JPH0456450B2 - - Google Patents

Info

Publication number
JPH0456450B2
JPH0456450B2 JP58226656A JP22665683A JPH0456450B2 JP H0456450 B2 JPH0456450 B2 JP H0456450B2 JP 58226656 A JP58226656 A JP 58226656A JP 22665683 A JP22665683 A JP 22665683A JP H0456450 B2 JPH0456450 B2 JP H0456450B2
Authority
JP
Japan
Prior art keywords
gas
conductive
mesh
film
conductive mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58226656A
Other languages
Japanese (ja)
Other versions
JPS60117716A (en
Inventor
Zenko Hirose
Takeshi Ueno
Katsumi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58226656A priority Critical patent/JPS60117716A/en
Publication of JPS60117716A publication Critical patent/JPS60117716A/en
Publication of JPH0456450B2 publication Critical patent/JPH0456450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえば、多数のアモルフアス・シ
リコン感光体ドラムを連続的にかつ従来に比べて
ごく短時間に製造するための成膜方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to, for example, a film forming method for manufacturing a large number of amorphous silicon photoreceptor drums continuously and in a much shorter time than conventional methods.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図に従来のアモルフアス・シリコン感光体
(以後a−Si感光体と記す。)ドラムの成膜装置の
一例を示す。この第1図に示す成膜装置を参照し
て、以下順を追つて従来のa−Si感光体ドラムの
成膜方法を説明する。まず、図示しない拡散ポン
プ及び回転ポンプで反応容器1内を10-5Torr程
度の真空に引く。同時に加熱ヒーター2によつて
ドラム状基体3を150℃〜250℃に昇温する。次い
でバルブ4を開きSiを含むガスを反応容器1内に
導入すると同時に排気系を図示しない拡散ポン
プ、回転ポンプ系からメカニカルブースターポン
プ5、回転ポンプ5系に切りかえる。Siを含むガ
スはガス噴出管兼対向電極7よりドラム状基体3
に噴きつけられ、メカニカルブースターポンプ5
および回転ポンプ6を通り、図示しない燃焼塔及
びスクラバーを通過の後廃棄される。Siを含むガ
スは、図示しないマスフローコントローラを通し
て一定流量で反応容器1内に導入される様になつ
ている。なお、図中9Aは回転基台、9Bは9A
と一体のギヤ、9Cはギヤ9Bと噛合するととも
にモータ9Dによつて駆動される駆動ギヤ、9E
は排気管、9Fはフイルタである。
FIG. 1 shows an example of a conventional film forming apparatus for an amorphous silicon photoreceptor (hereinafter referred to as a-Si photoreceptor) drum. Referring to the film forming apparatus shown in FIG. 1, a conventional film forming method for an a-Si photoreceptor drum will be explained step by step. First, the inside of the reaction vessel 1 is evacuated to about 10 -5 Torr using a diffusion pump and a rotary pump (not shown). At the same time, the temperature of the drum-shaped substrate 3 is raised to 150°C to 250°C by the heater 2. Next, the valve 4 is opened to introduce a gas containing Si into the reaction vessel 1, and at the same time, the exhaust system is switched from a diffusion pump and rotary pump system (not shown) to a mechanical booster pump 5 and rotary pump 5 system. Gas containing Si is supplied to the drum-shaped base 3 from the gas ejection pipe/counter electrode 7.
Mechanical booster pump 5
After passing through a rotary pump 6 and a combustion tower and a scrubber (not shown), it is discarded. The gas containing Si is introduced into the reaction vessel 1 at a constant flow rate through a mass flow controller (not shown). In addition, in the figure, 9A is a rotating base, and 9B is 9A.
A gear 9C is integral with the gear 9B, and a drive gear 9E is driven by the motor 9D.
is an exhaust pipe, and 9F is a filter.

