JPH0456348A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0456348A
JPH0456348A JP16735190A JP16735190A JPH0456348A JP H0456348 A JPH0456348 A JP H0456348A JP 16735190 A JP16735190 A JP 16735190A JP 16735190 A JP16735190 A JP 16735190A JP H0456348 A JPH0456348 A JP H0456348A
Authority
JP
Japan
Prior art keywords
semiconductor region
circuit
integrated circuit
potential
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16735190A
Other languages
Japanese (ja)
Inventor
Hideki Ninomiya
二宮 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16735190A priority Critical patent/JPH0456348A/en
Publication of JPH0456348A publication Critical patent/JPH0456348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To build both circuits into a single semiconductor device by respectively locating a first circuit in a first semiconductor region and a second circuit in a third semiconductor region and operating both circuits under the condition that the reference voltage of external circuit is given to the first semiconductor region and non-reference voltage to the external circuit of the second and third semiconductor region. CONSTITUTION:A second semiconductor region 2 and a third semiconductor region 3 having different conductivity types are connected in the same potential by short- circuiting at the surfaces thereof with an electrode film for terminal Te and allows application of the non-reference voltage Vo. In the side of the first circuit C1, the reference voltage E is applied to the first semiconductor region l through the electrode film for terminal Te. Thereby, since a voltage difference between the reference voltage E and non-reference voltage Vo is applied in the backward bias direction to the pn junction between the first semiconductor region 1 and the second semiconductor region 2 having different conductivity types, the potential Vo of the third semiconductor region 3 is floated from the potential E of the first semiconductor region l and thereby the first circuit C1 in the first semiconductor region l and the second circuit C2 in the third semiconductor region 3 can operate independently without any interference under the different potentials Eo and Vo.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は外部回路の互いに異なる電位上で動作すべき複
数個の回路部を同一チップ内に組み込んでなる半導体集
積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device in which a plurality of circuit sections that operate on mutually different potentials of an external circuit are incorporated into the same chip.

〔従来の技術〕[Conventional technology]

周知のように半導体集積回路装置はふつう数v程度、高
くても数十■の給電電圧下で動作するものがほとんどで
、これを外部回路と接続して使用する際に外部回路が例
えば電力用回路でその動作口′IBt圧が集積回路の動
作電圧より高いも場合、それとの接続の態様に制約を受
けることがある。
As is well known, most semiconductor integrated circuit devices normally operate under a power supply voltage of several volts, or at most several tens of volts, and when used by connecting them to an external circuit, the external circuit may be used for power, for example. If the operating voltage of the circuit is higher than the operating voltage of the integrated circuit, there may be restrictions on the manner of connection.

この例を第5図以降を参照して説明する。This example will be explained with reference to FIG. 5 and subsequent figures.

第5図は三相のインバータ30によりモータ40等の電
力負荷を駆動する例であって、インバータ30はフリー
ホイーリングダイオード32がコレクタ・ベース間にそ
れぞれ並列接続された6個のこの例ではトランジスタ3
1を通例のように三相ブリッジ接続してなり、1対の電
源電位点■および8間の数百Vの直流電圧を受けて、モ
ータ40を駆動する3個の出力電圧Voに変換して出力
する。これらの6個のトランジスタ31を所定の順序で
かつ所定のタイミングで開閉操作するため、それらのベ
ースに第6図に要部が例示されたベース駆動回路Cがそ
れぞれ接続される。
FIG. 5 shows an example in which a three-phase inverter 30 drives a power load such as a motor 40. 3
1 is connected in a three-phase bridge as usual, and receives a DC voltage of several hundred volts between a pair of power supply potential points ■ and 8, and converts it into three output voltages Vo that drive the motor 40. Output. In order to open and close these six transistors 31 in a predetermined order and at a predetermined timing, a base drive circuit C, the main part of which is illustrated in FIG. 6, is connected to their bases.

第6図のベース駆動回路Cは出力部5Cとそれに対する
操作部60からなる。出力部50は数V程度の電圧を受
ける1対の電S端子TvとTeの間に2個のトランジス
タ51をプッシュプル接続したもので、操作部60はこ
れらトランジスタ51のベースをそれぞれ制御する2個
のトランジスタ62を各抵抗63とともに両電源端子T
νとTeの間に接続して、これらのトランジスタ62を
2個のインバータ61を介して制御指令C3とその補信
号により交互に開閉させるようにしたものである。これ
によって交互に開閉比作される出力部50内の2個のト
ランジスタ51の相互接続点から出力端子TOが導出さ
れ、第1図の各ベース駆動回路Cに対応するトランジス
タ31のベースにそれぞれ接続される。
The base drive circuit C shown in FIG. 6 consists of an output section 5C and an operation section 60 for the output section 5C. The output section 50 has two transistors 51 connected in a push-pull manner between a pair of electric terminals Tv and Te that receive a voltage of about several volts, and the operating section 60 controls the bases of these transistors 51, respectively. transistors 62 along with each resistor 63 at both power supply terminals T
It is connected between ν and Te, and these transistors 62 are alternately opened and closed by the control command C3 and its complementary signal via two inverters 61. As a result, an output terminal TO is led out from the interconnection point of the two transistors 51 in the output section 50, which are alternately opened and closed, and connected to the bases of the transistors 31 corresponding to each base drive circuit C in FIG. be done.

