JPH0457254B2 - - Google Patents

Info

Publication number
JPH0457254B2
JPH0457254B2 JP59113009A JP11300984A JPH0457254B2 JP H0457254 B2 JPH0457254 B2 JP H0457254B2 JP 59113009 A JP59113009 A JP 59113009A JP 11300984 A JP11300984 A JP 11300984A JP H0457254 B2 JPH0457254 B2 JP H0457254B2
Authority
JP
Japan
Prior art keywords
current
circuit
impedance element
series
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59113009A
Other languages
Japanese (ja)
Other versions
JPS60257629A (en
Inventor
Shinichi Akano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP11300984A priority Critical patent/JPS60257629A/en
Priority to US06/736,920 priority patent/US4623871A/en
Priority to SE8502704A priority patent/SE458972B/en
Priority to DE19853519709 priority patent/DE3519709A1/en
Priority to GB08513986A priority patent/GB2160395B/en
Publication of JPS60257629A publication Critical patent/JPS60257629A/en
Publication of JPH0457254B2 publication Critical patent/JPH0457254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5495Systems for power line communications having measurements and testing channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Selective Calling Equipment (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、工業プロセス等において、電流値に
より示される信号を受信し、バルブ等の制御対象
機器を制御する受信装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a receiving device that receives a signal indicated by a current value and controls a device to be controlled, such as a valve, in an industrial process or the like.

〔従来技術〕[Prior art]

工業プロセス等においては、バルブ等を遠隔制
御する場合、一般にポジシヨナと称される受信装
置が設けられているが、この様なフイールド機器
は、、中央の制御装置から例えば4〜20mAの範
囲により変化する電流値により信号を伝送し、こ
れを受信装置が受信のうえ、電流値に応じた制御
を行なうものとなつている。
In industrial processes, etc., when remotely controlling valves, etc., a receiving device called a positioner is generally installed, but such field equipment can change the current within a range of, for example, 4 to 20 mA from a central control device. A signal is transmitted based on the current value, and the receiving device receives the signal and performs control according to the current value.

しかし、従来においては、信号を示す電流値の
伝送用に2線式伝送路を要すると共に、受信装置
側において必要とする電源を供給するため、別途
に2線式電源路を必要としており、合計4本の線
路が不可欠であり、線路の所要線材量および布設
工数が増加し、設備費が高価となる欠点を生じて
いる。
However, in the past, a two-wire transmission line was required to transmit the current value indicating the signal, and a separate two-wire power supply line was required to supply the power required by the receiving device. Four lines are indispensable, resulting in an increase in the amount of wire required for the line and the number of man-hours for laying the line, resulting in high equipment costs.

いる。There is.

〔発明の概要〕[Summary of the invention]

本発明は、従来のかかる欠点を基本的に解決す
る目的を有し、工業計測に用いられている4〜
20mA等の統一信号は、本来0〜16mA等の範囲
により数値を表わし、4mA等のバイアス成分を
含んでいることに注目し、2線式伝送路に対して
第1の可変インピーダンス素子および受信用のイ
ンピーダンス素子を直列に挿入し、伝送路の線間
電圧を一定化する方向へ可変インピーダンス素子
のインピーダンスを制御すると共に、これらと並
列に直列のインピーダンス素子および第2の可変
インピーダンス素子による直列回路を接続し、直
列のインピーダンス素子に通ずる電流をバイアス
成分に応じた一定値に保つ方向へ制御のうえ、第
2の可変インピーダンス素子と並列に負荷回路を
接続し、バイアス成分を受信装置側の電源として
用い、かつ受信用のインピーダンス素子の電圧を
測定してここを流れる電流から受信信号を検出す
るように構成することにより、2線式伝送路のみ
よつて電源の供給も行なえるものとした極めて効
果的な、受信装置を提供するものである。
The present invention has the purpose of fundamentally solving such drawbacks of the conventional technology, and has the purpose of
Note that a unified signal such as 20mA originally represents a numerical value in a range of 0 to 16mA, etc., and includes a bias component such as 4mA. impedance elements are inserted in series, and the impedance of the variable impedance element is controlled in the direction of making the line voltage of the transmission line constant, and a series circuit consisting of the impedance element in series with these elements and a second variable impedance element is connected in parallel. A load circuit is connected in parallel with the second variable impedance element, and the bias component is used as a power source for the receiving device. By measuring the voltage of the receiving impedance element and detecting the received signal from the current flowing through it, it is extremely effective in making it possible to supply power only through the two-wire transmission line. The purpose of the present invention is to provide a receiving device that has the following characteristics.

