JPH0456859B2 - - Google Patents

Info

Publication number
JPH0456859B2
JPH0456859B2 JP58087366A JP8736683A JPH0456859B2 JP H0456859 B2 JPH0456859 B2 JP H0456859B2 JP 58087366 A JP58087366 A JP 58087366A JP 8736683 A JP8736683 A JP 8736683A JP H0456859 B2 JPH0456859 B2 JP H0456859B2
Authority
JP
Japan
Prior art keywords
polyester
ppm
cobalt
amount
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58087366A
Other languages
Japanese (ja)
Other versions
JPS59213756A (en
Inventor
Yoshinuki Maeda
Seiji Hirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8736683A priority Critical patent/JPS59213756A/en
Publication of JPS59213756A publication Critical patent/JPS59213756A/en
Publication of JPH0456859B2 publication Critical patent/JPH0456859B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、耐光性の優れたポリブチレンテレフ
タレート系(以下PBT系と略す)ポリエステル
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polybutylene terephthalate (hereinafter abbreviated as PBT) polyester having excellent light resistance.

PBT系ポリエステルは、従来エンジニアリン
グ用プラスチツクとして用いられてきたが、その
優れた伸長回復特性などから衣料用としても注目
されてきている。しかしながら、これを衣料用し
て用いた場合、その染色物の耐光堅牢性は十分で
はなく、とくに螢光性を持つ染料、とりわけ白色
螢光染料を用いた場合にその耐光堅牢性は極めて
不十分なものである。
PBT-based polyester has traditionally been used as an engineering plastic, but due to its excellent elongation recovery properties, it is also attracting attention for use in clothing. However, when this is used for clothing, the light fastness of the dyed product is not sufficient, especially when a fluorescent dye, especially a white fluorescent dye, is used.The light fastness is extremely insufficient. It is something.

すなわち、PBT系ポリエステルはその光化学
的特性して紫外部の波長314nm付近の光を吸収
し、この吸収した光エルギーを波長300〜450nm
の光として放射し螢光を示す。つまり、同一の光
を照射しても波長300〜450nmの部分の光強度の
高い光を照射していることに見掛上対応すること
になる。一方、多くの染料が波波長300〜450nm
に吸収を持つためにPBT系ポリエステルをこの
ような染料で染色した場合、染料分子がより高い
レベルまで励起されることとなり、より鮮やかな
発色を示す反面、その耐光堅牢性は低下し、とく
にPBT系ポリエステルの螢光の主ピーク位置
370nmの近くに主な吸収ピークを持つ白色染料
(螢光増白剤)を用いた場合などでは、その耐光
堅牢性は著しく悪化しJIS L−0842に従つて評価
すると1級程度となり、事実上、商品価値を認め
難いものとなつてしまうのである。
In other words, PBT-based polyester has photochemical properties that allow it to absorb light in the ultraviolet wavelength range of around 314 nm, and transfer this absorbed light energy to wavelengths of 300 to 450 nm.
It emits light and exhibits fluorescence. In other words, even if the same light is irradiated, it will apparently correspond to the irradiation of light with high light intensity in the wavelength range of 300 to 450 nm. On the other hand, many dyes have a wave wavelength of 300 to 450 nm.
When PBT-based polyester is dyed with such a dye, the dye molecules are excited to a higher level and the color is more vivid, but its light fastness is reduced. Main peak position of fluorescence of polyester-based polyester
When a white dye (fluorescent brightener) with a main absorption peak near 370 nm is used, its light fastness deteriorates significantly, and when evaluated according to JIS L-0842, it is grade 1, in fact , it becomes difficult to recognize the product value.

そこで本発明者らは、この重大な欠点を改良す
べく鋭意研究の結果、コバルト化合物または(お
よび)リン化合物を適当量添加すること、PBT
系ポリエステルを合成する際の触媒を選択するこ
と、該ポリエステルの固有粘度〔η〕を適当な範
囲にすることが極めて有効であることを見出し、
本発明に至つたものである。
Therefore, as a result of intensive research in order to improve this serious drawback, the present inventors found that by adding an appropriate amount of cobalt compound or (and) phosphorus compound, PBT
We discovered that it is extremely effective to select a catalyst when synthesizing polyester and to adjust the intrinsic viscosity [η] of the polyester to an appropriate range,
This led to the present invention.