さて、第1図のインバータ30の例ではその6個のトラ
ンジスタ31がnpn形なので、その内の下側の行に並
ぶ3個についてはそれらに対応する3個のベース駆動回
路Cを1個の集積回路装置11内に作り込み、その基板
に対してこの例では接地側の電位Eを与えることでよい
Now, in the example of the inverter 30 shown in FIG. 1, the six transistors 31 are of the npn type, so for the three transistors in the lower row, the corresponding three base drive circuits C are connected to one transistor. It is sufficient to fabricate it in the integrated circuit device 11 and apply a potential E on the ground side to the substrate in this example.

しかし、上側の行に並ぶ3個のトランジスタ31につい
ては、それらのエミッタにそれぞれ互いに独立に変化す
る出力電圧Voが掛かるので、それらに接続すべきベー
ス駆動回路Cは互いに分離して図示のような個別の集積
回路装置12に分け、かつそれらの基板に対して各出力
電圧Voの電位をそれぞれ与える必要がある。
However, for the three transistors 31 arranged in the upper row, output voltages Vo that vary independently of each other are applied to their emitters, so the base drive circuits C to be connected to them are separated from each other as shown in the figure. It is necessary to separate the integrated circuit devices 12 into individual integrated circuit devices 12 and apply the potential of each output voltage Vo to each of the substrates.

第7図は参考用にかかる集積回路装置11や12に第6
図の・\−ス駆動回路Cの出力部50を組み込んだ部分
の従来のふつうの構造を示すものである。
FIG. 7 shows the sixth integrated circuit device 11 and 12 for reference.
This figure shows the conventional and ordinary structure of the part incorporating the output section 50 of the space drive circuit C shown in the figure.

その基板lには例えば図のようにn形のものが用いられ
、2個のトランジスタ51用にこの基板lの表面にこの
例では接合分離用のP形の埋込層4pとコレクタ用のn
形の埋込層4nとをあらかじめ拡散して置いた上でエピ
タキシャル層5をn形で成長させ、その表面から各トラ
ンジスタを作り込むべき範囲を取り囲むようn形の接合
分離層6を深く埋込層4pに達するまで拡散することに
よってエピタキシャル層5を各トランジスタ51用のコ
レクタg域として接合分離する。
For example, an n-type substrate l is used as shown in the figure, and for the two transistors 51, in this example, a P-type buried layer 4p for junction isolation and an n-type buried layer 4p for the collector are formed on the surface of the substrate l for the two transistors 51.
An n-type epitaxial layer 5 is grown after a buried layer 4n of a shape is diffused in advance, and an n-type junction isolation layer 6 is deeply buried so as to surround the area in which each transistor is to be formed from the surface of the epitaxial layer 5. By diffusing until reaching the layer 4p, the epitaxial layer 5 is junction-separated as a collector g region for each transistor 51.

この例ではnpn形の各トランジスタ51は、このn形
のコレクタ領域内に、埋込層4nに達するn形のコレク
タ接続層7とP形のベース層8とn形のエミツタ層9を
拡散することにより作り込まれ、これら両トランジスタ
51は図示のように相互接続されて1対の電源端子Tν
とTeおよび出力端子Toが導出される。なお、制御用
の2個のベース端子Tbは第1図の操作部60と接続さ
れる。
In this example, each npn-type transistor 51 has an n-type collector connection layer 7, a p-type base layer 8, and an n-type emitter layer 9 diffused into the n-type collector region to reach the buried layer 4n. These transistors 51 are interconnected as shown in the figure and connected to a pair of power supply terminals Tν.
, Te and the output terminal To are derived. Note that the two base terminals Tb for control are connected to the operating section 60 shown in FIG.