そして、反応容器1内の圧力が、0.1〜1Torr
になる様に排気系の能力を調整した後、対向電極
7とドラム状基体3の間に直流又は交番の電力を
電源8により印加してSiを含むガスのプラズマ状
態を発生させてドラム状基体3の表面にa−Si感
光体の成膜を開始する。ところがこの様な成膜方
法でa−Si感光体の成膜を行なうとまず反応容器
1内を10-5Torrの真空に引き同時にドラム状基
体3を150℃〜250℃に昇温するために少なくとも
1時間の時間を要する。また、a−Si感光体は現
状では成膜速度が最大でも6μm/時間であるた
め感光体として必要な15μmの膜厚を得るために
は2.5時間程度の成膜時間を必要とする。さらに
は成膜後、a−Si感光体ドラムを大気中に取り出
す時急激な温度変化をさけるためドラム状基体3
が150℃〜250℃から少なくとも100℃以下になる
まで徐冷するため約1〜2時間待機しなければな
らない。結果的には1本のa−Si感光体を成膜す
るのに合計で約6時間も必要とし量産性に問題が
あつた。
Then, the pressure inside the reaction vessel 1 is 0.1 to 1 Torr.
After adjusting the capacity of the exhaust system so that The film formation of the a-Si photoreceptor is started on the surface of No. 3. However, when forming a film on an a-Si photoreceptor using such a film forming method, first the inside of the reaction vessel 1 is evacuated to 10 -5 Torr, and at the same time the temperature of the drum-shaped substrate 3 is raised to 150°C to 250°C. It takes at least 1 hour. Furthermore, since the current film formation rate of the a-Si photoreceptor is 6 μm/hour at the maximum, it takes about 2.5 hours to form the film to obtain a film thickness of 15 μm, which is necessary for the photoreceptor. Furthermore, after film formation, a drum-shaped substrate 3 is used to avoid sudden temperature changes when the a-Si photoreceptor drum is taken out into the atmosphere.
It is necessary to wait for about 1 to 2 hours to slowly cool the temperature from 150°C to 250°C to at least 100°C or lower. As a result, it took a total of about 6 hours to form a film on one a-Si photoreceptor, which caused problems in mass production.

上記問題点を改良するために本発明者らは、す
でに第2図に示す様なa−Si感光体ドラムの量産
に適した成膜方法を提案している。すなわち、反
応容器10とゲートバルブ11及び12を介して
第1の真空控室13及び第2の真空控室14を設
ける。
In order to improve the above problems, the present inventors have already proposed a film forming method suitable for mass production of a-Si photoreceptor drums as shown in FIG. That is, a first vacuum chamber 13 and a second vacuum chamber 14 are provided via the reaction vessel 10 and gate valves 11 and 12.

まず、第1の真空控室13、反応容器10及び
第2の真空控室14を回転ポンプ15及びメカニ
カルブースターポンプ16を用いて10-5Torrの
真空に引く。この時あらかじめ第1の真空控室1
3内に配列されていた複数本の導電性ドラム状基
体17A…をヒーター18…で150℃〜250℃の間
の所定の温度に昇温しておく。次いでゲートバル
ブ11を開にして複数本のドラム状基体17A…
及び回転基台25A…を図示しないレール上を第
1の真空控室13から反応容器10の中へ移動さ
せた後、ゲートバルブ11を閉にする。次いでバ
ルブ20を開にして、SiH4(シラン)、Si2H6(ジ
シラン)等のSiを含む原料ガス又は、必要に応じ
てSiを含むガスとO2、NH3、CH4等の不純物ガ
スとの混合ガスを反応容器10内に導入する。こ
の時、反応容器10内に導入されるガスは、図示
しないマスフローコントローラによつて所定の流
量に調整されている事は言うまでもない。
First, the first vacuum chamber 13, the reaction vessel 10, and the second vacuum chamber 14 are evacuated to 10 -5 Torr using the rotary pump 15 and the mechanical booster pump 16. At this time, the first vacuum waiting room 1
The plurality of conductive drum-shaped substrates 17A arranged in the drum 3 are heated to a predetermined temperature between 150° C. and 250° C. by heaters 18. Next, the gate valve 11 is opened and the plurality of drum-shaped substrates 17A...
After moving the rotary bases 25A from the first vacuum chamber 13 into the reaction vessel 10 on rails (not shown), the gate valve 11 is closed. Next, the valve 20 is opened and a raw material gas containing Si such as SiH 4 (silane) or Si 2 H 6 (disilane) or, if necessary, a gas containing Si and impurities such as O 2 , NH 3 , CH 4 etc. A mixed gas is introduced into the reaction vessel 10. Needless to say, at this time, the gas introduced into the reaction vessel 10 is adjusted to a predetermined flow rate by a mass flow controller (not shown).