すなわち、PBT系ポリエステル、コバルト
(Co)化合物をコバルト金属に換算して5〜
50ppmの範囲内の量で添加することにより該ポリ
エステルの染色物の耐光堅牢度が著しく向上する
ことを見出したものであり、さらにコバルト化合
物とともにリン化合物をリン原子に換算して5〜
50ppmの範囲内の量で併用することにより効果が
より増大すること、さらには該ポリエステルの合
成触媒としてチタ化合物を用い、該化合物が0.1
≦〔M〕/〔Ti〕≦0.7…(3)式(ただし、〔M〕、
〔Ti〕はそれれ化合物中に含まれるアルカリ金属
および(または)アルカリ士類金属、チタン原子
の化学当量を表わす)で規定される比率のアルカ
リ金属および(または)アルカリ士類金属を含
み、その添加量をチタン原子に換算して15〜
150ppmの範囲内の量とすることによつてさらに
耐光堅牢性が増し、また、該ポリエステルの固有
粘度〔η〕を0.5〜1.0にすることによつてさらに
効果が発揮されるものである。
That is, PBT polyester, cobalt (Co) compound is converted to cobalt metal, and
It has been found that the light fastness of dyed polyester products is significantly improved by adding it in an amount within the range of 50 ppm, and in addition to the cobalt compound, the phosphorus compound is added in an amount of 5 to 50 ppm in terms of phosphorus atoms.
The effect is further increased by using the titanium compound in an amount within the range of 50 ppm.
≦[M]/[Ti]≦0.7…Equation (3) (however, [M],
[Ti] contains alkali metals and/or alkali metals in the proportions specified by the alkali metals and/or alkali metals contained in the compound (representing the chemical equivalent of the titanium atom); The amount added is converted to titanium atoms and is 15~
By setting the amount within the range of 150 ppm, the light fastness is further increased, and by setting the intrinsic viscosity [η] of the polyester to 0.5 to 1.0, further effects are exhibited.

本発明でいうポリエステルとは、その構成単位
の80%以上がブチレンテレフタレート残基である
PBT系ポリエステルであり、たとえば共重合な
どにより改質されていてもよい。改質剤として
は、たとえば酸成分として5−スルホイソフタル
酸ナトリウム塩またはその誘導体、イソフタル酸
またはその誘導体、アジピン酸、セバシン酸など
の脂肪族二塩基酸やそれらの誘導体など、ジオー
ル成分としてエチレングリコール、プロピレング
リコール、ネオペンチルグリコール、ヘキサメチ
レンジオールやこれらの縮合物、ポリメチレング
リコール類などをあげることができるが、これら
に限定されるものではない。
Polyester as used in the present invention means that 80% or more of its constituent units are butylene terephthalate residues.
It is a PBT-based polyester, and may be modified, for example, by copolymerization. Examples of modifiers include 5-sulfoisophthalic acid sodium salt or its derivatives as the acid component, isophthalic acid or its derivatives, aliphatic dibasic acids such as adipic acid and sebacic acid, and their derivatives, and ethylene glycol as the diol component. , propylene glycol, neopentyl glycol, hexamethylene diol, condensates thereof, polymethylene glycols, etc., but are not limited to these.

なお、本発明は、ポリエチレンテレフタレート
(PET)に比べ耐光性の劣るPBTの耐光性を改善
しようとするものであり、本発明をPETに応用
しても実質的に効果は得られない。これは、
PBTがPETと異なり、前述したような特定の吸
光・発光特性を有しているという特殊事情による
ものと推定される。
Note that the present invention aims to improve the light resistance of PBT, which is inferior to polyethylene terephthalate (PET), and even if the present invention is applied to PET, no substantial effect will be obtained. this is,
This is presumed to be due to the special circumstances that PBT, unlike PET, has specific light absorption and light emission characteristics as described above.

