JPH0456174A - Photoconductive type 4-quadrant light-detection element - Google Patents

Photoconductive type 4-quadrant light-detection element

Info

Publication number
JPH0456174A
JPH0456174A JP2163651A JP16365190A JPH0456174A JP H0456174 A JPH0456174 A JP H0456174A JP 2163651 A JP2163651 A JP 2163651A JP 16365190 A JP16365190 A JP 16365190A JP H0456174 A JPH0456174 A JP H0456174A
Authority
JP
Japan
Prior art keywords
electrode
common electrode
light
quadrant
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2163651A
Other languages
Japanese (ja)
Inventor
Masahiro Hibino
日比野 政博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2163651A priority Critical patent/JPH0456174A/en
Publication of JPH0456174A publication Critical patent/JPH0456174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable a dead zone of a light-receiving part to be reduced and enable sensitivity to be uniform and crosstalk to be reduced by dividing the light-receiving part into four regions with a thin common electrode and a thin groove reaching a substrate which crosses it at right angle and by placing four independent electrodes at each divided region. CONSTITUTION:A light-receiving part is divided into four regions by a thin common electrode 3' and a thin groove 5 which crosses it at right angle and other electrode 3 is provided in parallel to the electrode 3' at each divided region, thus enabling the light-receiving part to be divided at the thin electrode 3' or the groove 5 and a dead zone to be reduced. Also, since bias current flows in parallel between the electrode 3' and other electrode 3 within the light-receiving surface, bias current intensity distribution becomes uniform and sensitivity becomes uniform. Also, when the electrode 3' is set to a higher potential side for the independent electrode, sensitivity near the electrode 3' can be further improved. Further, since the light-receiving part is divided into the thin electrode 3' and the groove 5, electrical and optical independence of light-detection elements at each quadrant can be increased and crosstalk can be reduced. Then, bias current flows in parallel between the electrode 3' and other electrode 3 within the light-receiving surface, thus enabling bias current intensity distribution to be uniform and sensitivity to be uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光検出素子、特に光導電型の4象限光検出素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a photodetection element, particularly a photoconductive four-quadrant photodetection element.

〔従来の技術〕[Conventional technology]

第4図は従来の光導電型4象限光検出素子の構造を示す
図で、同図(a)はその平面図、同図(b)は(31図
のTVb矢視図である。図において、1は高抵抗体の基
板、2は化合物半導体、3は電極、4はサブマウントで
ある。
FIG. 4 is a diagram showing the structure of a conventional photoconductive four-quadrant photodetecting element, in which (a) is a plan view thereof, and (b) is a view in the direction of the TVb arrow in FIG. 31. , 1 is a high-resistance substrate, 2 is a compound semiconductor, 3 is an electrode, and 4 is a submount.

次に動作について説明する。第4図は対向する一対の電
極で、挟まれた化合物半導体2の領域を受光部とする光
導電型の光検出素子を4個配置した従来の4象限光検出
素子である。光導電型の光検出素子は、一対の電極間に
一定のバイアス電流i、を流しておき、化合物半導体2
内で入射光を吸収して発生したキャリアにより、電極間
の抵抗値が変化(低下)すると、電極間の電位変動とな
って表れることを利用した光検出素子である。4象限検
出素子は、基本的に4個の光検出素子から構成されるも
ので、各光検出素子への入射量、即ち出力信号の大きさ
により入射信号光の位置を検出するための素子である。
Next, the operation will be explained. FIG. 4 shows a conventional four-quadrant photodetecting element in which four photoconductive type photodetecting elements are arranged between a pair of opposing electrodes and a region of a sandwiched compound semiconductor 2 serves as a light receiving part. A photoconductive type photodetecting element is constructed by passing a constant bias current i between a pair of electrodes, and
This is a photodetecting element that utilizes the fact that when the resistance value between the electrodes changes (decreases) due to carriers generated by absorbing incident light within the sensor, this appears as a potential fluctuation between the electrodes. A four-quadrant detection element is basically composed of four photodetection elements, and is an element for detecting the position of the incident signal light based on the amount of incidence on each photodetection element, that is, the magnitude of the output signal. be.

しかし、第4図に示す構成例では中央の電極部分が入射
光を感じない不感帯であり、これが大きな面積を占める
ので寞用的ではなかった。
However, in the configuration example shown in FIG. 4, the central electrode portion is a dead zone that does not sense incident light, and this occupies a large area, making it impractical.

