P 0 . When the helium tank 3 thermally contracts in this state, a force is generated on the heat insulating support 5 and the support rod 7, but since the spring constant is small, the generated force is small.

ヘリウム槽3の熱収縮後はばね定数の小さな領
域でのばねの変形は終了しており、断熱支持体3
および支持棒7を介してヘリウム槽3はばね定数
の大きなばねで真空槽4から支持される格好にな
る。従つて、熱収縮後に偏心電磁力等の大きな外
力がヘリウム槽3に作用しても、その外力はばね
定数の大きなばねによつて支持されるので、ヘリ
ウム槽3の偏位は許容偏位量Δaの範囲内に抑え
られている。
After the helium bath 3 is thermally shrunk, the spring deformation in the region with a small spring constant is completed, and the heat insulating support 3
Through the support rod 7, the helium tank 3 is supported from the vacuum tank 4 by a spring with a large spring constant. Therefore, even if a large external force such as an eccentric electromagnetic force acts on the helium tank 3 after heat shrinkage, the external force is supported by the spring with a large spring constant, so the displacement of the helium tank 3 is within the allowable amount of deviation. It is suppressed within the range of Δa.

なお、上記実施例では、ヘリウム槽3に断熱支
持体5を取り付けたが、ヘリウム槽3と真空槽4
との間に液体窒素を収容する窒素槽、または液体
窒素あるいは液体ヘリウム2が蒸発したガスで冷
却される輻射熱シールドを設け、この窒素槽また
は輻射熱シールドに断熱支持体5を取り付けても
良い。
In the above embodiment, the heat insulating support 5 was attached to the helium tank 3, but the helium tank 3 and the vacuum tank 4
A nitrogen tank containing liquid nitrogen or a radiant heat shield cooled by evaporated gas of liquid nitrogen or liquid helium 2 may be provided between the nitrogen tank and the radiant heat shield, and the heat insulating support 5 may be attached to the nitrogen tank or the radiant heat shield.

また、Oリング14を支持棒7とフランジ8と
の間に取り付けたが、フランジ8とカバー15と
の間に取り付けても良い。また上記実施例に示す
ようにOリング14を支持棒7とフランジ8との
間に取り付ける場合においては、必らずしも、カ
バー15を取り付ける必要はない。
Further, although the O-ring 14 is attached between the support rod 7 and the flange 8, it may be attached between the flange 8 and the cover 15. Further, when the O-ring 14 is attached between the support rod 7 and the flange 8 as shown in the above embodiment, it is not necessarily necessary to attach the cover 15.

更に非線形ばね21は、ばね定数の異なるコイ
ルばねを重ねて構成してもよく、著しくは、ばね
定数の異なる皿ばねを重ねてもよく、又は、同一
のばね定数を有する皿ばねの組合せ方を変えるこ
とによつてもよく、更には、コイルばねと皿ばね
とを組み合わせて構成してもよい。
Furthermore, the nonlinear spring 21 may be constructed by stacking coil springs with different spring constants, or more particularly, by stacking disc springs with different spring constants, or by combining disc springs having the same spring constant. Alternatively, a coil spring and a disc spring may be combined.

〔発明の構成〕[Structure of the invention]