本発明に用いられるコバルト化合物としては、
ギ酸コバルト、酢酸コバルトなどのコバルトの有
機酸塩がその溶解性などから好ましいものではあ
るが、必ずしもこれに限定されるものではない。
As the cobalt compound used in the present invention,
Organic acid salts of cobalt such as cobalt formate and cobalt acetate are preferable from the viewpoint of their solubility, but they are not necessarily limited thereto.

本発明に用いられるリン化合物としては、亜リ
ン酸、正リン酸またはこれらのエステル類たとえ
ば亜リン酸トリフエニル、亜リン酸トリ−n−ブ
チル、リン酸トリメチル、リン酸トリ−n−ブチ
ルなどがあげることができるが、これらに限定さ
れるものではない。
Examples of the phosphorus compound used in the present invention include phosphorous acid, orthophosphoric acid, or esters thereof, such as triphenyl phosphite, tri-n-butyl phosphite, trimethyl phosphate, and tri-n-butyl phosphate. However, it is not limited to these.

本発明に用いられるPBT系ポリエステルの合
成触媒としてのチタン化合物としては、酒石酸チ
タンカリウム、シユウ酸チタンカリウム、酒石酸
チタンナトリウム、シユウ酸チタンナトリウムま
たはこれらの混合物などをあげることができる
が、これに限定されるものではない。
The titanium compound used as a synthesis catalyst for the PBT polyester used in the present invention includes, but is not limited to, potassium titanium tartrate, potassium titanium oxalate, sodium titanium tartrate, sodium titanium oxalate, and mixtures thereof. It is not something that will be done.

本発明におけるコバルト化合物の添加量は、コ
バルト原子に換算して5〜50ppmの範囲内の量で
ある。添加量が5ppmより少いとその効果が認め
られず、逆に50ppmより多く添加しても効果が飽
和してしまうばかりかポリマー自体が青黒くな
り、かえつてその価値を損う結果となる。
The amount of the cobalt compound added in the present invention is within the range of 5 to 50 ppm in terms of cobalt atoms. If the amount added is less than 5 ppm, the effect will not be recognized, and if it is added more than 50 ppm, the effect will not only be saturated, but also the polymer itself will turn blue-black, which will actually reduce its value.

つぎにリン化合物の添加量としては、リン原子
に換算して5〜50ppmの範囲内の量である。添加
量が5ppmより少いとその効果が認められず、逆
に50ppmより多く添加してもその効果が飽和して
しまうばかりか、化合物の種類によつてはポリマ
ーのゲル化や1,4−ブタンジオールのテトラハ
イドロフランへの転化の促進などの弊害をもたら
す結果となる。
Next, the amount of the phosphorus compound added is within the range of 5 to 50 ppm in terms of phosphorus atoms. If the amount added is less than 5 ppm, the effect will not be recognized, and if it is added more than 50 ppm, the effect will not only be saturated, but also cause gelation of the polymer or 1,4-butane depending on the type of compound. This results in harmful effects such as promotion of conversion of diol to tetrahydrofuran.

これらのコバルト化合物およびリン化合物の添
加方法は、同時に添加しても別々に添加してもよ
く、また添加時期は合成反応開始から紡糸工程ま
でのどこで添加してもよいが、合成反応開始前か
ら原料中へ添加するのが容易である。
These cobalt compounds and phosphorus compounds may be added at the same time or separately, and may be added at any time from the start of the synthesis reaction to the spinning process, but from before the start of the synthesis reaction. Easy to add into raw materials.

本発明にいう合成触媒としてのチタン化合物の
添加量としては、チタン原子に換算して15〜
150ppmの範囲内の量であり、20〜70ppmの範囲
内の量が好ましい。添加量が15ppmより少いと、
反応が十分進行せず目的とするポリマーが得られ
ず、逆に150ppmより多く添加すると合成反応は
確かに急速に進行するが、逆に分解反応も促進す
る結果となり、ポリマーの着色を招いて好ましく
ないばかりでなく、本発明の目的である耐光堅牢
性を著しく損う結果となる。
The amount of the titanium compound added as a synthesis catalyst according to the present invention is 15 to 15% in terms of titanium atoms.
An amount within the range of 150 ppm, preferably an amount within the range of 20 to 70 ppm. If the amount added is less than 15ppm,
If the reaction does not proceed sufficiently and the desired polymer cannot be obtained, on the other hand, if more than 150 ppm is added, the synthesis reaction will certainly proceed rapidly, but it will also promote the decomposition reaction, which is undesirable as it will lead to coloration of the polymer. Not only is this poor, but the light fastness, which is the objective of the present invention, is significantly impaired.