即ち、4象限光検出素子では、受光部領域において、電
極により遮られる入射光の割合を極力小さくすることが
重要であり、このような不感体頭載を小さくした構成例
を第5図に示す。
That is, in a four-quadrant light detection element, it is important to minimize the proportion of incident light that is blocked by the electrode in the light-receiving region, and an example of a configuration with a small insensitive body head is shown in FIG. .

即ち、第5図(a)、[有])はそれぞれ従来の光導電
型の4象限光検出素子の他の例を示す平面図、およびv
b矢視図であり、図において、第4図と同一符号は同一
または相当部分を示し、3vは共通電極である。
That is, FIG. 5(a) is a plan view showing another example of a conventional photoconductive type four-quadrant photodetecting element, and FIG.
It is a view taken along the arrow b, and in the figure, the same reference numerals as in FIG. 4 indicate the same or corresponding parts, and 3v is a common electrode.

第5図に示した4象限光検出素子は、第4図の素子と比
べてモノリシンク化されて作りやすくなっていることの
他に、受光部の分割が中央の細い十字状の共通電極3“
により行われており、不感帯の領域が小さくなっている
ことが特徴である。
The four-quadrant photodetecting element shown in Fig. 5 is monolithic and easier to manufacture than the element shown in Fig. 4. In addition, the light-receiving part is divided into a narrow cross-shaped common electrode 3" in the center.
The feature is that the dead zone area is small.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の第5図に示す4象限光検出素子は
以上のように構成されていたので、第5図(a)におい
て、受光部中央部の十字状の共通電極39と四隅の各独
立した電極間に流れているバイアス電流iBの強度分布
を考えると、十字の中心部で最も弱く、次に十字の周辺
部が強くなり、さらに四隅の電極部周辺では最も強くな
っている。
However, since the conventional four-quadrant photodetecting element shown in FIG. 5 was constructed as described above, in FIG. Considering the intensity distribution of the bias current iB flowing between the electrodes, it is weakest at the center of the cross, then stronger at the periphery of the cross, and strongest around the electrodes at the four corners.

また、素子の感度は印加電界強度、即ちバイアス電流強
度に比例するので、バイアス電流強度分布は感度の分布
にも相当する。従って、上述のバイアス電流ムラは感度
ムラにも繋がり、従来の第5図に示す4象限光検出素子
では最も重要な受光部の中央部分の感度が最も低(問題
であった。
Furthermore, since the sensitivity of the element is proportional to the applied electric field strength, that is, the bias current strength, the bias current strength distribution also corresponds to the sensitivity distribution. Therefore, the bias current unevenness mentioned above also leads to sensitivity unevenness, and in the conventional four-quadrant photodetecting element shown in FIG. 5, the sensitivity is the lowest in the central portion of the most important light receiving section (this was a problem).

また、中央の十字状の共通電極部は、光を感じない不感
帯となるので、極力細くする必要があるが、一方、細く
なると隣接する光検出素子間の信号干渉(クロストーク
)を生じる。これには光学的原因、および電極抵抗増大
に伴う電気的結合増加による電気的原因があった。
Furthermore, the central cross-shaped common electrode section becomes a dead zone that does not sense light, so it must be made as thin as possible, but on the other hand, if it is made thin, signal interference (crosstalk) will occur between adjacent photodetecting elements. This had an optical cause and an electrical cause due to an increase in electrical coupling due to an increase in electrode resistance.

以上のように第5図に示す構造の素子では、受光部での
不感帯を少なくすることはできるが、受光面内での感度
ムラおよびクロストークが発生するという問題点があり
、なお改善が必要であった。
As described above, with the element having the structure shown in Figure 5, it is possible to reduce the dead zone in the light receiving section, but there are problems such as sensitivity unevenness and crosstalk within the light receiving surface, which still need improvement. Met.

この発明は、上記のような問題点を解消するためになさ
れたもので、受光部の不感帯領域を少なくできるととも
に、感度の均一化、クロストーク低減も図ることができ
る光導電型4象限光検出素子を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is a photoconductive four-quadrant light detection system that can reduce the dead zone area of the light receiving section, equalize sensitivity, and reduce crosstalk. The purpose is to obtain an element.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る光導電型4象限光検出素子は、その受光
部を細い共通電極とそれに直交する基板まで達する細い
溝で4分割し、該4分割した領域にそれぞれ共通電極と
平行に他の4つの独立な電極を配置したものである。
In the photoconductive four-quadrant photodetecting element according to the present invention, the light-receiving part is divided into four by a thin common electrode and a narrow groove extending to the substrate perpendicular to the common electrode, and each of the four divided areas has another four areas parallel to the common electrode. Two independent electrodes are arranged.