反応容器10内のガス圧力が0.01〜10Torr間
の所定の値になる様バルブ21の開度を調整した
後、複数本のドラム状基体17B…と対向した対
向電極22に直流又は交番の電力を印加し、Siを
含むガス又はSiを含むガスと不純物ガスの混合ガ
ス等の原料ガスプラズマを生起し、a−Si感光体
の成膜を開始する。一方、第1の真空控室13内
は、真空状態が解除され、オーリング23の所で
分割されて、新たな複数本のドラム状基体17A
…がセツトされる。その後再度オーリング23の
部分が合体し、図示しない排気系によつて、再度
10-5Torrの真空に引かれる。この時新たなドラ
ム状基体17A…が再度150℃〜250℃の間の所定
の温度に昇温される事は言うまでもない。約3時
間のa−Si感光体の成膜後、反応容器10ではま
ず対向電極22への電力の印加を止め、次いでバ
ルブ20を閉にしてSiを含むガス又はSiを含むガ
スと不純物ガスとの混合ガス等の原料ガス導入を
止め、バルブ21を全開にして反応容器10内を
再度10-5Torrの真空状態となるようにする。こ
の時、第1の真空控室13反応容器10、及び第
2の真空控室14はすべて10-5Torrの真空とな
つている。ゲートバルブ11及び12を開き、反
応容器10の中にあるa−Si感光体ドラム17B
…は、第2の真空控室14中へ又は第1の真空控
室13中のドラム状基体17A…は反応容器10
中へそれぞれ図示しないレール上を移動する。
After adjusting the opening degree of the valve 21 so that the gas pressure in the reaction vessel 10 becomes a predetermined value between 0.01 and 10 Torr, DC or AC power is applied to the counter electrode 22 facing the plurality of drum-shaped substrates 17B. is applied to generate raw material gas plasma such as a Si-containing gas or a mixed gas of a Si-containing gas and an impurity gas, and start forming a film on the a-Si photoreceptor. On the other hand, the vacuum state inside the first vacuum waiting chamber 13 is released, the interior is divided at the O-ring 23, and a plurality of new drum-shaped substrates 17A are formed.
...is set. After that, the parts of the O-ring 23 are combined again, and the exhaust system (not shown) is used again.
A vacuum of 10 -5 Torr is drawn. At this time, it goes without saying that the new drum-shaped substrate 17A is heated again to a predetermined temperature between 150°C and 250°C. After forming a film on the a-Si photoreceptor for about 3 hours, in the reaction vessel 10, first, the application of power to the counter electrode 22 is stopped, and then the valve 20 is closed, and the Si-containing gas or the Si-containing gas and the impurity gas are removed. The introduction of the raw material gas such as the mixed gas is stopped, and the valve 21 is fully opened to bring the inside of the reaction vessel 10 into a vacuum state of 10 -5 Torr again. At this time, the first vacuum chamber 13, the reaction container 10, and the second vacuum chamber 14 are all under a vacuum of 10 -5 Torr. Open the gate valves 11 and 12 and remove the a-Si photoreceptor drum 17B inside the reaction container 10.
... into the second vacuum antechamber 14 or the drum-shaped substrate 17A in the first vacuum antechamber 13... is the reaction vessel 10
Each moves inside on a rail (not shown).