かかる集積回路装置を正常に動作させるには、図示のよ
うに一方の電a!端子Teを基板lと同電位に置く必要
があるので、第1図の集積回路装置11には3個のベー
ス駆動回路Cを作り込んでそれらに共通な電源端子Te
に一定の基準電位であるこの例では接地電位Eを与える
ことでよいが、3個の集積回路装置12についてはそれ
ぞれ前述のようにベース駆動回路Cを個別に作り込んで
、その上述のように基板1と同電位の電源端子Teに時
間的に絶えず変動する各出力電圧Voを個別に与えた状
態で、つまりそれぞれ独立した電位上で動作させる必要
が生じるのである。
In order to operate such an integrated circuit device normally, it is necessary to connect one of the terminals a! Since it is necessary to place the terminal Te at the same potential as the substrate l, three base drive circuits C are built into the integrated circuit device 11 of FIG.
In this example, it is sufficient to apply the ground potential E, which is a constant reference potential to It becomes necessary to operate with each output voltage Vo, which constantly fluctuates over time, individually applied to the power supply terminal Te, which has the same potential as the substrate 1, that is, on each independent potential.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上側のベース駆動回路のような複数個の回路を集積回路
装置内に組み込んで外部回路とそれぞれ接続する際に、
各回路を動作させる電位すなわち集積回路装置の基板の
電位が異なると、動作電位が異なる回路ごとに集積回路
装置を分離する必要があるので、各集積回路装置の製作
やパッケージにそれだけ手間と費用が掛かり、かつその
実装に際しても余分なスペースや手間を要する。
When incorporating multiple circuits, such as the upper base drive circuit, into an integrated circuit device and connecting them to external circuits,
If the operating potential of each circuit, that is, the potential of the integrated circuit device's substrate, differs, it is necessary to separate the integrated circuit device into circuits with different operating potentials, which increases the effort and cost of manufacturing and packaging each integrated circuit device. However, it also requires extra space and effort to implement.

この問題を解決するため、例えば第1図の上側の行の3
個のトランジスタ31をpnp形とすれば、3個の集積
回路装置12のベース駆動回路Cを1個の集積回路装置
内に組み込めるが、その基板には電源電圧■の電位を与
える必要があるので、集積回路装置11とは別個に分離
しなければならない点に変わりはない。
To solve this problem, for example, 3 in the upper row of Figure 1
If the transistors 31 are of the pnp type, the base drive circuits C of the three integrated circuit devices 12 can be incorporated into one integrated circuit device, but it is necessary to apply the potential of the power supply voltage to the substrate. , and must be separated separately from the integrated circuit device 11.

本発明の目的は、かかるrJ1題を解決して、外部回路
の互いに異なる電位上で動作すべき複数個の回路部を1
個の集積回路装置内に組み込めるようにすることにある
An object of the present invention is to solve the rJ1 problem and to integrate a plurality of circuit sections that are to operate on mutually different potentials in an external circuit.
The objective is to enable it to be incorporated into individual integrated circuit devices.

〔課社を解決するための手段〕[Means for resolving divisions and companies]

この目的は本発明によれば、上述のようGこ外部回路の
基準電位側に接続すべき第1回路部のほかに非基準電位
側に接続すべき第2回路部を単一の集積回路装置内に組
み込むため、一方の導電形の第1半導体顛域と、第1半
導体領域内に作り込んだ他方の導電形の第2半導体領域
と、第2半導体領域内に作り込んだ一方の導電形の第3
半導体領域とを設け、第1回路部を第1半導体領域内に
According to the present invention, this purpose is to combine the first circuit section to be connected to the reference potential side of the G external circuit as described above and the second circuit section to be connected to the non-reference potential side into a single integrated circuit device. a first semiconductor region of one conductivity type, a second semiconductor region of the other conductivity type built into the first semiconductor region, and one conductivity type built into the second semiconductor region. the third
a semiconductor region, and a first circuit portion within the first semiconductor region.

第2回路部を第3半導体領域内にそれぞれ作り込み、第
1半導体碩域には外部回路の基準電位を。
The second circuit sections are built in the third semiconductor regions, and the reference potential of the external circuit is provided in the first semiconductor regions.

第2および第3半導体領域には外部回路の非基準電位を
それぞれ与えた状態で両回踏部を動作させることによっ
て達成される。
This is achieved by operating both turning sections while applying non-reference potentials from an external circuit to the second and third semiconductor regions, respectively.

なお、第1半導体領域は集積回路装置の基板等で構成さ
れる。第1および第2回路部のいずれもふつう複数の回
路からなり、外部回路の基準電位側で動作する第1回路
部はむろん1個であるが、第2回路部は独立に変化しう
る非基準電位の数に応じた個数だけ設けられる。
Note that the first semiconductor region is formed of a substrate of an integrated circuit device or the like. Both the first and second circuit sections usually consist of a plurality of circuits, of course the first circuit section operates on the reference potential side of the external circuit, but the second circuit section operates on the reference potential side of the external circuit, while the second circuit section has a non-standard circuit that can change independently. The number of electrodes corresponding to the number of potentials is provided.

〔作用〕[Effect]

以下、第1図の原理図を参照して前項の本発明の構成が
もつ作用を説明する。ただし、ここでは図の簡単化のた
め第1回路部C1と第2回路部C2がともに単一のトラ
ンジスタにより代表され、集積回路装置の基板である第
1半導体61域lがP形の場合が示されている0両回路
部CIと02は例えば前に説明した第5図と同し第2図
のインバータ30と接続されるものとする。
Hereinafter, the effect of the configuration of the present invention described in the previous section will be explained with reference to the principle diagram shown in FIG. However, in order to simplify the diagram, both the first circuit section C1 and the second circuit section C2 are represented by a single transistor, and it is assumed that the first semiconductor region 61, which is the substrate of the integrated circuit device, is of P type. It is assumed that the illustrated circuit sections CI and 02 are connected, for example, to the inverter 30 of FIG. 2, which is the same as that of FIG. 5 described above.