〔実施例〕〔Example〕

以下、実施例を示す図によつて本発明の詳細を
説明する。
Hereinafter, details of the present invention will be explained with reference to figures showing examples.

第1図は回路図であり、線路端子t1,t2を介し
て接続される2線式伝送路Lは線路L1,L2から
なつており、これに対し第1の可変インピーダン
ス素子としてトランジスタQ1のエミツタ・コレ
クタ間が直列に挿入されていると共に、これのコ
レクタ側には受信用のインピーダンス素子として
抵抗器RSが直列に接続されている一方、これら
と並列に、抵抗器R1,R2による分圧回路が接続
され、かつ、直列のインピーダンス素子としての
抵抗器R3および第2の可変インピーダンス素子
として用いるトランジスタQ2のエミツタ・コレ
クタ間による直列回路が接続されている。
Fig. 1 is a circuit diagram, in which a two-wire transmission line L connected via line terminals t 1 and t 2 consists of lines L 1 and L 2 , and a first variable impedance element. The emitter and collector of transistor Q 1 are inserted in series, and a resistor R S is connected in series on the collector side of this transistor as an impedance element for reception, while a resistor R is connected in parallel with these. 1 and R2 are connected, and a series circuit is also connected between the emitter and collector of a resistor R3 as a series impedance element and a transistor Q2 used as a second variable impedance element.

また、トランジスタQ2と並列に、集積回路化
された電源安定化回路REG、および、抵抗器R4
R5による分圧回路、ならびに、差動増幅器A1
A2が負荷回路として接続されていると共に、電
源安定化回路REGを介し、アナログ・デイジタ
ル変換器(以下、ADC)A/D1,A/D2、マイ
クロプロセツサおよびメモリ等からなる演算回路
OP、ならびに、デイジタル・アナログ変換器
(以下、DAC)D/Aも負荷回路として接続され
ている。
In addition, in parallel with the transistor Q 2 , an integrated circuit power supply stabilization circuit REG and a resistor R 4 ,
Voltage divider circuit with R 5 and differential amplifier A 1 ,
A2 is connected as a load circuit, and an arithmetic circuit consisting of analog-to-digital converters (hereinafter referred to as ADCs) A/ D1 , A/ D2 , a microprocessor, memory, etc. is connected via a power supply stabilization circuit REG.
OP and a digital/analog converter (hereinafter referred to as DAC) D/A are also connected as load circuits.

ここにおいて、抵抗器R1,R2および差動増幅
器A1は、第1の制御回路を構成し、電源安定化
回路REGからの基準電圧Vr1に基づき、伝送路L
の線間電圧VLを抵抗器R1,R2により分圧した電
圧V1に応じ、線間電圧VLを一定化する方向へト
ランジスタQ1のインピーダンスを制御しており、
これによつて、線路電流ILの値にかかわらず線間
電圧VLを例えば10Vの一定値に保つている。
Here, the resistors R 1 , R 2 and the differential amplifier A 1 constitute a first control circuit, and based on the reference voltage V r1 from the power supply stabilization circuit REG, the transmission line L
The impedance of the transistor Q 1 is controlled in a direction to keep the line voltage V L constant according to the voltage V 1 obtained by dividing the line voltage V L by the resistors R 1 and R 2 .
Thereby, the line voltage V L is maintained at a constant value of 10V, for example, regardless of the value of the line current I L.

