JPS60257630A - Communication equipment - Google Patents

Communication equipment

Info

Publication number
JPS60257630A
JPS60257630A JP11301084A JP11301084A JPS60257630A JP S60257630 A JPS60257630 A JP S60257630A JP 11301084 A JP11301084 A JP 11301084A JP 11301084 A JP11301084 A JP 11301084A JP S60257630 A JPS60257630 A JP S60257630A
Authority
JP
Japan
Prior art keywords
impedance element
voltage
variable impedance
line
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11301084A
Other languages
Japanese (ja)
Inventor
Shinichi Akano
赤野 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP11301084A priority Critical patent/JPS60257630A/en
Priority to US06/736,923 priority patent/US4633217A/en
Priority to SE8502704A priority patent/SE458972B/en
Priority to DE19853519709 priority patent/DE3519709A1/en
Priority to GB08514000A priority patent/GB2160747B/en
Publication of JPS60257630A publication Critical patent/JPS60257630A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5495Systems for power line communications having measurements and testing channel

Abstract

PURPOSE:To supply power only with a two-wire transmission line by controlling the 1st variable impedance element inserted in series with the transmission line and the 2nd variable impedance connected in parallel with a load based on a separate reference voltage. CONSTITUTION:A control circuit comprising resistors R1, R2 and a differential amplifier A1 controls the impedance of a transistor (TR)Q1 in the direction making a line voltage VL constant in response to a voltage V1 based on a reference voltage Vr1. A control circuit comprising resistors R4, R5 and a differential amplifier A2 controls the impedance of a TRQ2 in a direction making the value of a current Ic flowing to a resistor R3 constant in response to a voltage V2 based on a reference voltage Vr2. A terminal voltage Vs across the resistor Rs is converted into a digital signal by an analog-digital converter A/D1 and the signal is given to an arithmetic circuit OP as a setting value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、工業プロセス等において、2線式伝送路へ通
ずる電流値により示される信号を受信し、バルブ等の制
御対象機器を制御すると共に、制御状態等を示す信号を
伝送路の線間電圧変化により送信する通信装置に関する
ものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention receives a signal indicated by a current value flowing through a two-wire transmission line in an industrial process or the like, and controls equipment to be controlled such as a valve. The present invention relates to a communication device that transmits a signal indicating a control state or the like based on a change in line voltage of a transmission path.

〔従来技術〕[Prior art]

工業プロセス等においては、バルブ等を遠隔制御する場
合、一般にポジショナと称される受信装置が設けられ、
中央の制御装置から例えば4〜20mAの範囲によシ変
化する電流値によシ信号を伝送し、これを受信装置が受
信のうえ、電流値に応じた制御を行なうものとなってい
る。
In industrial processes, etc., when remotely controlling valves, etc., a receiving device called a positioner is generally installed.
A central control device transmits a signal with a current value that varies in the range of, for example, 4 to 20 mA, and a receiving device receives the signal and performs control according to the current value.

しかし、従来においては、信号を示す電流値の伝送用に
2線式伝送路を要すると共に、受信装置側において必要
とする電源を供給するため、別途に2線式電源路を必要
としておシ、合計4本の線路が不可欠であシ、線路の所
要線材量および布設工数が増加し、設備費が高価となる
欠点を生じている。
However, in the past, a two-wire transmission path was required to transmit the current value indicating the signal, and a separate two-wire power path was required to supply the power required by the receiving device. A total of four lines are indispensable, which increases the amount of wire required for the line and the number of man-hours for laying the line, resulting in high equipment costs.

また、従来は、パルプの制御、状況等を監視する場合、
別途に送信装置を設け、これと中央の制御装置との間を
専用の伝送路により接続しなければならず、設備投資上
不経済となる欠点を生じている。
In addition, conventionally, when controlling pulp, monitoring the situation, etc.
It is necessary to provide a separate transmitting device and connect this to the central control device through a dedicated transmission path, which has the disadvantage of being uneconomical in terms of equipment investment.