本発明では、上述のP形である一方の導電形の第1半導
体領域1内に他方の導電形であるn形の第2半導体領域
2を、またその中に一方の導電形であるP形の第3半導
体領域3を順次設け、第1半導体領域1内に第2図の接
地電位Eである基準電位下で動作する第1回路部CIを
、第3半導体領域3内に第2図の出力電圧Voである非
基準電位下で動作する第2回路部C2をそれぞれ作り込
む0図の両回踏部C1と02はともにn形のコレクタ領
域5とP形のベース層8とn形のエミツタ層9をもつn
pn )ランジスタである。
In the present invention, within the first semiconductor region 1 of one conductivity type which is P type, there is a second semiconductor region 2 of N type which is the other conductivity type, and within the first semiconductor region 1 which is of one conductivity type which is P type. The third semiconductor regions 3 of FIG. The two circuit parts C1 and 02 in Figure 0, which respectively form the second circuit part C2 that operates under a non-reference potential that is the output voltage Vo, have an n-type collector region 5, a p-type base layer 8, and an n-type collector region 5. n with emitter layer 9
pn) is a transistor.

次に、第2回路部C2を第1回路部CIと独立した電位
下で動作させるために、本発明では導電形が異なる第2
半導体領域2と第3半導体碩域3を、例えば図のように
両者の表面を端子Te用の電極膜で短絡することにより
、同電位に接続して非基準電位Voを与える。もちろん
、第1回路部C1側では通例のようにそれが作り込まれ
ている第1半導体領域1に対し端子Te用の電極膜を介
して基準電位Eが与えられる。これによって、導電形が
互いに異なる第1半導体領域1と第2半導体領域2間の
pn接合に基準電位Eと非基準電位vO間の電位差が逆
バイアス方向に掛かるので、第3半導体領域3の電位ν
0が第1半導体領域1の電位Eから浮き、第1半導体領
域1内の第1回路部C1と第3半導体頭域3内の第2回
路部C2とが互いに異なる電位EとVoの下で相互干渉
することなく互いに全く独立して動作し得るようになる
Next, in order to operate the second circuit section C2 under a potential independent from the first circuit section CI, in the present invention, a second circuit section C2 having a different conductivity type is operated.
The semiconductor region 2 and the third semiconductor subregion 3 are connected to the same potential by, for example, short-circuiting their surfaces with an electrode film for the terminal Te as shown in the figure, thereby providing a non-reference potential Vo. Of course, on the side of the first circuit section C1, the reference potential E is applied to the first semiconductor region 1 in which the first circuit section C1 is formed via the electrode film for the terminal Te, as usual. As a result, the potential difference between the reference potential E and the non-reference potential vO is applied in the reverse bias direction to the pn junction between the first semiconductor region 1 and the second semiconductor region 2 having different conductivity types, so that the potential of the third semiconductor region 3 ν
0 floats from the potential E of the first semiconductor region 1, and the first circuit portion C1 in the first semiconductor region 1 and the second circuit portion C2 in the third semiconductor head region 3 are under different potentials E and Vo. They can now operate completely independently of each other without mutual interference.

従って本発明では第1回路部C1と第2回路部C2をす
べて第2図のように単一の集積回路装置lO内に組み込
んでしまうことができる。
Therefore, in the present invention, the first circuit section C1 and the second circuit section C2 can all be incorporated into a single integrated circuit device IO as shown in FIG.

なお、この集積回路装置10内の第1回路部C1用の第
1半導体領域1には基準電位Eが図のように共通に与え
られ、第2回路部C2用の各第3半導体領域3には互い
に独立に変化し得る非基準電位vOが図のように個別に
与えられる。
Note that the reference potential E is commonly applied to the first semiconductor region 1 for the first circuit section C1 in this integrated circuit device 10 as shown in the figure, and the reference potential E is commonly applied to each third semiconductor region 3 for the second circuit section C2. are individually given non-reference potentials vO that can vary independently of each other as shown in the figure.

〔実施例〕〔Example〕

以下、第3図と第4図を参照しながら本発明の詳細な説
明する。これらは前に説明した第7図と同様に第6図中
の出力部50を組み込んだ部分の断面を示し、第7図と
の対応部分には同じ符号が付されている。いずれの実施
例でも基板上にエピタキシャル層を成長させたウェハ内
に集積回路が作り込まれるものとする。
The present invention will be described in detail below with reference to FIGS. 3 and 4. Similar to FIG. 7 described above, these diagrams show a cross section of a portion of FIG. 6 in which the output section 50 is incorporated, and corresponding parts to those in FIG. 7 are given the same reference numerals. In both embodiments, it is assumed that integrated circuits are fabricated within a wafer on which an epitaxial layer is grown on a substrate.