チタン化合物中のアルカリ金属および(また
は)アルカリ士類金属の含有量は(1)式で定められ
る範囲がよい。化学当量比が0.1より小さいとそ
の効果が十分でなく、0.7より大きいと触媒とし
ての活性が低下してしまう。
The content of the alkali metal and/or alkali metal in the titanium compound is preferably within the range defined by formula (1). If the chemical equivalent ratio is smaller than 0.1, the effect will not be sufficient, and if it is larger than 0.7, the activity as a catalyst will decrease.

本発明におけるPBT系ポリエステルの固有粘
度〔η〕は0.5〜1.0の範囲が好ましい。〔η〕が
0.5未満であると、確かに耐光堅牢性は十分であ
るが工程性が不十分となつてしまう。逆に〔η〕
が1.0を越えると、高分子量になるために分子が
不安定になるためか耐光堅牢性が低下し、また繊
維化した場合の糸物性の低下を招くなどの弊害が
発生する。本発明にいう固有粘度〔η〕は、フエ
ノール/テトラクロルエタンの重量で50/50に混
合したものを溶媒とし、ウベローデ粘度計を用い
て常法により求めた30℃おける値である。
The intrinsic viscosity [η] of the PBT polyester in the present invention is preferably in the range of 0.5 to 1.0. [η] is
If it is less than 0.5, the light fastness will certainly be sufficient, but the processability will be insufficient. On the contrary [η]
If it exceeds 1.0, the molecules become unstable due to the high molecular weight, resulting in a decrease in light fastness and a decrease in the physical properties of the yarn when it is made into fibers. The intrinsic viscosity [η] referred to in the present invention is a value at 30° C. determined by a conventional method using an Ubbelohde viscometer using a 50/50 weight mixture of phenol/tetrachloroethane as a solvent.

本発明におけるコバルト化合物の耐光堅牢性に
及ぼす効果についてはその理由を科学的に解明し
たわけではないが、これを推察するに、PBT系
ポリエステルの発する螢光をこれが吸収して弱め
ることによるものではないかと考えられる。また
リン化合物の効果については、リン原子の外殻電
子軌道の効果により、たとえ光エネルギーにより
部分的に染料などが分解しラジカルが生成して
も、これを補捉するためにさらに分解劣化の進行
するのを防止するのではないかと推定される。本
発明にいうチタン化合物の効果についてである
が、一般にチタン化合物の合成触媒としての作用
はチタン酸エステルとして働き、これによりエス
テル化、エステル交換、重合触媒として機能する
のではないかといわれている。従つて、アルカリ
金属、アルカリ士類金属などの原子により中和さ
れている状態でないと、低温、固相の状態でも光
によつて励起されることになり、一方、染料分子
は酸やアルカリに弱いのでそのため耐光堅牢性が
低下するものと推定される。従つて、アルカリ金
属および(または)アルカリ士類金属を含むチタ
ン化合物が耐光堅牢性の向上に効果を持つものと
推定される。
Although the reason for the effect of the cobalt compound on light fastness in the present invention has not been scientifically clarified, it is assumed that this is because it absorbs and weakens the fluorescence emitted by the PBT polyester. It is thought that there is. Regarding the effect of phosphorus compounds, due to the effect of the outer shell electron orbit of the phosphorus atom, even if the dye etc. is partially decomposed by light energy and radicals are generated, further decomposition and deterioration progresses to capture this radical. It is presumed that this prevents the Regarding the effect of the titanium compound according to the present invention, it is generally said that the action of the titanium compound as a synthesis catalyst is as a titanate ester, thereby functioning as an esterification, transesterification, and polymerization catalyst. Therefore, unless the dye molecules are neutralized by atoms such as alkali metals and alkali metals, they will be excited by light even at low temperatures and in a solid state. Since it is weak, it is presumed that the light fastness is reduced accordingly. Therefore, it is presumed that titanium compounds containing alkali metals and/or alkali metals are effective in improving light fastness.