〔発明の概要〕[Summary of the invention]

本発明は、従来のかかる欠点を根本的に解決する目的を
有し、工業計測に用いられている4〜20mA等の統一
信号は、本来O〜16mA等の範囲により数値を表わし
、4mA等のバイアス成分を含んでいることに注目し、
2線式伝送路に対して第1の可変インピーダンス素子お
よび受信用のインピーダンス素子を直列に挿入し、伝送
路の線間電圧を一定化する方向へ可変インピーダンス素
子のインピーダンスを制御すると共に、これらと並列に
直列のインピーダンス素子および第2の可変インピーダ
ンス素子による直列回路を接続し、直列のインピーダン
ス素子に通ずる電流をバイアス成分に応じた一定値に保
つ方向へ制御のうえ、第2の可変インピーダンス素子と
並列に負荷回路を接続し、バイアス成分を電源として用
いるものとし、かつ、直列のインピーダンスに通ずる電
流を一定に保ったまま送信信号に応じて線間電圧を変化
させ、これによって送信を行なうものとし、2線式伝送
路のみにより電源の供給も行なえると同時に、送受信機
能を備えるものとした極めて効果的な、通信装置を提供
するものである。
The purpose of the present invention is to fundamentally solve these conventional drawbacks, and the unified signal such as 4 to 20 mA used in industrial measurement originally represents a numerical value in the range of 0 to 16 mA, etc. Note that it contains a bias component,
A first variable impedance element and a reception impedance element are inserted in series in a two-wire transmission line, and the impedance of the variable impedance element is controlled in a direction to keep the line voltage of the transmission line constant. A series circuit consisting of a series impedance element and a second variable impedance element is connected in parallel, and the current flowing through the series impedance element is controlled to be kept at a constant value according to the bias component, and then the second variable impedance element and the second variable impedance element are connected in parallel. A load circuit is connected in parallel, the bias component is used as a power source, and the line voltage is changed according to the transmitted signal while the current flowing through the series impedance is kept constant, thereby performing transmission. , it is an object of the present invention to provide an extremely effective communication device which is capable of supplying power through only a two-wire transmission line and is equipped with a transmitting and receiving function.

〔実施例〕〔Example〕

以下、実施例を示す図によって本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to figures showing examples.

第1図は回路図であり、線路端子tl + t、、を介
して接続される2線式伝送路りは線路LIIL2から寿
っておシ、これに対し第1の可変インピーダンス素子と
してトランジスタQ+のエミッタ・コレクタ間が直列に
挿入されていると共に、これのコレクタ側には受信用の
インピーダンス素子として抵抗器RBが直列に接続され
ている一方、これらと並列に抵抗a Rt + R2に
よる分圧回路が接続され、かつ、直列のインピーダンス
素子としての抵抗器R3および第2の可変インピーダン
ス素子として用いるトランジスタQ2のエミッタ・コレ
クタ間による直列回路が接続されている。
FIG. 1 is a circuit diagram, in which a two-wire transmission line connected via line terminals tl + t, , starts from the line LIIL2, and a transistor Q+ is used as the first variable impedance element. The emitter and collector of are inserted in series, and a resistor RB is connected in series on the collector side as a receiving impedance element, while a voltage divider by a resistor a Rt + R2 is connected in parallel to these. A series circuit is connected between the emitter and the collector of a resistor R3 as a series impedance element and a transistor Q2 used as a second variable impedance element.

まだ、トランジスタQ2と並列に、負荷回路として、差
動増幅器AI + A2 、抵抗器R4+ R5による
分圧回路、ディジタル・アナログ変換器(以下、DAC
)D/A1〜D/A3、アナログ・ディジタル変換器(
以下、ADC) A/DI 、 A/D2、マイクロプ
ロセッサおよびメモリ等からなる演算回路OPが接続さ
れており、演算回路opは、DAC−D/A1゜D/A
2を介し基準電圧vrl、vr2を送出するものとなっ
ている。
In parallel with transistor Q2, as a load circuit, a differential amplifier AI + A2, a voltage divider circuit with resistors R4 + R5, and a digital-to-analog converter (hereinafter referred to as DAC) are connected.
) D/A1 to D/A3, analog-to-digital converter (
An arithmetic circuit OP consisting of A/DI, A/D2, microprocessor, memory, etc. is connected, and the arithmetic circuit OP is connected to the DAC-D/A1゜D/A.
The reference voltages vrl and vr2 are sent out through the terminals 2 and 2.