また、抵抗器R4,R5および差動増幅器A2は、
第2の制御回路を構成し、電源安定化回路REG
からの基準電圧Vr2に基づき、抵抗器R3の負荷回
路側電圧VCを抵抗器R4,R5により分圧した電圧
V2に応じ、抵抗器R3に通ずる電流ICの値を一定
化する方向へトランジスタQ2のインピーダンス
を制御しており、各負荷回路の電源電流にかかわ
らず、電流ICを例えば4mAの一定値に維持してい
る。
Also, resistors R 4 , R 5 and differential amplifier A 2 are
Configuring the second control circuit, the power supply stabilization circuit REG
The voltage obtained by dividing the load circuit side voltage V C of resistor R 3 by resistors R 4 and R 5 based on the reference voltage V r2 from
The impedance of transistor Q 2 is controlled in the direction of keeping the value of current I C flowing through resistor R 3 constant according to V 2 , and the current I C is controlled to be 4 mA, for example, regardless of the power supply current of each load circuit. It is maintained at a constant value.

したがつて、抵抗器R1,R2へ通ずる電流I1
VL/(R1+R2)は一定値となるため、抵抗器RS
に通ずる電流ISは、IS=IL−I(IC+I1)となり、
(IC+I1)をバイアス成分と等しく定めることに
より、ISが例えば0〜16mAの信号成分のみとな
るため、抵抗器RSの端子電圧をADC・A/D1
よりデイジタル信号へ変換し、これを設定値とし
て演算回路OPへ与えると共に、後述の駆動装置
DRからの実測値をADC・A/D2により同様に変
換して演算回路OPへ与えれば、同回路OPが制御
演算により制御信号を送出するものとなり、これ
をDAC・D/Aによりアナログ信号へ変換し、
後述の電空変換器E/Pへ与えてバルブの開度を
制御することにより、設定値と実測値とが一致す
るものとしてバルブの開度が設定される。
Therefore, the current I 1 passing through the resistors R 1 and R 2 =
Since V L /(R 1 + R 2 ) is a constant value, the resistor R S
The current I S flowing through is I S = I L − I (I C + I 1 ),
By setting (I C + I 1 ) equal to the bias component, I S becomes only a signal component of, for example, 0 to 16 mA, so the terminal voltage of resistor R S is converted to a digital signal by ADC/A/D 1 . , This is given as a setting value to the arithmetic circuit OP, and the drive device described later
If the actual measurement value from DR is similarly converted by ADC/A/D 2 and given to the arithmetic circuit OP, the circuit OP will send out a control signal by control calculation, and this will be converted into an analog signal by DAC/D/A. Convert to
By controlling the opening degree of the valve by applying it to an electro-pneumatic converter E/P, which will be described later, the opening degree of the valve is set so that the set value and the actual measurement value match.

なお、第1図においては、以上の動作により差
動増幅器A1,A2に対し負帰還が施されており、
V1=Vr1,V2=Vr2の状態となつているため、次
式が成立する。
In addition, in FIG. 1, negative feedback is applied to the differential amplifiers A 1 and A 2 by the above operation,
Since V 1 = V r1 and V 2 = V r2 , the following equation holds true.

V1=VLR2/R1+R2=Vr1 ∴ VL=Vr1(1+R1/R2) ……(1) V2=VCR5/R4+R5=Vr2 ∴ VC=Vr2(1+R4/R5) ……(2) ここにおいて、Vr1,Vr2は安定化されている
ため、VL,VCも一定となり、次式が得られる。
V 1 =V L R 2 /R 1 +R 2 =V r1 ∴ V L =V r1 (1 + R 1 /R 2 ) ...(1) V 2 =V C R 5 /R 4 +R 5 =V r2 ∴ V C =V r2 (1+R 4 /R 5 )...(2) Here, since V r1 and V r2 are stabilized, V L and V C are also constant, and the following equation is obtained.

IC=VL−VC/R3 ……(3) すなわち、(IC+I1)が一定となる。 I C =V L −V C /R 3 ...(3) That is, (I C +I 1 ) is constant.

一方、線路電流ILは次式によつて示される。 On the other hand, line current I L is expressed by the following equation.