以上本発明における各化合物の効果について推
察したが、本発明はこれにより制限されるもので
ないことはいうまでもない。
Although the effects of each compound in the present invention have been speculated above, it goes without saying that the present invention is not limited thereto.

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 テレフタル酸ジメチル(以下DMTと略す)
88.2Kg、1,4−ブタンジオール(以下BDと略
す)49.2Kg、テトライソブチルチタネート70.98
g、酢酸コバルト(以下CoAcと略す)12.7gを
反応容器に仕込み、180℃でメタノールが留出し
なくなるまでエステル交換反応を行なつた。続い
て、260℃まで昇温しつつ除々に減圧し、最終的
には1.0mmHg以下で重合反応を行ない固有粘度
〔η〕0.82のポリマーとし白度良好なチツプを得
た。このチツプを通常のポリエステル用の小型紡
糸機により紡糸し、続いて約2倍に延伸して75デ
ニール、36フイラメントの延伸糸とした。
Example 1 Dimethyl terephthalate (hereinafter abbreviated as DMT)
88.2Kg, 1,4-butanediol (hereinafter abbreviated as BD) 49.2Kg, tetraisobutyl titanate 70.98
g, and 12.7 g of cobalt acetate (hereinafter abbreviated as CoAc) were charged into a reaction vessel, and the transesterification reaction was carried out at 180° C. until no methanol was distilled out. Subsequently, the pressure was gradually reduced while increasing the temperature to 260°C, and finally a polymerization reaction was carried out at 1.0 mmHg or less to obtain a polymer with an intrinsic viscosity [η] of 0.82 and chips with good whiteness. This chip was spun using a conventional small spinning machine for polyester, and then stretched to about twice its original size to form a drawn yarn of 75 denier and 36 filaments.

これを編地とし、白色染料(Uvitex ERN、
チバガイギー社製)2%owfで染色し、これを
JIS L−0482に従つて耐光堅牢度を測定したとこ
ろ3級であり、良好な結果を得た。
This was made into a knitted fabric, and white dye (Uvitex ERN,
(manufactured by Ciba Geigy) was stained with 2% owf, and this
When the light fastness was measured according to JIS L-0482, it was grade 3, which was a good result.

実施例 2 亜燐酸5.29gを反応開始前から他の原料と共に
反応容器に仕込む以外は実施例1と同様にしてポ
リマーを得、繊維化し、染色して耐光堅牢度を測
定したところJIS4級であり、実施例1の場合と比
較しさらに良好な結果を得た。
Example 2 A polymer was obtained in the same manner as in Example 1 except that 5.29 g of phosphorous acid was charged into a reaction vessel together with other raw materials before the start of the reaction, and the polymer was made into fibers, dyed, and the light fastness was measured, and it was found to be JIS grade 4. In comparison with the case of Example 1, even better results were obtained.

比較例 1 DMT88.2Kg、BD49.2Kg、テトライソブチルチ
タネート70.98gを反応容器に仕込み、以下実施
例1と同様にポリマーを得、繊維化し、染色して
耐光堅牢度を測定したところJIS1級であり、事実
上商品価値の認め難いものであつた。
Comparative Example 1 88.2 kg of DMT, 49.2 kg of BD, and 70.98 g of tetraisobutyl titanate were charged into a reaction vessel, and a polymer was obtained in the same manner as in Example 1. The polymer was made into fibers, dyed, and the light fastness was measured, and it was found to be JIS grade 1. In fact, it was difficult to recognize the commercial value.