ここにおいて、抵抗器RI+R2および差動増幅器A、
は、第1の制御回路を構成し、DAC・D/A。
Here, resistor RI+R2 and differential amplifier A,
constitutes a first control circuit, and includes a DAC/D/A.

圧vLを抵抗器R1+ R2によυ分圧した電圧V1に
応じ、線間電圧vLを一定化する方向へトランジスタQ
1のインピーダンスを制御しており、これによって、線
路電流ILO値にかかわらず線間電圧vLを例えば10
vの一定値に保っている。
According to the voltage V1 obtained by dividing the voltage vL by resistor R1+R2, the transistor Q
By controlling the impedance of 1, for example, the line voltage vL is controlled to be 10, regardless of the line current ILO value.
v is kept at a constant value.

また、抵抗器R4+ R,および差動増幅器Azは、第
2の制御回路を構成し、DAC−D/A2からの基準電
圧vrzに基づき、抵抗器R3の負荷回路側電圧VOを
抵抗器R,,R5によシ分圧した電圧vzに応じ、抵抗
器R3に通ずる電流1cの値を一定化する方向へトラン
ジスタQ2のインピーダンスを制御しており、各負荷回
路の電源電流にかかわらず、電流Iaを例えば4mAの
一定値に維持している。
Further, the resistor R4+R and the differential amplifier Az constitute a second control circuit, and based on the reference voltage vrz from the DAC-D/A2, the load circuit side voltage VO of the resistor R3 is controlled by the resistor R, , R5, the impedance of the transistor Q2 is controlled in the direction of keeping the value of the current 1c flowing through the resistor R3 constant, and the current Ia is is maintained at a constant value of 4 mA, for example.

したがって、抵抗器RI+R2を高抵抗値とし、これに
通ずる電流11を無視できるものとすれば、抵抗器Rs
に通ずる電流ISは、l8=IL−Icとなシ、Iaを
バイアス成分と等しく定めることにより、Ill+が例
えば0〜16mAの信号成分のみ)−寿ス斧馳−1#F
坩競に食の端竿雪mVq冬ΔDr。
Therefore, if the resistor RI+R2 has a high resistance value and the current 11 passing through it is negligible, then the resistor Rs
The current IS flowing through is 18=IL-Ic, and by setting Ia equal to the bias component, Ill+ is, for example, only the signal component of 0 to 16 mA)
In the competition, the food end pole snow mVq winter ΔDr.

A/D lによりディジタル信号へ変換し、これを設定
値として演算回路OPへ与えると共に、後述の駆動装置
DRからの実測値をADC@A/D2によシ同様に変換
して演算回路OPへ与えれば、同回路OPが制御演算に
よシ制御信号を送出し、これがDAC@D/A3によっ
てアナログ信号へ変換され、後述の電空変換器E/Pへ
与えられてバルブの開度を制御するものとなシ、設定値
と実測値とが一致するものとしてバルブの開度が設定さ
れる。
A/D l converts it into a digital signal and gives it as a setting value to the arithmetic circuit OP, and at the same time converts the actual measured value from the drive device DR, which will be described later, to the ADC@A/D2 in the same way and sends it to the arithmetic circuit OP. When the signal is given, the same circuit OP sends out a control signal by control calculation, which is converted into an analog signal by DAC@D/A3 and given to the electro-pneumatic converter E/P, which will be described later, to control the opening degree of the valve. The opening degree of the valve is set assuming that the set value and the measured value match.

なお、第1図においては、以上の動作によυ差動増幅器
AI+A2に対し負帰還が施されており、■、キV、、
、V、、キvr2の状態となっているだめ、次式が成立
する。
In addition, in FIG. 1, negative feedback is applied to the υ differential amplifier AI+A2 by the above operation, and ■, KiV, .
, V, , Ki vr2, the following equation holds true.

VL=Vr+(1+垢) (1) V c =vy2 (1+ン)(2) ことにおいて、Vrl +Vr2は、演算回路OFから
のデータが一定であるISI!7安定化されているため
、vL、vcも一定と々シ、次式が得られる。
VL = Vr + (1 + dirt) (1) V c = vy2 (1 + n) (2) In this case, Vrl + Vr2 is ISI where the data from the arithmetic circuit OF is constant! 7 Since it is stabilized, vL and vc are also constant, and the following equation can be obtained.