IL=I1+I2+I3+IS=I1+IC+IS ……(4) ここにおいて、I1,ICが一定のため、 IS=IL−(IC+I1) ……(5) したがつて、ILが例えば4〜20mAの場合、IC
+I1=4mAとすることにより、IS=0〜16mAと
なり、ISにより示される信号の受信に支障を与え
ず、各負荷回路に対し最大AmAの電源電流を安
定に供給することができる。
I L = I 1 + I 2 + I 3 + I S = I 1 + I C + I S ... (4) Here, since I 1 and I C are constant, I S = I L − (I C + I 1 ) ... (5) Therefore, if I L is, for example, 4 to 20 mA, I C
By setting +I 1 =4 mA, I S =0 to 16 mA, and a maximum power current of AmA can be stably supplied to each load circuit without interfering with reception of the signal indicated by I S.

なお、中央の制御装置側では、定電流回路によ
り線路電流ILの送出を行なつており、受信装置の
入力インピーダンスが変化しても電流値に影響を
与えることはない。
Note that on the central control device side, the line current I L is sent out by a constant current circuit, so even if the input impedance of the receiving device changes, the current value is not affected.

すなわち、この中央の制御装置側から受信装置
側で制御される制御量に応じた信号の電流値(4
〜20mA)を送出する動作は、定電流回路によつ
て行われる。この定電流回路は、設定された一定
電流値を常に流すように動作するもので、上記信
号電流が4〜20mAの内のいずれかの値に設定さ
れると、その信号電流値が現在流れている電流値
より大きければ、電流を増加させるためには電圧
が上がらなければならないので、その端子電圧を
上昇させる。この端子電圧は伝送路の線間電圧
VLとなつているので、受信装置ではこの線間電
圧VLの上昇を検出して、トランジスタQ1が電流
ISを増加させるように作用して線間電圧VLを一定
に保持するべく制御する。このとき、線路電流IL
は受信装置の電流ISが増加した分だけ増加する。
In other words, the current value of the signal (4
~20mA) is performed by a constant current circuit. This constant current circuit operates so that a set constant current value always flows, and when the above signal current is set to a value between 4 and 20 mA, that signal current value is currently flowing. If the current value is greater than the current value, the voltage must increase in order to increase the current, so the terminal voltage is increased. This terminal voltage is the line voltage of the transmission line.
V L , the receiving device detects this rise in line voltage V L and transistor Q 1 increases the current.
It acts to increase I S and is controlled to keep the line voltage V L constant. At this time, line current I L
increases by the amount that the receiving device current I S increases.

制御装置側の定電流回路では、線路電流ILが設
定された信号電流値になるまで電圧上昇の動作が
継続され、出力電流が設定された信号電流値にな
つた時点で電圧上昇は停止する。このとき、定電
流回路から出力される電流値は設定された信号電
流値であり、受信装置の電流ISは、定電流回路の
設定によつて増加した電流値分だけその電流値が
増加する。
In the constant current circuit on the control device side, the voltage increase operation continues until the line current I L reaches the set signal current value, and the voltage increase stops when the output current reaches the set signal current value. . At this time, the current value output from the constant current circuit is the set signal current value, and the current value of the receiving device I S increases by the current value increased by the setting of the constant current circuit. .

第2図は、本発明による受信装置側の全構成を
示す一例のブロツク図であり、第1図に示す受信
装置REからの出力は電空変換器E/Pへ与えら
れ、ここにおいて、圧気Pが受信装置REの出力
に応じて圧力となり、エアシリンダ等の駆動装置
DRへ送出され、これがバルブVを駆動して開度
を制御すると共に、駆動軸と連結されたポテンシ
ヨメータ等により、現在の開度が実測値として検
出され、受信装置REへ与えられるものとなつて
いる。
FIG. 2 is a block diagram showing an example of the entire configuration of the receiving device according to the present invention. The output from the receiving device RE shown in FIG. P becomes a pressure according to the output of the receiving device RE, and the driving device such as an air cylinder
This is sent to the DR, which drives the valve V to control the opening degree, and the current opening degree is detected as an actual measurement value by a potentiometer connected to the drive shaft, and is given to the receiving device RE. It's summery.

したがつて、2線式伝送路のみにより、電源の
供給も同時に行なわれるものとなり、所要線材量
および布設工数が大幅に減少し、設備費の低減が
達せられる。
Therefore, power is supplied simultaneously using only the two-wire transmission line, and the required amount of wire and the number of man-hours for installation are significantly reduced, resulting in a reduction in equipment costs.