ゲートバルブ11及び12が閉になり、反応容
器10内では2回目のa−Si感光体の成膜行程が
始まり第1の反応容器13内では、真空状態が解
除され、新たなドラム状基体がセツトされる。第
2の真空控室14は、所定の時間a−Si感光体ド
ラムの徐冷を行つた後、真空状態が解除され、オ
ーリング24の部分で分割され、a−Si感光体ド
ラムが大気中へ取り出される。この様に本発明者
らが以前に提案したa−Si感光体の成膜方法では
複数本のドラム状基体を連続的にむだな時間を省
いて成膜する事が可能となつた。なお、第2図
中、25Aは回転基台25Aを回転自在に支える
ベアリング、25Cは排気管、25Dは基台、2
5Eは回転基台25Aを駆動するためのシヤフ
ト、25Fはモータ25Gの駆動力を上記シヤフ
ト25Eに伝達する歯車機構、25Hは排気管、
25Iは排気管25Hに設けられたバルブ、25
Jは排気管、25Kは排気管に設けられたバルブ
である。ところで反応容器10内でのa−Si感光
体の成膜時間自体は3時間と変つていないため、
例えば第1の真空控室13内の昇温時間を1.5時
間、第2の真空控室14内での徐冷時間を1.5時
間とすると、すべての行程を同時進行させると
1.5時間の時間のむだがあつた。
The gate valves 11 and 12 are closed, and the second a-Si photoreceptor film forming process begins in the reaction vessel 10. The vacuum state is released in the first reaction vessel 13, and a new drum-shaped substrate is formed. is set. After slowly cooling the a-Si photoreceptor drum for a predetermined period of time, the second vacuum chamber 14 is released from the vacuum state, is divided at the O-ring 24, and the a-Si photoreceptor drum is exposed to the atmosphere. taken out. In this manner, the method of forming an a-Si photoreceptor film previously proposed by the present inventors has made it possible to form films continuously on a plurality of drum-shaped substrates without wasting time. In addition, in FIG. 2, 25A is a bearing that rotatably supports the rotary base 25A, 25C is an exhaust pipe, 25D is a base, 2
5E is a shaft for driving the rotating base 25A, 25F is a gear mechanism that transmits the driving force of the motor 25G to the shaft 25E, 25H is an exhaust pipe,
25I is a valve provided in the exhaust pipe 25H, 25
J is an exhaust pipe, and 25K is a valve installed in the exhaust pipe. By the way, since the film forming time of the a-Si photoreceptor in the reaction vessel 10 remains unchanged at 3 hours,
For example, if the heating time in the first vacuum anteroom 13 is 1.5 hours and the slow cooling time in the second vacuum anteroom 14 is 1.5 hours, then if all the steps are performed simultaneously,
I wasted 1.5 hours.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づきなされたもので、従
来の成膜方法と比べて成膜速度を大幅に上げるこ
とができ、しかも、不要な粉末状副生成物の発生
を防ぎ効率の高い成膜を安定して行うことができ
る成膜方法を提供することを目的とする。
The present invention was developed based on the above circumstances, and it is possible to significantly increase the film formation speed compared to conventional film formation methods, and to prevent the generation of unnecessary powdery by-products, resulting in highly efficient film formation. The purpose of the present invention is to provide a film forming method that can be stably performed.

〔発明の概要〕[Summary of the invention]

本発明は、電極と導電性基体を含む空間を、網
目を介して原料ガスの流通が可能でかつプラズマ
の障壁となり得る電気的に接地された筒状の導電
性メツシユで囲繞したものを含む減圧状態の反応
室内において、前記導電性メツシユ内の上記空間
領域及び上記導電性メツシユの周囲の領域とに原
料ガスを流通させることにより必要量の原料ガス
を前記網目を介して導電性メツシユの内側に導入
するガス導入工程と、このガス導入工程と共に、
前記電極と前記導電性基体との間の領域にプラズ
マを生起させ、前記導電性基体上に前記原料ガス
に含まれる原子を含む膜を成膜する成膜工程とを
有し、前記電極と前記導電性メツシユとの間の距
離が、成膜中のプラズマ中の電子の平均自由行程
よりも小さいことを特徴とするものである。
The present invention provides a reduced pressure system in which a space containing an electrode and a conductive substrate is surrounded by an electrically grounded cylindrical conductive mesh that allows the flow of raw material gas through the mesh and can act as a plasma barrier. In the reaction chamber under this condition, a necessary amount of raw material gas is introduced into the inside of the conductive mesh through the mesh by flowing the raw material gas through the spatial region within the conductive mesh and the region around the conductive mesh. Along with the gas introduction process and this gas introduction process,
a film forming step of generating plasma in a region between the electrode and the conductive substrate to form a film containing atoms contained in the raw material gas on the conductive substrate; The distance between the conductive mesh and the conductive mesh is smaller than the mean free path of electrons in the plasma during film formation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照しながら説明する。
まず、第3図及び第4図を参照して本発明の原理
を説明する。これらの図に示す様な構造の平板基
板用のa−Si成膜装置では成膜速度が、16μm/
時ときわめて速い事が判明している。すなわち、
平板基板30をセツトするための基台31及び基
板30と対向した対向電極32を導電性メツシユ
34で囲み、基台31と対向電極32の間で発生
したSiを含むガスのプラズマをメツシユ34の内
側にとじこめる事によつて対向電極側に片寄つて
いたプラズマ陽光柱35が基板30の側まで拡が
るため、a−Si膜の成膜速度が飛躍的に上がると
いう原理である。なお、図中36Aは高周波電
源、36Bは反応容器、36Cは排気管、36D
は排気管36Cに設けられたバルブ、36Eはヒ
ータ、36Fは原料ガス導入管、36Gはガス導
入管36Fに設けられたバルブ、d1はダークスペ
ースシールドのための距離である。
Hereinafter, the present invention will be explained with reference to the drawings.
First, the principle of the present invention will be explained with reference to FIGS. 3 and 4. In the a-Si film deposition equipment for flat substrates with the structure shown in these figures, the deposition rate is 16 μm/
It turns out that time moves extremely quickly. That is,
A base 31 for setting the flat substrate 30 and a counter electrode 32 facing the substrate 30 are surrounded by a conductive mesh 34, and the plasma of gas containing Si generated between the base 31 and the counter electrode 32 is transferred to the mesh 34. This is the principle that by confining the plasma to the inside, the plasma positive column 35, which had been biased toward the counter electrode, expands to the substrate 30, thereby dramatically increasing the deposition rate of the a-Si film. In addition, in the figure, 36A is a high frequency power supply, 36B is a reaction vessel, 36C is an exhaust pipe, and 36D
is a valve provided in the exhaust pipe 36C, 36E is a heater, 36F is a source gas introduction pipe, 36G is a valve provided in the gas introduction pipe 36F, and d 1 is a distance for dark space shielding.