以上のように、この発明によれば、極低温槽の
熱収縮はばね定数の小さな領域で吸収し、熱収縮
後に極低温槽に作用する大きな外力はばね定数の
大きな領域で支えるように構成しているので、ヘ
リウム槽の外力による偏位は許容範囲内に留める
ことができ、また断熱支持体には必要最小限の荷
重しか作用せず、断熱支持体及び支持棒の断面積
を最小限にすることができるので、断熱性能も向
上できる断熱支持装置が得られる効果がある。
As described above, according to the present invention, the thermal contraction of the cryogenic chamber is absorbed by the region with a small spring constant, and the large external force that acts on the cryogenic chamber after the thermal contraction is supported by the region with a large spring constant. As a result, the deflection of the helium tank due to external forces can be kept within the allowable range, and only the minimum necessary load is applied to the insulating supports, minimizing the cross-sectional area of the insulating supports and support rods. Therefore, it is possible to obtain a heat insulating support device which can also improve heat insulating performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による断熱支持装
置を示す断面図、第2図はこの発明の断熱支持装
置に用いる非線形ばねの特性図、第3図は断熱支
持装置が取り付けられる超電導機器用クライオス
タツトの概略を示す断面図、第4図は従来の断熱
支持装置を示す断面図である。 図において、3…極低温槽(ヘリウム槽)、4
…真空槽、5…断熱支持体、7…支持棒、21…
非線形ばね。なお、各図中、同一符号は同一又は
相当部分を示す。
Fig. 1 is a sectional view showing a heat insulating support device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of a nonlinear spring used in the heat insulating support device of the present invention, and Fig. 3 is a diagram for use in superconducting equipment to which the heat insulating support device is attached. FIG. 4 is a sectional view schematically showing a cryostat, and FIG. 4 is a sectional view showing a conventional heat insulating support device. In the figure, 3...cryogenic tank (helium tank), 4
...Vacuum chamber, 5...Insulating support, 7...Support rod, 21...
Nonlinear spring. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 熱変形を受けるとともに外力を受ける極低温
槽の断熱支持装置において、極低温槽の外側に直
接又は間接的に取り付けられている断熱支持体
と、この断熱支持体に一端が連結され、他端は上
記極低温槽を真空断熱する真空槽の外側にまで突
出する支持棒と、上記真空槽の外側にまで突出し
ている支持棒の端部を真空槽に支えるとともに上
記極低温槽の熱収縮を吸収するための小さなばね
定数および熱収縮後に作用する大きな外力による
上記極低温槽の偏位を抑えるための大きなばね定
数の両ばね定数を直列に併わせ持つている非線形
ばねとを備えていることを特徴とする断熱支持装
置。 2 非線形ばねが、ばね定数の異なる皿ばねの組
合せにより構成されている特許請求の範囲第1項
記載の断熱支持装置。 3 非線形ばねが、ばね定数の同一な皿ばねの組
合せ方を変えることにより構成されている特許請
求の範囲第1項記載の断熱支持装置。 4 非線形ばねが、皿ばねとコイルばねとの組合
せにより構成されている特許請求の範囲第1項記
載の断熱支持装置。
[Scope of Claims] 1. A heat insulating support device for a cryogenic chamber that is subjected to thermal deformation and external force, including a heat insulating support that is directly or indirectly attached to the outside of the cryogenic chamber, and one end of the heat insulating support. are connected, and the other end is a support rod that protrudes to the outside of the vacuum chamber for vacuum insulating the cryogenic chamber, and the end of the support rod that protrudes to the outside of the vacuum chamber is supported in the vacuum chamber, and the other end is connected to the electrode. A nonlinear spring that has two spring constants in series: a small spring constant to absorb the thermal contraction of the cryogenic chamber, and a large spring constant to suppress the deflection of the cryogenic chamber due to the large external force that acts after the thermal contraction. A heat insulating support device comprising: 2. The heat insulating support device according to claim 1, wherein the nonlinear spring is constituted by a combination of disc springs having different spring constants. 3. The heat insulating support device according to claim 1, wherein the nonlinear spring is constructed by changing the combination of disc springs having the same spring constant. 4. The heat insulating support device according to claim 1, wherein the nonlinear spring is constituted by a combination of a disc spring and a coil spring.
JP61067195A 1985-09-24 1986-03-27 Heat insulated supporting device Granted JPS62224904A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61067195A JPS62224904A (en) 1986-03-27 1986-03-27 Heat insulated supporting device
DE19863632490 DE3632490A1 (en) 1985-09-24 1986-09-24 HEAT-INSULATING CARRIER
US07/163,128 US4838033A (en) 1985-09-24 1988-02-19 Heat insulating support device for cryogenic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067195A JPS62224904A (en) 1986-03-27 1986-03-27 Heat insulated supporting device

Publications (2)

Publication Number Publication Date
JPS62224904A JPS62224904A (en) 1987-10-02
JPH04572B2 true JPH04572B2 (en) 1992-01-08

Family

ID=13337878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067195A Granted JPS62224904A (en) 1985-09-24 1986-03-27 Heat insulated supporting device

Country Status (1)

Country Link
JP (1) JPS62224904A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035533A (en) * 2013-08-09 2015-02-19 住友電気工業株式会社 Superconducting apparatus and container for superconducting coil
JP6211459B2 (en) * 2014-05-13 2017-10-11 住友重機械工業株式会社 Superconducting electromagnet

Also Published As

Publication number Publication date
JPS62224904A (en) 1987-10-02

Similar Documents

Publication Publication Date Title
US4781034A (en) Cryogenic support system
JP2018534759A (en) Support structure for HTS magnet
JPH0559565B2 (en)
CA1273561A (en) Low cost intermediate radiation shield for a magnet cryostat
JPH0559567B2 (en)
JPH04572B2 (en)
JPH0559566B2 (en)
JPH0728056B2 (en) Cryostat with refrigerator
US4838033A (en) Heat insulating support device for cryogenic equipment
JPH06159593A (en) Inner tank supporting structure in double wall storage tank
US4487332A (en) Cryostat vessel wall spacing system
JP3349539B2 (en) Insulated support device
JP3097992B2 (en) Method and structure for supporting beam chamber and inner tank of superconducting wiggler
JP3000106B2 (en) Cryostat
JPS63261706A (en) Cryogenic apparatus
JPS5945878B2 (en) cryostat
JPH0378791B2 (en)
JPH0510479A (en) Pipe clamp
JPS61111513A (en) Induction electric apparatus using evaporation cooling
US3900809A (en) Absorption apparatus for adjacently disposed magnet coils
JPS59132690A (en) Cryogenic supporting structure
JPS63274117A (en) Very low temperature heat-insulating supporting member
JPS6171607A (en) Apparatus for supporting inner tank of superconductive magnet
Javorik Temperature compensation of shadow mask color picture tubes
JPS61231705A (en) Superconductive device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term