すなわち、ICが一定となる。That is, IC becomes constant.

一方、線路電流ILは次式によって示される。On the other hand, line current IL is expressed by the following equation.

■5−IL−■c ・・・・・・・・・・・・・・・・
・・・・・ (5)したがって、■Lが例えば4〜20
mAの場合、Ic=4mAとすることによシ、I S 
= O〜16mAとなυ、1sによυ示される信号の受
信に支障を与えず、各負荷回路に対し最大4mAの電源
電流を安定に供給することができる。
■5-IL-■c ・・・・・・・・・・・・・・・・
... (5) Therefore, ■L is, for example, 4 to 20
mA, by setting Ic=4mA, I S
= 0 to 16 mA, and a maximum power current of 4 mA can be stably supplied to each load circuit without interfering with the reception of the signal represented by υ and 1 s.

なお、中央の制御装置側では、定電流回路により線路電
流1!、の送出を行なっており、受端側の入力インピー
ダンスが変化しても電流値に影響を与えることはない。
In addition, on the central control device side, the line current is 1! due to the constant current circuit. , and even if the input impedance on the receiving end changes, the current value will not be affected.

以上に対し、実測値等を制御装置へ送信するときには、
送信信号に応じ、電流ICを一定に保つ関係としながら
基準電圧Vr1. Vr2を変化させるものとして演算
回路opがDAC会D/り、 、 D/A2へのデータ
をパルス状に変化させるため、とれにしたがって線間電
圧vLがパルス状に変化し、これによって送信が行なわ
れ、パルスコードによシ実測値等が示されるものとなる
Regarding the above, when transmitting actual measured values etc. to the control device,
In response to the transmission signal, the reference voltage Vr1. is maintained while keeping the current IC constant. As the arithmetic circuit OP changes Vr2, it changes the data to the DAC board D/A2 in a pulsed manner, so the line voltage vL changes in a pulsed manner accordingly, and thus transmission is performed. The actual measured value etc. will be indicated by the pulse code.

す々わち、電流■cを一定に保つに4−1、(31式の
分子を不変とすればよ<、VL−VcをvRとすれば、
(1)および(2)式から次式が得られる。
In other words, to keep the current c constant, 4-1, (If the numerator of formula 31 is unchanged, then VL-Vc is vR,
The following equation is obtained from equations (1) and (2).

・・・・・・・・・・・・ aυ ここにおいて、次式の関係とすれば、 θυおよび0式から次式の関係が成立する。・・・・・・・・・・・・ aυ Here, if the relationship is as follows, The following relationship holds true from θυ and 0 equation.

したがって、03式の関係を保ちなからADC−A/D
++AlO2へのデータを同時に変化させれに、電iI
cを例えば4mAとしたまま、線間電圧vLを上昇また
は下降させることが自在となり、電流値による受信を行
ないながら電圧変化による送信が行なえるものとなる。
Therefore, if the relationship of formula 03 is maintained, ADC-A/D
++In order to change the data to AlO2 at the same time, the electric iI
The line voltage vL can be freely raised or lowered while c remains at 4 mA, for example, and transmission can be performed by changing the voltage while receiving by the current value.

なお、制御装置側では、線間電圧を所定の基準電圧と比
較し、変化分を抽出のうえデコードする手段によシ、電
流値による送信と同時に受信を行なうことができる。
It should be noted that on the control device side, by means of comparing the line voltage with a predetermined reference voltage, extracting and decoding the change, it is possible to transmit and receive the current value at the same time.

また、電圧Vaの変化が各負荷回路の動作に影響を与え
る場合には、電流工2の通ずる部位へ電圧安定化回路を
挿入すると共に、これの入力側へ抵抗器R4+ R%の
回路を接続すればよい。
In addition, if changes in voltage Va affect the operation of each load circuit, insert a voltage stabilization circuit to the part where electric current switch 2 connects, and connect a resistor R4 + R% circuit to the input side of this circuit. do it.