本発明は、この原理に従つたものであり、第5
図、第6図および第7図に本発明の成膜方法に適
したa−Si感光体の量産装置を示す。第5図は本
発明のa−Si感光体ドラムの量産装置の断面図で
ある。基本的な構成は、第2図に示した量産装置
と同じであるが、本発明の装置では反応容器40
内に複数本の導電性ドラム状基体41Bの上下に
導電性メツシユ42及び43を設けてある。第6
図は第5図のA−A′断面であり、第7図は第5
図のB−B′断面である。第6図からわかる様に
上側メツシユ42は、ほぼ全面に設けてある。下
側メツシユ43は複数本のドラム状基体41Bが
真空控室44から反応容器40へ又は反応容器4
0から真空控室45へ移動している時は、回転軸
49の通り道47のみがあけてある(第7図参
照)。そして、ドラム状基体41B…が反応容器
40内の定位置にある時は、第8図に示すごとく
下側メツシユのさらに下側に設けられた可動メツ
シユ48が矢印の方向に移動して結果的に基体の
回転軸49の所以外はすべてメツシユ43及び4
8によつて囲まれる構造となつている。
The present invention is based on this principle, and the fifth
6 and 7 show an apparatus for mass production of a-Si photoreceptors suitable for the film forming method of the present invention. FIG. 5 is a sectional view of a mass production apparatus for a-Si photosensitive drums according to the present invention. The basic configuration is the same as the mass production device shown in FIG. 2, but in the device of the present invention, the reaction vessel 40
Inside, conductive meshes 42 and 43 are provided above and below a plurality of conductive drum-shaped substrates 41B. 6th
The figure is the A-A' cross section in Figure 5, and Figure 7 is the 5-5 cross section.
This is a cross section taken along line BB' in the figure. As can be seen from FIG. 6, the upper mesh 42 is provided on almost the entire surface. The lower mesh 43 has a plurality of drum-shaped substrates 41B transferred from the vacuum chamber 44 to the reaction vessel 40 or from the reaction vessel 4.
When moving from 0 to the vacuum waiting room 45, only the passage 47 for the rotating shaft 49 is open (see FIG. 7). When the drum-shaped substrates 41B are in the fixed position in the reaction vessel 40, the movable mesh 48 provided further below the lower mesh moves in the direction of the arrow as shown in FIG. The meshes 43 and 4 are all connected to the base body except for the rotating shaft 49.
It has a structure surrounded by 8.

本発明ではさらに注意深い配慮がなされてい
る。すなわち、導電性メツシユ50と対向電極5
1の間の距離d1及び導電性メツシユ43と対向電
極51の間の距離d2は、a−Si感光体成膜時のプ
ラズマ中の電子の平均自由行程よりも小さくなつ
ている。通常、導電性メツシユ42,43は、反
応容器40の内壁を通じて接地しているため、対
向電極51とメツシユとの間に異常放電を生じ、
印加電力がその場所において消費されてしまう。
ところが本発明では、d1,d2がいわゆるダークス
ペースシールドとなつているため、この様な異常
放電を生ずる事もない。
Further careful considerations have been made in the present invention. That is, the conductive mesh 50 and the counter electrode 5
1 and the distance d 2 between the conductive mesh 43 and the counter electrode 51 are smaller than the mean free path of electrons in the plasma during film formation of the a-Si photoreceptor. Normally, the conductive meshes 42 and 43 are grounded through the inner wall of the reaction vessel 40, so abnormal discharge occurs between the counter electrode 51 and the meshes.
The applied power will be consumed at that location.
However, in the present invention, since d 1 and d 2 serve as so-called dark space shields, such abnormal discharge does not occur.