実施例 3 テトライソブチルチタネートの代りにシユウ酸
チタンカリウム73.94gを触媒として用いる以外
は実施例1と同様にし耐光堅牢度を測定したとこ
ろ、JIS2〜3級であり、比較例1と比べて良好な
結果を得た。
Example 3 The light fastness was measured in the same manner as in Example 1 except that 73.94 g of potassium titanium oxalate was used as a catalyst instead of tetraisobutyl titanate, and it was JIS grade 2 to 3, which was better than Comparative Example 1. Got the results.

実施例 4 テトライソブチルチタネートの代りにシユウ酸
チタンカリウム73.94gを触媒として用いる以外
は実施例2と同様にし耐光堅牢度を測定したとこ
ろ、JIS4〜5級であり、良好な結果を得た。
Example 4 The light fastness was measured in the same manner as in Example 2, except that 73.94 g of potassium titanium oxalate was used as a catalyst instead of tetraisobutyl titanate, and it was JIS grade 4 to 5, which was a good result.

比較例 2 DMT88.2Kg、BD49.2Kg、シユウ酸チタンカリ
ウム150g、CoAc60g、亜燐酸177gを反応容器
に仕込み、実施例1と同様にして固有粘度〔η〕
1.15のチツプを得たが、色調は茶色がかつた青黒
いもので不良なものであつた。さらに実施例1と
同様に繊維化し染色し、耐光堅牢度を測定した
が、JIS1〜2級と不良であつた。なお、染色後の
段階ですでに茶色がかつたくすんだ色調となつて
おり、商品価値の認め難い状態であつた。
Comparative Example 2 88.2 kg of DMT, 49.2 kg of BD, 150 g of potassium titanium oxalate, 60 g of CoAc, and 177 g of phosphorous acid were charged into a reaction vessel, and the intrinsic viscosity [η] was prepared in the same manner as in Example 1.
I obtained a chip of 1.15, but the color tone was blue-black with a hint of brown and was defective. Furthermore, it was made into fibers and dyed in the same manner as in Example 1, and its light fastness was measured, but it was poor at JIS grade 1-2. It should be noted that after dyeing, the color had already turned brown and dull, making it difficult to appreciate its commercial value.

参考比較例 エステル交換反応によりポリエチレンテレフタ
レート(以下PETと略す)を合成する通常の方
法により、DMT101.0Kgとエチレングリコール
71.0Kgとエステル交換触媒として酢酸亜鉛40gを
反応容器に仕込み、200℃でメタノールが留出し
なくなるまでエステル交換反応を行つた。この時
点でリン酸26.6g、酸化アンチモン35.0gを添加
し、さらに260℃まで昇温して反応を完結させた。
さらに290℃まで昇温しつつ徐々に減圧し、最終
的に1mmHg以下で重合反応を行い、固有粘度
0.70のPETチツプを得た。これをチツプAとす
る。
Reference comparative example DMT101.0Kg and ethylene glycol
A reaction vessel was charged with 71.0 kg and 40 g of zinc acetate as a transesterification catalyst, and the transesterification reaction was carried out at 200°C until no methanol was distilled out. At this point, 26.6 g of phosphoric acid and 35.0 g of antimony oxide were added, and the temperature was further raised to 260°C to complete the reaction.
Furthermore, the pressure is gradually reduced while increasing the temperature to 290℃, and finally the polymerization reaction is carried out at 1 mmHg or less, and the intrinsic viscosity is
A PET chip of 0.70 was obtained. This is called Chip A.

同様に、酢酸コバルト12.7gをエステル交換反
応時に原料中に添加する以外は同様にしてコバル
ト含有PETチツプ(固有粘度0.71)を得た。これ
をチツプBとする。
Similarly, cobalt-containing PET chips (intrinsic viscosity 0.71) were obtained in the same manner except that 12.7 g of cobalt acetate was added to the raw material during the transesterification reaction. This is called Chip B.

このチツプAおよびチツプBをそれぞれ紡糸
し、続いて3.5倍に延伸して75デニール/36フイ
ラメントのポリエステル延伸糸AおよびBを得
た。
The chips A and B were each spun and then stretched 3.5 times to obtain drawn polyester yarns A and B of 75 denier/36 filaments.