第2図は、通信装置側の全構成を示すブロック図であシ
、第1図に示す通信装置CEからの受信出力は電空変換
器E/Pへ与えられ、とこにおいて、圧気Pが受信出力
に応じた圧力と彦シ、エアシリンダ等の駆動装置DRへ
送出され、これがバルブVを駆動して開度を制御すると
共に、駆動軸と連結されたポテンショメータ等によシ、
現在の開度が実測値として検出され、通信装置CEへ与
えられるものとなっている。
FIG. 2 is a block diagram showing the entire configuration of the communication device. The received output from the communication device CE shown in FIG. Pressure corresponding to the output is sent to the drive device DR such as a cylinder or air cylinder, which drives the valve V to control the opening degree, and is also driven by a potentiometer etc. connected to the drive shaft.
The current opening degree is detected as an actual measurement value and given to the communication device CE.

したがって、21/M式伝送路のみによシ、電源の供給
が同時に行なわれると共に、通信装置CEによシ監視情
報の送信も行なわれるものとなシ、所要線材量、布設工
数が大幅に減少し、かつ、別途の送信装置が不要となる
ため、設備費の低減が達せられる。
Therefore, power is supplied only through the 21/M type transmission line, and monitoring information is also transmitted through the communication device CE, which greatly reduces the amount of wire required and the number of man-hours required for installation. Moreover, since a separate transmitter is not required, equipment costs can be reduced.

ただし、第1図において、トランジスタQ+ 、Q2の
代りに電界効果形トランジスタ、フォトカプラ等の制御
可能な他の可変インピーダンス素子を用いてもよく、抵
抗器R8+ R3の代pにダイオード等のインピーダン
ス素子を用いても同様であシ、DAC−D/A+ 、D
/A2によらず、定電圧ダイオード等によシ基準電圧V
rl l VF6を発生し、送信時にこれらを切替える
ものとしてもよく、演算回路OPを各種論理回路の組み
合せによシ構成し、あるいは、アナログ回路によ!ll
構成してDAC−D/A、〜D/A3およびADC・A
/D、、A/D2を省略するともできる。
However, in FIG. 1, other controllable variable impedance elements such as field effect transistors and photocouplers may be used in place of transistors Q+ and Q2, and an impedance element such as a diode may be used in place of resistor R8+R3. The same applies if you use DAC-D/A+, D
/ Regardless of A2, the reference voltage V is determined by a constant voltage diode, etc.
rl l VF6 may be generated and these may be switched at the time of transmission, and the arithmetic circuit OP may be configured by a combination of various logic circuits, or may be configured by an analog circuit! ll
Configure DAC-D/A, ~D/A3 and ADC-A
/D, , A/D2 can also be omitted.

なお、線路電流は、負荷回路の所要電源電流に応じてバ
イアス成分を定めればよく、モータ等を負荷回路として
使用することもできる。
Note that the bias component of the line current may be determined according to the required power supply current of the load circuit, and a motor or the like may also be used as the load circuit.

また、第2図においては、モータ等によシ駆動を行なう
ものとしてもよく、バルブVのほか、ダンパ、ポンプ等
を制御対象機器としても同様であり、温度センサ、流体
の漏洩音響を検出する振動センサ等を設け、これらの検
出出力を通信装置CBへ与え、監視情報として送信させ
るものとしてもよい等、本発明は種々の変形が自在であ
る。
In addition, in FIG. 2, the drive may be performed by a motor or the like, and in addition to the valve V, a damper, a pump, etc. may also be controlled equipment, and a temperature sensor or a fluid leakage sound may be detected. The present invention can be modified in various ways, such as by providing a vibration sensor or the like and providing the detection outputs of these to the communication device CB to be transmitted as monitoring information.