第1図の例では第1回路部C1と第2回路部C2用に各
2個のトランジスタ51が作り込まれる。この実施例で
の集積回路装置の基板1はP形で、これを本発明にいう
第1半導体領域としてその表面の第2回路部C2を作り
込むべき範囲内にn形の第2半導体領域2を皿状に拡散
し、次にその中にP形の第3半導体領域3を皿状に拡散
する。
In the example of FIG. 1, two transistors 51 are formed for each of the first circuit section C1 and the second circuit section C2. The substrate 1 of the integrated circuit device in this embodiment is of P type, and an N type second semiconductor region 2 is formed on the surface of the substrate 1, which is used as the first semiconductor region according to the present invention, within the area where the second circuit portion C2 is to be formed. is diffused into a dish shape, and then a P-type third semiconductor region 3 is diffused therein into a dish shape.

さらに、その表面の所定範囲にトランジスタ51の接合
分離用のP形埋込層4pおよびコレクタ用のn形埋込層
4nをいずれも高不純物濃度で拡散して置いた上で、n
形のエピタキシャル層5をウエノ\の全面に成長させる
0次に、エピタキシャル層5の表面から通例のようにn
形の接合分離層6を各トランジスタ51を作り込む範囲
を囲むパターンでP形埋込層4pに達するまで深く拡散
する。
Further, a P-type buried layer 4p for junction isolation of the transistor 51 and an n-type buried layer 4n for the collector are both diffused with high impurity concentration in a predetermined range on the surface, and then
Next, grow an epitaxial layer 5 of the shape on the entire surface of the wafer.
The shaped junction isolation layer 6 is deeply diffused in a pattern surrounding the area where each transistor 51 is to be formed until it reaches the P-type buried layer 4p.

これによって、第1半導体領域1と第3半導体領域3で
は接合分離層6によって分割されたn形のエピタキシャ
ル層5をコレクタ領域として第1回路部CIと第2回路
部C2用のnpn )ランジスタ51がそれぞれ作り込
まれ、第2半導体領域2に対してはn形のエピタキシャ
ル層5の接合分離層6で内側と外側から囲まれそれに連
続する環状部分がいわばその延長部として利用される。
As a result, in the first semiconductor region 1 and the third semiconductor region 3, the n-type epitaxial layer 5 divided by the junction separation layer 6 is used as a collector region for the npn transistor 51 for the first circuit section CI and the second circuit section C2. The second semiconductor region 2 is surrounded from the inside and outside by the junction isolation layer 6 of the n-type epitaxial layer 5, and the annular portion continuous therewith is used as an extension of the second semiconductor region 2.

各トランジスタ51はエピタキシャル層5であるn形の
各コレクタ領域内に埋込層4nに達するn形のコレクタ
接続層7とn形のベース層8とn形のエミツタ層9を拡
散して作り込まれる。
Each transistor 51 is formed by diffusing an n-type collector connection layer 7, an n-type base layer 8, and an n-type emitter layer 9 that reach the buried layer 4n in each n-type collector region of the epitaxial layer 5. It will be done.

両回路部CIとC2のいずれでも、2個のトランジスタ
51は図のように直列接続されて電源端子TνおよびT
6と出力端子TOとが導出され、1対のベース端子Tb
は集積回路装置内の他回路と接続される。
In both circuit sections CI and C2, the two transistors 51 are connected in series as shown in the figure, and connected to power supply terminals Tν and T.
6 and an output terminal TO are derived, and a pair of base terminals Tb
is connected to other circuits within the integrated circuit device.

第1回路部C1側では、電源端子Teは接合分離層6の
表面に接触する電極膜を介して第1半導体領域である基
板1と接続され、第2図の基準電位Eがこれに与えられ
る。第2回路部C2側の電源端子Teは、それ用の電極
膜がエピタキシャル層5と接合分離層6の表面に共通に
接触してn形の第2半導体領域2とP形の第3半導体領
域3とを短絡するように設けられ、第2図の非基準電位
ν0がこれに与えられる。
On the first circuit section C1 side, the power supply terminal Te is connected to the substrate 1, which is the first semiconductor region, via an electrode film in contact with the surface of the junction separation layer 6, and the reference potential E shown in FIG. 2 is applied thereto. . The power supply terminal Te on the second circuit section C2 side has its electrode film in common contact with the surfaces of the epitaxial layer 5 and the junction separation layer 6, and has an n-type second semiconductor region 2 and a p-type third semiconductor region. 3, and the non-reference potential ν0 shown in FIG. 2 is applied thereto.