なお、図中41Aは導電性ドラム状基体、50
Aは回転基台、50Bは回転基台50Aを回転自
在に支える。ベアリング、50Cは排気管、50
Dは基台、50Eは回転基台50Aにモータ50
Fの駆動力を伝達するシヤフト、50Gは排気
管、50Hは排気管50Gに設けられたバルブ、
50Iは排気管、50Jは排気管50Iに設けら
れたバルブ、50Kは原料ガス導入管、50Lは
原料ガス導入管50Kに設けられたバルブであ
る。
In addition, in the figure, 41A is a conductive drum-shaped substrate, and 50
A is a rotary base, and 50B rotatably supports the rotary base 50A. Bearing, 50C is exhaust pipe, 50
D is the base, 50E is the motor 50 on the rotating base 50A.
The shaft that transmits the driving force of F, 50G is the exhaust pipe, 50H is the valve installed in the exhaust pipe 50G,
50I is an exhaust pipe, 50J is a valve provided on the exhaust pipe 50I, 50K is a raw material gas introduction pipe, and 50L is a valve provided on the raw material gas introduction pipe 50K.

また、50M,50Nはゲートバルブであり、
50Pはメツシユ48の回動支点であり、50Q
はヒータ、50RはOリング、50Sは排気管5
0Cに設けられたバルブである。
Also, 50M and 50N are gate valves,
50P is the rotation fulcrum of the mesh 48, and 50Q
is the heater, 50R is the O-ring, 50S is the exhaust pipe 5
This is a valve installed at 0C.

(実施例) 本発明のドラム状基体の上下にメツシユを設け
た反応容器2内において一度10-5Torrの真空に
引いた後、導電性ドラム状基体温度を250℃に設
定し原料ガスとしてSiH4を1000SCCMの流量で
反応圧力1.0Torrに設定された反応容器2内に導
入し、高周波電力を1KW印加した状態で、1時
間水素を含むa−Si膜の成膜を行つたところ、5
本のドラムともほぼ18μmの均一な膜厚のa−Si
感光体が得られた。この5本のa−Si感光体ドラ
ムに−6.0KVが印加されたコロナ放電器によるコ
ロナ帯電を行つたところ、−250Vの均一な表面電
位が得られ、2Luxのタングステン光による光照
射によつて0.6Lux・Secの高光感度を示し、従来
の遅い成膜速度で成膜したa−Si感光体ドラムと
同等の特性を得た。
(Example) After a vacuum of 10 -5 Torr was once drawn in the reaction vessel 2 in which a mesh was provided on the top and bottom of the drum-shaped substrate of the present invention, the temperature of the conductive drum-shaped substrate was set at 250°C, and SiH was used as the raw material gas. 4 was introduced into the reaction vessel 2 set at a reaction pressure of 1.0 Torr at a flow rate of 1000 SCCM, and an a-Si film containing hydrogen was formed for 1 hour with 1 KW of high-frequency power applied.
A-Si with a uniform film thickness of approximately 18μm for book drums
A photoreceptor was obtained. When these five a-Si photoreceptor drums were corona charged with a corona discharger to which -6.0KV was applied, a uniform surface potential of -250V was obtained, and by light irradiation with 2Lux tungsten light, a uniform surface potential of -250V was obtained. It exhibited a high photosensitivity of 0.6 Lux Sec, and obtained characteristics equivalent to those of a-Si photoreceptor drums deposited at a conventional slow deposition rate.

また、前述の本発明のa−Si感光体ドラムの量
産装置を用いて5本単位で連続的に、a−Si感光
体ドラムの成膜を行つたところ8時間で30本のa
−Si感光体ドラムの生産が出来た。
Furthermore, when a-Si photoreceptor drums were continuously formed in units of five using the above-mentioned a-Si photoreceptor drum mass production apparatus of the present invention, 30 a-Si photoreceptor drums were deposited in 8 hours.
-Production of Si photoreceptor drum was completed.