〔発明の効果〕〔Effect of the invention〕

以上の説明によル明らか々とおり本発明によれば、2線
式伝送路のみによシ、電源の供給も同時に行なわれると
共に、電流値による受信および電圧変化による送信が同
一装置によシ自在となシ、各種の制御対象機器に対する
制御および監視上顕著な効果が得られる。
As is clear from the above description, according to the present invention, power is simultaneously supplied only through a two-wire transmission line, and reception based on current values and transmission based on voltage changes can be performed using the same device. In addition, remarkable effects can be obtained in controlling and monitoring various devices to be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図は回路図、第2図は
通信装置側の全構成を示すブロック図である。 L・・拳・2線式伝送路、Ql、Q2・・・・トランジ
スタ(可変インピーダンス素子) 、Rs+”s・・・
・抵抗器(インピーダンス素子) 、R1+R2+R4
+ R5e * m *抵抗器、At + A2 e 
m * *差動増幅器、l)/Al、 D/Az−−−
−DAC(ディジタル・アナログ変換器)、OP・・・
・演算回路。 特許出願人 山弐ノ・ネウエル株式会社代理人 山川政
樹(ほか2名) 手続補正書(睦) 昭和59 年 特 許 願第113010 号2、発明
の名称 通信装置 3、補正をする者 事件との関係 特 許 出願人 名称(氏名) (666)山武ハネウェル株式会社補■
廿3た力惰t−Th1=錯明力数−−・・・−(1)明
細書第2頁第16行の「られ、」を「られているが、こ
の様なフィールド機器は、」と補正する。 (2)同省第3頁第7行の1パルプ」を「バルブ等」と
補正する。 (3)同書第9頁第7行の「となる。」のつぎへ下記を
加入する。 「たソし、アナログ的に変化させて、信号を送信しても
よい。」 (4)同書第10頁第8行の「−デコードする」のつぎ
へ下記を加入する。 [か、アナログ信号の場合は、その変化をとりだす」 (5) 同書同頁第15行の[通信装置側の全構成を示
す」を「本発明による通信装置側の全構成を示す一例の
」と補正する。 (6)同書第11頁第13行の「、R3の・・・−1乃
至第14行の「・・・であり、」を下記のとおシ補正す
る。 「によシ入力信号を電圧へ変換せず、直接電流値を読み
取る回路構成でも同様であり、また、抵抗器R1の代り
に定電流ダイオード等の可変インピーダンス素子を用い
ても同様である。さらに、」 以上
The figures show an embodiment of the present invention, with FIG. 1 being a circuit diagram and FIG. 2 being a block diagram showing the entire configuration of a communication device. L...Fist/2-wire transmission line, Ql, Q2...Transistor (variable impedance element), Rs+"s...
・Resistor (impedance element), R1+R2+R4
+ R5e * m * Resistor, At + A2 e
m**Differential amplifier, l)/Al, D/Az---
-DAC (digital to analog converter), OP...
・Arithmetic circuit. Patent applicant Masaki Yamakawa (and 2 others) Agent for Yamani-no-Newel Co., Ltd. Procedural amendment (Mutsu) 1981 Patent Application No. 113010 2. Title of invention Communication device 3. Related Patent Applicant Name (Name) (666) Yamatake Honeywell Co., Ltd.
廿3 た力 inertia t-Th1=Illusion power number--...-(1) In the 2nd page, line 16 of the specification, ``are'' is replaced with ``are,'' but such field equipment is and correct it. (2) "1 Pulp" on page 3, line 7 of the same ministry is corrected to "bulbs, etc." (3) Add the following to the next section of ``Naru.'' on page 9, line 7 of the same book. (4) Add the following to the end of "-decode" on page 10, line 8 of the same book. [Or, in the case of an analog signal, extract its change.'' (5) In line 15 of the same page of the same book, change ``showing the entire configuration of the communication device side'' to ``an example showing the entire configuration of the communication device side according to the present invention.'' and correct it. (6) "..." in the same book, page 11, line 13, ", R3...-1 to line 14," is corrected as follows. The same applies to a circuit configuration that directly reads the current value without converting the input signal to a voltage, and the same applies when a variable impedance element such as a constant current diode is used in place of the resistor R1. ,"that's all

Claims (1)