この例では、第2回路部C2例の電源端子Teの非基準
電位Voの方が第1回路部C1側の電源端子Toの基準
電位Eより正側なので、両者の電位差が第1半導体領域
1と第2半導体領域2の間のpn接合に対して逆バイア
ス方向に掛かり、これによって両回路部CIと02の動
作電位が互いに分離されて動作上の干渉が防止される。
In this example, since the non-reference potential Vo of the power supply terminal Te of the second circuit section C2 is more positive than the reference potential E of the power supply terminal To of the first circuit section C1, the potential difference between them is A reverse bias is applied to the pn junction between CI and second semiconductor region 2, thereby separating the operating potentials of both circuit portions CI and 02 from each other and preventing operational interference.

第4図の実施例では、第6図の出力部50のトランジス
タ用に同図ら)に示すダーリントントランジスタ52が
用いられ、それを構成する1対のトランジスタ53と5
4が同図(alの第1回路部C1と第2回路部C2のそ
れぞれについて示されている。第3図の実施例と異なる
点はこれらトランジスタ53と54の部分のみであり、
埋込層4nとコレクタ接続層7を両トランジスタに共用
に、ベース層8とエミツタ層9を個別にそれぞれ設けた
上で、図示のようにダーリントン接続する。
In the embodiment of FIG. 4, the Darlington transistor 52 shown in FIG. 6 is used as the transistor of the output section 50 of FIG.
4 is shown for each of the first circuit section C1 and the second circuit section C2 in the figure (al).The only difference from the embodiment shown in FIG. 3 is the transistors 53 and 54.
A buried layer 4n and a collector connection layer 7 are shared by both transistors, a base layer 8 and an emitter layer 9 are provided separately, and then Darlington connections are made as shown.

この実施例でも、第2回路部02側では端子Teの電極
膜を介して第2半導体領域2と第3半導体領域3とに非
基準電位Voが与えられ、基準電位Eが与えられる第1
半導体8N域1と第2半導体碩域2との間のpn接合に
両電位の差による逆バイアスが掛かるのも第3図の実施
例と同じである。
Also in this embodiment, on the second circuit section 02 side, the non-reference potential Vo is applied to the second semiconductor region 2 and the third semiconductor region 3 via the electrode film of the terminal Te, and the first
Similarly to the embodiment shown in FIG. 3, a reverse bias is applied to the pn junction between the semiconductor 8N region 1 and the second semiconductor region 2 due to the difference in potential between the two regions.

以上のいずれの実施例においても、第2半導体領域2の
不純物濃度と拡散深さを適宜に選定することにより、第
1回路部C1と第2回路部C2の間に充分な耐圧値を持
たせることができる。
In any of the above embodiments, by appropriately selecting the impurity concentration and diffusion depth of the second semiconductor region 2, a sufficient breakdown voltage value can be maintained between the first circuit section C1 and the second circuit section C2. be able to.

以上説明した実施例に限らず、本発明は種々の態様で実
施できる。図の導電形はもちろん任意で必要に応じ適宜
に選択される。また、実施例では基準電位を第2図の接
地電位Eとしたが、場合により電源電位■になることも
ある0本発明の集積回路装置の接続対象もインバータに
限らず、これを種々の外部回路と接続できる。
The present invention is not limited to the embodiments described above, and the present invention can be implemented in various embodiments. The conductivity type shown in the figure is of course arbitrary and can be selected as appropriate. In addition, in the embodiment, the reference potential is set to the ground potential E in FIG. 2, but in some cases it may be set to the power supply potential Can be connected to a circuit.

(発明の効果) 以上から明らかなように本発明では、外部回路の基準電
位に接続する第1回路部と非基準電位に接続する第2回
路部とを集積回路装置に組み込むため、一方の導電形の
第1半導体領域の所定範囲の表面から他方の導電形の第
2半導体領域と一方の導電形の第3半導体領域を順次入
れ子式に作り込んで、第1回路部を第1半導体領域内に
、第2回路部を第3半導体領域内にそれぞれ作り込み、
第1半導体頭域に外部回路の基準電位を与え第2および
第3半導体w4域に外部回路の非基準電位を与えた状態
で両回路部を動作させることにより、次の効果を上げる
ことができる。
(Effects of the Invention) As is clear from the above, in the present invention, since the first circuit section connected to the reference potential of the external circuit and the second circuit section connected to the non-reference potential are incorporated into the integrated circuit device, one of the conductive A second semiconductor region of the other conductivity type and a third semiconductor region of one conductivity type are sequentially nested from the surface of the first semiconductor region in a predetermined range to form the first circuit portion within the first semiconductor region. Then, a second circuit portion is formed in each third semiconductor region, and
By operating both circuit sections with the reference potential of the external circuit applied to the first semiconductor head region and the non-reference potential of the external circuit applied to the second and third semiconductor regions w4, the following effects can be achieved. .