なお、上述の実施例では、感光体を成膜する方
法について説明したが、光センサー等の成膜に応
用することができるし、Si原子を含む膜の他、
Geを含む膜の成膜にも利用することができる。
In addition, in the above-mentioned embodiment, the method for forming a film on a photoreceptor was explained, but it can be applied to forming a film on an optical sensor, etc.
It can also be used to form a film containing Ge.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、反応室
内に配設された電極と導電性基体との間の空間周
囲を、筒状の導電性メツシユで囲繞して原料ガス
のプラズマを導電性メツシユ内に封じ込むように
したから、従来の成膜方法と比べて成膜速度を大
幅に上げることができる。
As explained above, according to the present invention, a cylindrical conductive mesh surrounds the space between the electrode and the conductive substrate disposed in the reaction chamber, and the plasma of the raw material gas is transferred to the conductive mesh. Since the film is confined within the film, the film formation speed can be significantly increased compared to conventional film formation methods.

また、反応室内に導入された原料ガスの内、必
要量の原料ガスだけを網目を介して導電性メツシ
ユの内側に導入し得るようにしたから、プラズマ
領域へのガスの適度な供給により、不要な粉末状
副生成物の発生を防ぎ効率の高い成膜を行うこと
ができる。
In addition, out of the raw material gas introduced into the reaction chamber, only the required amount of raw material gas can be introduced inside the conductive mesh through the mesh. It is possible to prevent the generation of powdery by-products and perform highly efficient film formation.

また、電極と導電性メツシユとの間の距離が、
成膜中のプラズマ中の電子の平均自由行程よりも
小さいから、この部分がダークスペースシールド
となつて、異常放電が防止され、印加電力が消費
されてしまうようなことがなく、確実な成膜が行
えるといつた効果を奏する。
Also, the distance between the electrode and the conductive mesh is
Because it is smaller than the mean free path of electrons in the plasma during film formation, this part acts as a dark space shield, preventing abnormal discharge and eliminating the consumption of applied power, ensuring reliable film formation. It has the same effect as when you can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の成膜装置の概略的構成図、第2
図は量産型成膜装置の先行技術例を示す概略的構
成図、第3図ないし第8図は本発明を実施し得る
装置の構成を示すもので、第3図は原理を説明す
るための装置の基本構成を示す概略的正面図、第
4図は同じく概略的平面図、第5図は概略的構成
図、第6図は第5図A−A′線に沿う断面図、第
7図は第5図B−B′線に沿う断面図、第8図a
は第5図C−C′線に沿う断面図、第8図bは第8
図aのA部の拡大図である。 40……反応容器、41B……導電性ドラム状
基体、42,43……導電性メツシユ、49……
回転軸、50M,50N……ゲートバルブ、51
……対向電極。
Figure 1 is a schematic configuration diagram of a conventional film forming apparatus;
The figure is a schematic configuration diagram showing a prior art example of a mass-production type film forming apparatus, and Figures 3 to 8 show the configuration of an apparatus that can implement the present invention. Figure 3 is a diagram for explaining the principle. A schematic front view showing the basic configuration of the device, FIG. 4 is a schematic plan view, FIG. 5 is a schematic configuration diagram, FIG. 6 is a sectional view taken along the line A-A' in FIG. 5, and FIG. is a sectional view along the line B-B' in Figure 5, and Figure 8a.
is a sectional view taken along line C-C' in Figure 5, and Figure 8b is a cross-sectional view taken along line C-C' in Figure 5.
It is an enlarged view of part A of figure a. 40... Reaction container, 41B... Conductive drum-shaped substrate, 42, 43... Conductive mesh, 49...
Rotating shaft, 50M, 50N...gate valve, 51
...Counter electrode.