【特許請求の範囲】[Claims] 2線式伝送路へ通ずる線路電流の電流値によシ示される
信号を受信する装置において、前記伝送路に対し直列に
挿入された第1の可変インピーダンス素子と、該可変イ
ンピーダンス素子と直列に接続された受信用のインピー
ダンス素子と、前記伝送路の線間電圧を一定化する方向
へ前記第1の可変インピーダンス素子のインピーダンス
を第1の基準電圧に基づいて制御する第1の制御回路と
、前記第1の可変インピーダンス素子およびインピーダ
ンス素子に対し並列に接続された直列のインピーダンス
素子および第2の可変インピーダンス素子による直列回
路と、前記直列のインピーダンス素子に通ずる電流値を
一定化する方向へ前記第2の可変インピーダンス素子の
インピーダンスを第2の基準電圧に基づいて制御する第
2の制御回路と、前記第2の可変インピーダンス素子と
並列に接続された負荷回路と、送信信号に応じて前記直
列のインピーダンスに通ずる電流値を一定とする関係を
保ちながら前記第1および第2の基準電圧を同時に変化
させる手段とを備えたことを特徴とする通信装置。
A device for receiving a signal indicated by a current value of a line current passing through a two-wire transmission line, comprising: a first variable impedance element inserted in series with the transmission line; and a first variable impedance element connected in series with the variable impedance element. a receiving impedance element, a first control circuit that controls the impedance of the first variable impedance element based on a first reference voltage in a direction to constant the line voltage of the transmission line; A series circuit including a first variable impedance element, a series impedance element connected in parallel to the impedance element, and a second variable impedance element; a second control circuit that controls the impedance of the variable impedance element based on a second reference voltage; a load circuit connected in parallel with the second variable impedance element; and a load circuit that controls the impedance of the series variable impedance element in accordance with a transmission signal. A communication device comprising means for simultaneously changing the first and second reference voltages while maintaining a constant current value.
JP11301084A 1984-06-04 1984-06-04 Communication equipment Pending JPS60257630A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11301084A JPS60257630A (en) 1984-06-04 1984-06-04 Communication equipment
US06/736,923 US4633217A (en) 1984-06-04 1985-05-22 Communication apparatus
SE8502704A SE458972B (en) 1984-06-04 1985-05-31 DIALOGUE PROCEDURE AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
DE19853519709 DE3519709A1 (en) 1984-06-04 1985-06-01 Dialog method and device for carrying out this method
GB08514000A GB2160747B (en) 1984-06-04 1985-06-04 Communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11301084A JPS60257630A (en) 1984-06-04 1984-06-04 Communication equipment

Publications (1)

Publication Number Publication Date
JPS60257630A true JPS60257630A (en) 1985-12-19

Family

ID=14601173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11301084A Pending JPS60257630A (en) 1984-06-04 1984-06-04 Communication equipment

Country Status (1)

Country Link
JP (1) JPS60257630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129929A (en) * 1989-10-13 1991-06-03 Hitachi Ltd Communicator for field measuring instrument and its power supply method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145495A (en) * 1980-04-11 1981-11-12 Yokogawa Electric Works Ltd 2-wire type transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145495A (en) * 1980-04-11 1981-11-12 Yokogawa Electric Works Ltd 2-wire type transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129929A (en) * 1989-10-13 1991-06-03 Hitachi Ltd Communicator for field measuring instrument and its power supply method

Similar Documents

Publication Publication Date Title
JP2735174B2 (en) 2-wire communication method
EP0546855A1 (en) Multi-mode input/output circuit and module, and process control system using same
US4633217A (en) Communication apparatus
US4806905A (en) Transmitter for transmitting on a two-wire transmitting line
JPH0467817B2 (en)
US7447552B2 (en) Common transmission protocol system for an automation device
EP0212896A2 (en) Current loop arrangements
US4794372A (en) Two-wire DC signal telemetering system
JPS60257630A (en) Communication equipment
GB2160395A (en) Receiving apparatus
US20070150626A1 (en) Automation device
US4001703A (en) Transmission line interface circuit
US5249272A (en) Interface between a radio control transmitter joystick control and a computer serial input port
JPH0457254B2 (en)
CA1293787C (en) Sensor output transmission system
KR200325286Y1 (en) Analogue transmitter module
JP2928970B2 (en) Two-wire communication device
JPS6169220A (en) Communication equipment
US4797669A (en) Receiver
JP2528054B2 (en) How to add measurement transmission equipment
KR960002839B1 (en) Wire remote controller communication device
JPS6323694B2 (en)
JP2002124997A (en) Field bus connection device
JPH04286219A (en) Method and device for analog/digital communication
DE19612318A1 (en) Interface for digital and analog signals e.g. for measuring pressure, rpm, vehicle exhaust gas