(a)第2および第3半導体領域を同電位に接続して非
基準電位を与え、導電形が異なる第1半導体領域と第2
半導体領域との間のpn接合に基準電位と非基準電位間
の電位差を逆バイアス方向に掛けて第3半導体顛域を第
1半導体領域から電位的に浮かせることにより、第1お
よび第2回路部を単一の半導体装置内に組み込むことが
できる。
(a) The second and third semiconductor regions are connected to the same potential and a non-reference potential is applied to the first semiconductor region and the second semiconductor region having different conductivity types.
By applying a potential difference between a reference potential and a non-reference potential in a reverse bias direction to the pn junction between the semiconductor region and the third semiconductor region, the third semiconductor region is potential-leveraged from the first semiconductor region. can be incorporated into a single semiconductor device.

(b)第1半導体領域内の第1回路部と第3半導体領域
内の第2回路部を互いに異なる電位下で相互干渉なく全
く独立して動作させることができる。
(b) The first circuit section in the first semiconductor region and the second circuit section in the third semiconductor region can be operated completely independently under different potentials without mutual interference.

(C)第2半導体領域の不純物濃度と拡散深さを適宜に
選定することにより、第1半導体碩域内の第1回路部と
第3半導体顛域内の第2回路部の相互間に充分高い耐圧
値を持たせることができる。
(C) By appropriately selecting the impurity concentration and diffusion depth of the second semiconductor region, a sufficiently high breakdown voltage can be achieved between the first circuit section in the first semiconductor region and the second circuit section in the third semiconductor region. It can have a value.

このように本発明は、外部回路内の基準電位のほかにそ
れと独立に変化し得る非基準電位に接続すべき多数個の
回路部を単一の集積回路装置内に集積化することを可能
とするもので、集積回路自体のコストダウンはもちろん
、実装用のスペースや手間の削減に貢献し得るものであ
る。
Thus, the present invention makes it possible to integrate in a single integrated circuit device a large number of circuit sections that must be connected to a non-reference potential that can vary independently in addition to the reference potential in an external circuit. This not only reduces the cost of the integrated circuit itself, but also contributes to reducing mounting space and labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図までが本発明に関し、第1図は本発明
による半導体集積回路装置の原理を示すその断面図、第
2図はその適用例を示す回路図、第3図は本発明の一実
施例による集積回路装置の要部拡大断面図、第4図(a
)は異なる実施例による集積回路装置の要部拡大断面図
、同図伽)はそれに作り込まれるダーリントントランジ
スタの回路図である。第5図以降は従来技術に関し、第
5図は従来の集積回路装置とその適用例を示す回路図、
第6図は集積回路装置に組み込まれる回路部ないしベー
ス駆動回路を示す回路図、第7図はこれを紐み込んだ従
来の集積回路装置の要部拡大断面図である。これらの図
において、 1:第1半導体領域ないしは集積回路装置の基板、2:
第2半導体領域、3:第3半導体領域、4n:n形埋込
層、4p:P形埋込層、5:エピタキシャル層ないしコ
レクタ領域、6:接合分離層、7:コレクタ接続層、8
:ベース層、9:エミツタ層、10:本発明による集積
回路装置、11.12:従来の集積回路装置、30:外
部回路例としてのインバータ、31:を内用トランジス
タ、32:フリーホイーリングダイオード、4o:モー
タ等の負荷、50:出力部、51:トランジスタ、52
;ダーリントントランジスタ、53,54 :ダーリン
トントランジスタを構成するトランジスタ、60:S作
部、61:インバータ、62:トランジスタ、63:抵
抗、C:ベース駆動回路、C1:第1回路部、C2:第
2回路部、E:外部回路の基準電位ないしは接地電位、
Tb:回路部のベース端子、Te:回路部の電源端子、
To=回路部の出力端子、Tν:回路部の電源端子、■
:外部回路の電源電位点、vo:外部回路の非基準電位
ないしは出力電圧、である。 第3千謂4参4ト八  第2千虜4杢々慟瓜第1図 第1牛導タシ噌A 第2図 弔 図
1 to 4 relate to the present invention; FIG. 1 is a cross-sectional view showing the principle of a semiconductor integrated circuit device according to the present invention, FIG. 2 is a circuit diagram showing an example of its application, and FIG. 3 is a diagram illustrating the present invention. FIG. 4 (a
) is an enlarged cross-sectional view of a main part of an integrated circuit device according to a different embodiment, and FIG. 3 ) is a circuit diagram of a Darlington transistor built therein. 5 and subsequent figures relate to the prior art, and FIG. 5 is a circuit diagram showing a conventional integrated circuit device and an example of its application;
FIG. 6 is a circuit diagram showing a circuit section or base drive circuit incorporated in an integrated circuit device, and FIG. 7 is an enlarged sectional view of a main part of a conventional integrated circuit device incorporating this circuit. In these figures, 1: the first semiconductor region or the substrate of the integrated circuit device; 2: the substrate of the integrated circuit device;
2nd semiconductor region, 3: third semiconductor region, 4n: n-type buried layer, 4p: p-type buried layer, 5: epitaxial layer or collector region, 6: junction separation layer, 7: collector connection layer, 8
: base layer, 9: emitter layer, 10: integrated circuit device according to the present invention, 11.12: conventional integrated circuit device, 30: inverter as an example of external circuit, 31: internal transistor, 32: freewheeling diode , 4o: Load such as motor, 50: Output section, 51: Transistor, 52
; Darlington transistor, 53, 54: Transistor constituting the Darlington transistor, 60: S production section, 61: Inverter, 62: Transistor, 63: Resistor, C: Base drive circuit, C1: First circuit section, C2: Second Circuit section, E: Reference potential or ground potential of external circuit,
Tb: Base terminal of the circuit section, Te: Power terminal of the circuit section,
To = output terminal of the circuit section, Tν: power supply terminal of the circuit section, ■
: power supply potential point of the external circuit, vo: non-reference potential or output voltage of the external circuit. 3rd Thousand Years, 4th Chapter, 4th Part 8th, 2nd Thousand Prisoners of War, 4th Powder, Figure 1, Cow Leading Tashishasa A, Figure 2, Funeral Illustration