この延伸糸AおよびBをそれぞれ実施例1と同
様に染色し、耐光堅牢度を測定したところ、A、
B共に4−5級であり、両者に差を認められなか
つた。
These drawn yarns A and B were dyed in the same manner as in Example 1, and the light fastness was measured.
Both B grades were grade 4-5, and no difference was observed between the two.

Claims (1)

【特許請求の範囲】 1 ポリエステルの構成単位の80%以上がブチレ
ンテレフタレート残基であるポリエステルであつ
て、コバルト(Co)化合物がコバルト原子に換
算して5〜50ppmの範囲内で含有されていること
を特徴とする耐光性の改良されたポリエステル組
成物。 2 ポリエステルの構成単位の80%以上がブチレ
ンテレフタレート残基であるポリエステルであつ
て、コバルト(Co)化合物がコバルト原子に換
算して5〜50ppmの範囲内の量で、かつリン
(P)化合物がリン原子に換算して5〜50ppmの
範囲内の量で含有されていることを特徴とする耐
光性の改良されたポリエステル組成物。 3 ポリエステルの構成単位の80%以上がブチレ
ンテレフタレート残基であるポリエステルであつ
て、コバルト(Co)化合物がコバルト原子に換
算して5〜50ppmの範囲内の量で含有されてお
り、さらに下記(1)式で規定されるアルカリ金属お
よびアルカリ士類金属を含むチタン(Ti)化合
物がチタン原子に換算して15〜150ppmの範囲内
の量で含有されていることを特徴とする耐光性の
改良されたポリエステル組成物。 0.1≦〔M〕/〔Ti〕≦0.7 …(1)式 (ただし、〔M〕、〔Ti〕はそれぞれ化合物中に
含まれるアルカリ金属および(または)アルカリ
士類金属、チタン原子の化学当量を表わす) 4 ポリエステルの構成単位の80%以上がブチレ
ンテレフタレート残基であるポリエステルであつ
て、コバルト(Co)化合物がコバルト原子に換
算して5〜50ppmの範囲内の量で、かつリン
(P)化合物がリン原子に換算して5〜50ppmの
範囲内の量で、さらに下記(1)式で規定されるアル
カリ金属およびアルカリ士類金属を含むチタン
(Ti)化合物がチタン原子に換算して15〜
150ppmの範囲内の量で含有されていることを特
徴とする耐光性の改良されたポリエステル組成
物。 0.1≦〔M〕/〔Ti〕≦0.7 …(1)式 (ただし、〔M〕、〔Ti〕はそれぞれ化合物中に
含まれるアルカリ金属および(または)アルカリ
士類金属、チタン原子の化学当量を表わす)。
[Claims] 1. A polyester in which 80% or more of the constituent units of the polyester are butylene terephthalate residues, and a cobalt (Co) compound is contained within the range of 5 to 50 ppm in terms of cobalt atoms. A polyester composition with improved light resistance. 2 A polyester in which 80% or more of the constituent units of the polyester are butylene terephthalate residues, and the amount of cobalt (Co) compounds is within the range of 5 to 50 ppm calculated as cobalt atoms, and the amount of phosphorus (P) compounds is within the range of 5 to 50 ppm in terms of cobalt atoms. A polyester composition with improved light resistance, characterized in that it is contained in an amount within the range of 5 to 50 ppm in terms of phosphorus atoms. 3 A polyester in which 80% or more of the constituent units of the polyester are butylene terephthalate residues, containing a cobalt (Co) compound in an amount within the range of 5 to 50 ppm in terms of cobalt atoms, and further containing the following ( 1) Improvement in light resistance characterized by containing a titanium (Ti) compound containing an alkali metal and an alkali metal defined by the formula in an amount within the range of 15 to 150 ppm in terms of titanium atoms. polyester composition. 0.1≦[M]/[Ti]≦0.7 …Equation (1) (However, [M] and [Ti] are the chemical equivalents of the alkali metal and/or alkali metal and titanium atoms contained in the compound, respectively. 4 A polyester in which 80% or more of the constituent units of the polyester are butylene terephthalate residues, the amount of cobalt (Co) compound is within the range of 5 to 50 ppm calculated as cobalt atoms, and the amount of phosphorus (P) The amount of the compound is within the range of 5 to 50 ppm in terms of phosphorus atoms, and the titanium (Ti) compound containing the alkali metal and alkali metal defined by the following formula (1) is 15 ppm in terms of titanium atoms. ~
A polyester composition with improved light resistance, characterized in that it is contained in an amount within the range of 150 ppm. 0.1≦[M]/[Ti]≦0.7 …Equation (1) (However, [M] and [Ti] are the chemical equivalents of the alkali metal and/or alkali metal and titanium atoms contained in the compound, respectively. ).
JP8736683A 1983-05-17 1983-05-17 Polyester composition having improved light resistance Granted JPS59213756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8736683A JPS59213756A (en) 1983-05-17 1983-05-17 Polyester composition having improved light resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8736683A JPS59213756A (en) 1983-05-17 1983-05-17 Polyester composition having improved light resistance