ただし、第1図において、トランジスタQ1
Q2の代りに電界効果形トランジスタ、フオトカ
ブラ等の制御可能な他の可変インピーダンス素子
を用いてもよく、抵抗器RSにより入力信号を電
圧変換せず、直接電流値を読み取る回路構成でも
同様であり、また、抵抗器R3の代りに定電流ダ
イオード等の可変インピーダンス素子を用いても
同様である。さらに、電源安定化回路REGを用
いず、定電圧ダイオード等により基準電圧Vr1
Vr2を発生し、負荷回路をすべてトランジスタQ2
と並列に接続してもよい。
However, in FIG. 1, the transistors Q 1 ,
Other controllable variable impedance elements such as field effect transistors and photocoupler may be used in place of Q2 , and the same applies to circuit configurations that directly read the current value without converting the input signal to voltage using the resistor R. The same effect can be obtained even if a variable impedance element such as a constant current diode is used in place of the resistor R3 . Furthermore, without using the power supply stabilization circuit REG, the reference voltage V r1 ,
Generate V r2 and load circuit all transistor Q 2
may be connected in parallel.

なお、線路電流は、負荷回路の所要電源電流に
応じてバイアス成分を定めればよく、モータ等を
負荷回路として使用することもできる。
Note that the bias component of the line current may be determined according to the required power supply current of the load circuit, and a motor or the like may also be used as the load circuit.

また、第2図においては、モータ等により駆動
を行なうものとしてもよく、バルブVのほかにダ
ンバ、ポンプ等を制御対象機器としても同様であ
り、本発明は種々の変形が自在である。
Further, in FIG. 2, the device may be driven by a motor or the like, and in addition to the valve V, a damper, a pump, etc. may also be controlled equipment, and the present invention can be modified in various ways.

〔発明の効果〕〔Effect of the invention〕

以上の説明により明らかなとおり本発明によれ
ば、2線式伝送路のみにより受信側において必要
とする電源の供給も同時に行なわれるため、電源
供給路が不要となり、線路の設備費が大幅に低減
し、電流値により示される信号を受信する各種の
受信装置において顕著な効果が得られる。
As is clear from the above explanation, according to the present invention, the power required on the receiving side is simultaneously supplied using only the two-wire transmission line, eliminating the need for a power supply line and significantly reducing line equipment costs. However, remarkable effects can be obtained in various receiving devices that receive signals indicated by current values.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図は回路図、
第2図は受信装置側の全構成を示すブロツク図で
ある。 L……2線式伝送路、Q1,Q2……トランジス
タ(可変インピーダンス素子)、RS,R3……抵抗
器(インピーダンス素子)、R1,R2,R4,R5
…抵抗器、REG……電源安定化回路、A1,A2
…差動増幅器。
The figure shows an embodiment of the present invention, and FIG. 1 is a circuit diagram;
FIG. 2 is a block diagram showing the entire configuration of the receiving device. L...Two-wire transmission line, Q1 , Q2 ...Transistor (variable impedance element), R S , R3 ...Resistor (impedance element), R1 , R2 , R4 , R5 ...
...Resistor, REG...Power stabilization circuit, A 1 , A 2 ...
...Differential amplifier.

Claims (1)