Claims (1)

【特許請求の範囲】 1 電極と導電性基体を含む空間を、網目を介し
て原料ガスの流通が可能でかつプラズマの障壁と
なり得る電気的に接地された筒状の導電性メツシ
ユで囲繞したものを含む減圧状態の反応室内にお
いて、前記導電性メツシユ内の上記空間領域及び
上記導電性メツシユの周囲の領域とに原料ガスを
流通させることにより必要量の原料ガスを前記網
目を介して導電性メツシユの内側に導入するガス
導入工程と、 このガス導入工程と共に、前記電極と前記導電
性基体との間の領域にプラズマを生起させ、前記
導電性基体上に前記原料ガスに含まれる原子を含
む膜を成膜する成膜工程と、 を有し、 前記電極と前記導電性メツシユとの間の距離
が、成膜中のプラズマ中の電子の平均自由行程よ
りも小さいことを特徴とする成膜方法。 2 導電性基体が、ドラム状に形成されているこ
とを特徴とする特許請求の範囲第1項記載の成膜
方法。
[Scope of Claims] 1. A space containing an electrode and a conductive substrate surrounded by an electrically grounded cylindrical conductive mesh that allows the flow of source gas through the mesh and can act as a plasma barrier. A necessary amount of the raw material gas is passed through the conductive mesh into the conductive mesh by flowing the raw material gas through the spatial region within the conductive mesh and the area around the conductive mesh in a reaction chamber under reduced pressure including the conductive mesh. a step of introducing a gas into the inside of the gas; and together with this gas introduction step, generating plasma in a region between the electrode and the conductive substrate, and forming a film containing atoms contained in the raw material gas on the conductive substrate. A film forming method comprising: a film forming step of forming a film; and a distance between the electrode and the conductive mesh is smaller than the mean free path of electrons in plasma during film forming. . 2. The film forming method according to claim 1, wherein the conductive substrate is formed into a drum shape.
JP58226656A 1983-11-30 1983-11-30 Forming method of film Granted JPS60117716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226656A JPS60117716A (en) 1983-11-30 1983-11-30 Forming method of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226656A JPS60117716A (en) 1983-11-30 1983-11-30 Forming method of film

Publications (2)

Publication Number Publication Date
JPS60117716A JPS60117716A (en) 1985-06-25
JPH0456450B2 true JPH0456450B2 (en) 1992-09-08

Family

ID=16848595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226656A Granted JPS60117716A (en) 1983-11-30 1983-11-30 Forming method of film

Country Status (1)

Country Link
JP (1) JPS60117716A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524735Y2 (en) * 1991-04-05 1997-02-05 大和ハウス工業株式会社 Steel column base

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132677A (en) * 1976-01-22 1977-11-07 Western Electric Co Reactor for radiating flow
JPS54134972A (en) * 1978-04-12 1979-10-19 Tokyo Denki Daigaku Diode discharge tube having metal mesh anode
JPS58208120A (en) * 1982-05-27 1983-12-03 Agency Of Ind Science & Technol Apparatus for forming thin silicon film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132677A (en) * 1976-01-22 1977-11-07 Western Electric Co Reactor for radiating flow
JPS54134972A (en) * 1978-04-12 1979-10-19 Tokyo Denki Daigaku Diode discharge tube having metal mesh anode
JPS58208120A (en) * 1982-05-27 1983-12-03 Agency Of Ind Science & Technol Apparatus for forming thin silicon film

Also Published As

Publication number Publication date
JPS60117716A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
US4666734A (en) Apparatus and process for mass production of film by vacuum deposition
KR930006605B1 (en) Method for depositing a layer of material onto the outer surfaces of a plurality of cylindrical members
US4633809A (en) Amorphous silicon film forming apparatus
JPH0357190B2 (en)
US4972799A (en) Microwave plasma chemical vapor deposition apparatus for mass-producing functional deposited films
JPH0459390B2 (en)
JPH0456450B2 (en)
US4834023A (en) Apparatus for forming deposited film
JPS6010618A (en) Plasma cvd apparatus
JPS6153431B2 (en)
JPH034623B2 (en)
JPS6357777A (en) Deposited film forming device
JPS63234513A (en) Deposition film formation
JP2554867B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS62146262A (en) Apparatus for producing electrophotographic sensitive body
JPS62146263A (en) Apparatus for producing electrophotographic sensitive body
JP2531649B2 (en) Deposited film formation method
JPH03240965A (en) Amorphous silicon film forming device
JPS59119361A (en) Electrophotographic sensitive body
JPS59217615A (en) Apparatus for forming amorphous silicon film
JPH05217915A (en) Plasma cvd device
JPS63223178A (en) Production of amorphous silicon film
JPS6267176A (en) Film forming device
JPS63119520A (en) Method and apparatus for depositing amorphous silicon alloy
JPS59217614A (en) Apparatus for forming amorphous silicon film