Publications (2)

Publication Number Publication Date
JPS59213756A JPS59213756A (en) 1984-12-03
JPH0456859B2 true JPH0456859B2 (en) 1992-09-09

Family

ID=13912892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8736683A Granted JPS59213756A (en) 1983-05-17 1983-05-17 Polyester composition having improved light resistance

Country Status (1)

Country Link
JP (1) JPS59213756A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179256A (en) * 1985-02-04 1986-08-11 Kuraray Co Ltd Polyester molding having improved light resistance and production thereof
JPH0621375B2 (en) * 1985-02-04 1994-03-23 株式会社クラレ Polyester fiber
CA1303771C (en) * 1986-02-25 1992-06-16 Jerold C. Rosenfeld Preparation of gray to blue aromatic polyesters by incorporation of cobalt into the catalyst system
JPS63101447A (en) * 1986-10-16 1988-05-06 Kuraray Co Ltd Light-resistant polyester resin
US6429243B1 (en) 1998-06-15 2002-08-06 Kuraray Co., Ltd. Polyester resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499599A (en) * 1972-05-25 1974-01-28
JPS5149295A (en) * 1974-10-28 1976-04-28 Teijin Ltd Horiesuteruno seizohoho
JPS54120699A (en) * 1978-03-10 1979-09-19 Toyobo Co Ltd Preparation of polyester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499599A (en) * 1972-05-25 1974-01-28
JPS5149295A (en) * 1974-10-28 1976-04-28 Teijin Ltd Horiesuteruno seizohoho
JPS54120699A (en) * 1978-03-10 1979-09-19 Toyobo Co Ltd Preparation of polyester

Also Published As

Publication number Publication date
JPS59213756A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
JPH01172425A (en) Preparation of modified polyester
KR101573250B1 (en) Low-melting point polyester fiber having excellent bio-degradable and yarn for interior comprising the same
IE920015A1 (en) Flame resistant, low pilling polyester fiber
JPH05230345A (en) Flame-resistant polyester
JPH0456859B2 (en)
JP4342211B2 (en) Polyester and method for producing the same
JP4064149B2 (en) Elastomer composition and fiber comprising the same
JP2001172823A (en) Flame-retardant polyester fiber and method for producing the same
JP2002080572A (en) Modified polyester and continuous method for producing the same
JPH0563506B2 (en)
US3344115A (en) Optical brightening of a polyester by incorporating 2, 5-dimethoxy terephthalic acidtherein
JPH01103650A (en) Improved polyester composition
JPS6322219B2 (en)
KR102499138B1 (en) Copolyester Resin Dyable with a Cationic Dye for Nonwoven Fabrics
JPH082956B2 (en) Method for producing modified polyester
JP2011144317A (en) Flame-retardant cation dyeable polyester composition
JP4076413B2 (en) Polyester resin and polyester fiber
JPS5998130A (en) Preparation of modified polyester
JPH08850B2 (en) Method for producing modified polyester
JPH0466255B2 (en)
JP3869746B2 (en) Method for producing modified polyester composition
JPS6157618A (en) Production of modified polyester
KR950001654B1 (en) Method of preparing polyester fiber dyable by basic dyes
JPH0455606B2 (en)
JPH10231357A (en) Production of polyester