【特許請求の範囲】 1 制御装置の定電流回路から2線式伝送路へ信
号電流を供給し、この2線式伝送路を流れる線路
電流の電流値により示される信号を受信する受信
装置において、 前記伝送路に対し直列に挿入された、第1の可
変インピーダンス素子と受信用のインピーダンス
との直列回路と、 前記伝送路の線間電圧の値を一定にするように
前記第1の可変インピーダンス素子のインピーダ
ンスを制御する第1の制御回路と、 前記第1の可変インピーダンス素子と受信用の
インピーダンスとの直列回路に対し並列に接続さ
れた、直列のインピーダンス素子と第2の可変イ
ンピーダンス素子との直列回路と、 前記直列のインピーダンス素子に流れる電流の
値を一定にするように前記第2の可変インピーダ
ンス素子のインピーダンスを制御する第2の制御
回路と、 前記第2の可変インピーダンス素子に対し並列
に接続された負荷回路と、 前記受信用のインピーダンス素子の両端に発生
する電圧を検出することにより前記線路電流の電
流値により示される信号を受信する受信回路と を備えたことを特徴とする受信装置。
[Claims] 1. A receiving device that supplies a signal current from a constant current circuit of a control device to a two-wire transmission line and receives a signal indicated by the current value of a line current flowing through the two-wire transmission line, a series circuit of a first variable impedance element and a receiving impedance inserted in series with the transmission line; and a series circuit of a first variable impedance element and a receiving impedance inserted in series with the transmission line; a first control circuit for controlling the impedance of the impedance; and a series circuit of a series impedance element and a second variable impedance element connected in parallel to the series circuit of the first variable impedance element and the receiving impedance. a second control circuit that controls the impedance of the second variable impedance element so as to keep the value of the current flowing through the series impedance element constant; and a second control circuit connected in parallel to the second variable impedance element. and a receiving circuit that receives a signal indicated by the current value of the line current by detecting a voltage generated across the receiving impedance element.
JP11300984A 1984-06-04 1984-06-04 Receiver Granted JPS60257629A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11300984A JPS60257629A (en) 1984-06-04 1984-06-04 Receiver
US06/736,920 US4623871A (en) 1984-06-04 1985-05-22 Receiving apparatus
SE8502704A SE458972B (en) 1984-06-04 1985-05-31 DIALOGUE PROCEDURE AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
DE19853519709 DE3519709A1 (en) 1984-06-04 1985-06-01 Dialog method and device for carrying out this method
GB08513986A GB2160395B (en) 1984-06-04 1985-06-04 Receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11300984A JPS60257629A (en) 1984-06-04 1984-06-04 Receiver

Publications (2)

Publication Number Publication Date
JPS60257629A JPS60257629A (en) 1985-12-19
JPH0457254B2 true JPH0457254B2 (en) 1992-09-11

Family

ID=14601148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11300984A Granted JPS60257629A (en) 1984-06-04 1984-06-04 Receiver

Country Status (1)

Country Link
JP (1) JPS60257629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363021A1 (en) 2010-01-19 2011-09-07 Globeride, Inc. Spinning reel for fishing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002304868A1 (en) * 2001-03-20 2002-10-03 Pepperl And Fuchs Gmbh Method and device for inputting data into an electronic data processing device
JP5399847B2 (en) * 2009-10-02 2014-01-29 新日本無線株式会社 Signal processing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145495A (en) * 1980-04-11 1981-11-12 Yokogawa Electric Works Ltd 2-wire type transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145495A (en) * 1980-04-11 1981-11-12 Yokogawa Electric Works Ltd 2-wire type transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363021A1 (en) 2010-01-19 2011-09-07 Globeride, Inc. Spinning reel for fishing

Also Published As

Publication number Publication date
JPS60257629A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US4633217A (en) Communication apparatus
EP0546855A1 (en) Multi-mode input/output circuit and module, and process control system using same
US4719616A (en) Communication method and apparatus
WO1995029433A1 (en) Smart valve positioner
JP2009522990A (en) Circuit apparatus for providing field devices of automation technology
US4527583A (en) Electropneumatic transducer system
JP5155302B2 (en) Bus loop power interface and method
GB2160395A (en) Receiving apparatus
JPH0457254B2 (en)
US7187158B2 (en) Process device with switching power supply
USRE33028E (en) Electropneumatic transducer system
US4544875A (en) Variable current transducer system
CA1210477A (en) Control system for an electro-pneumatic converter
JPH04365108A (en) Current regulating circuit
US4001703A (en) Transmission line interface circuit
JPH11186859A (en) Voltage-current conversion circuit
JPS60257630A (en) Communication equipment
US4224536A (en) Stabilization of monolithic integrated circuit output levels
JPH0455007B2 (en)
JP3127607B2 (en) Two-wire signal transmitter
JPH0710474Y2 (en) 2-wire transmitter
SU760365A1 (en) Method and device for control of electric drive with flexible coupling between motor and mechanism
JP3111363B2 (en) Receiver
US4333041A (en) Universal signal translator for motor speed control
JPS6220080Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term