Claims (1)

【特許請求の範囲】[Claims]  外部回路の基準電位側に接続すべき第1回路部と非基
準電位側に接続すべき第2回路部とを組み込んでなる集
積回路装置であって、一方の導電形の第1半導体領域と
、第1半導体領域内に作り込まれた他方の導電形の第2
半導体領域と、第2半導体領域内に作り込まれた一方の
導電形の第3半導体領域とを備え、第1回路部が第1半
導体領域内に、第2回路部が第3半導体領域内にそれぞ
れ作り込まれ、第1半導体領域が外部回路の基準電位点
に、第2および第3半導体領域が外部回路の非基準電位
点にそれぞれ接続されることを特徴とする半導体集積回
路装置。
An integrated circuit device incorporating a first circuit section to be connected to a reference potential side of an external circuit and a second circuit section to be connected to a non-reference potential side, the integrated circuit device comprising: a first semiconductor region of one conductivity type; A second semiconductor region of the other conductivity type built in the first semiconductor region.
a semiconductor region and a third semiconductor region of one conductivity type formed in the second semiconductor region, the first circuit part is in the first semiconductor region, and the second circuit part is in the third semiconductor region. 1. A semiconductor integrated circuit device, wherein the first semiconductor region is connected to a reference potential point of an external circuit, and the second and third semiconductor regions are connected to a non-reference potential point of an external circuit.
JP16735190A 1990-06-26 1990-06-26 Semiconductor integrated circuit device Pending JPH0456348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16735190A JPH0456348A (en) 1990-06-26 1990-06-26 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16735190A JPH0456348A (en) 1990-06-26 1990-06-26 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0456348A true JPH0456348A (en) 1992-02-24

Family

ID=15848120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16735190A Pending JPH0456348A (en) 1990-06-26 1990-06-26 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0456348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109051A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Semiconductor integrated circuit device
JP2005109052A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109051A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Semiconductor integrated circuit device
JP2005109052A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JP2835116B2 (en) Power IC and method of manufacturing the same
US5446300A (en) Semiconductor device configuration with multiple HV-LDMOS transistors and a floating well circuit
EP0545488B1 (en) Semiconductor device comprising at least one power transistor and at least one control circuit with dynamic insulation circuit integrated monolithically in the same chip
US5376821A (en) Integrated emitter switching configuration using bipolar transistors
WO1993010561A1 (en) Gate array bases with flexible routing
US3913123A (en) Bipolar type semiconductor integrated circuit
US5541439A (en) Layout for a high voltage darlington pair
JPH02253653A (en) Monolithic integrated circuit for two-stage driving system which has circuit component for connecting lenel of driving signal to power transistor
JPH01146352A (en) Integrated structure which contains active and passive devices in insulatng pocket and operates at voltage higher than breakdown strength between respective devices and pocket containing them power semiconductor device
US5464993A (en) Monolithic integrated bridge transistor circuit and corresponding manufacturing process
JPH0456348A (en) Semiconductor integrated circuit device
US5515007A (en) Triple buffered amplifier output stage
JP2713461B2 (en) Integrated current mirror circuit
US5237198A (en) Lateral PNP transistor using a latch voltage of NPN transistor
JP3048790B2 (en) Semiconductor integrated circuit device
JP2597753B2 (en) Lateral PNP transistor with improved electrostatic withstand voltage using latch voltage of NPN transistor
JPS6098659A (en) Semiconductor ic having series-connected transistor
US6275095B1 (en) Semiconductor amplifier circuit
JP2730450B2 (en) Semiconductor device
JPH0124377B2 (en)
JPS59161059A (en) Semicondcutor device
GB2113915A (en) Semiconductor integrated circuit device
JPH0438864A (en) Semiconductor device having complementary field effect transistor
JPS60110158A (en) Semiconductor device
JPH0222545B2 (en)