また、このような構成のものにおいて、共通電極の電位
を前記独立電極に対して高電位側に設定したものである
Further, in such a structure, the potential of the common electrode is set to a higher potential side than the independent electrode.

また、さらにこの発明に係る光導電型4象限光検出素子
は、その受光部を細い十字型の共通電極で4分割すると
ともに、4分割したそれぞれの領域に共通電極と接し、
基板にまで達する細い溝を形成し、さらに各溝と直角に
他の4つの独立な電極を配置したものである。
Further, the photoconductive four-quadrant photodetecting element according to the present invention divides the light receiving part into four with a thin cross-shaped common electrode, and each of the four divided areas is in contact with the common electrode,
A thin groove reaching the substrate is formed, and four other independent electrodes are arranged at right angles to each groove.

〔作用〕[Effect]

この発明における光導電型4象限光検出素子は、細い共
通電極とこれに直交する細い溝で受光部を4分割し、各
分割した領域に共通電極と平行に他の電極設けるように
したので、受光部の分割が細い共通電極または溝にて行
われることとなり1.不感帯が小さくなる。また、受光
面内でバイアス電流は共通電極と他の電極間で平行に流
れることとなるので、バイアス電流強度分布は均一化さ
れ、感度も均一化する。
In the photoconductive four-quadrant photodetecting element of the present invention, the light-receiving area is divided into four by a thin common electrode and a thin groove perpendicular to the common electrode, and another electrode is provided in each divided area in parallel with the common electrode. The light-receiving section is divided into thin common electrodes or grooves, resulting in: 1. The dead zone becomes smaller. Further, since the bias current flows in parallel between the common electrode and other electrodes within the light receiving surface, the bias current intensity distribution is made uniform, and the sensitivity is also made uniform.

また、共通電極を独立電極に対して高電位側に設定した
ものでは、共通電極付近の感度がさらに向上される。
Further, in the case where the common electrode is set to a higher potential side than the independent electrodes, the sensitivity near the common electrode is further improved.

また、細い十字型の共通電極で受光部を4分割するとと
もに、各分割した領域に共通電極と接する溝を形成し、
さらに各溝と直角に他の電極を配置したので、受光部の
分割が細い共通電極と溝で分割されることとなり、各象
限の光検出素子の電気的、光学的独立性を高くすること
ができ、クロストークが低減される。また、受光面内で
バイアス電流は共通電極と他の電極感で平行に流れるこ
ととなるので、バイアス電流強度分布は均一化され、感
度も均一化する。
In addition, the light receiving section is divided into four parts by a thin cross-shaped common electrode, and a groove is formed in each divided area to contact the common electrode.
Furthermore, since other electrodes are placed at right angles to each groove, the light-receiving area is divided by the thin common electrode and the groove, making it possible to increase the electrical and optical independence of the photodetecting elements in each quadrant. This reduces crosstalk. Furthermore, since the bias current flows in parallel between the common electrode and the other electrodes within the light-receiving surface, the bias current intensity distribution is made uniform, and the sensitivity is also made uniform.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による光導電型4象限光検
出素子を示しており、同図(a)はその平面図、同図(
ロ)、(C)はそれぞれ(a)図のIb矢視図、IC矢
視図である0図において、■は高抵抗の基板、2は化合
物半導体層、3は電極(独立電極)、3゛は共通電極、
5は細い溝である。
FIG. 1 shows a photoconductive four-quadrant photodetector according to an embodiment of the present invention, and FIG. 1(a) is a plan view thereof, and FIG.
B) and (C) are the Ib arrow view and IC arrow view of Figure (a), respectively, where ■ is a high-resistance substrate, 2 is a compound semiconductor layer, 3 is an electrode (independent electrode), 3゛ is a common electrode,
5 is a thin groove.

第1図に示した共通電極3″は、第5図に示した従来の
共通電極3°と同じ機能であるが、本実施例では十字状
ではなく直線状である点が異なる。
The common electrode 3'' shown in FIG. 1 has the same function as the conventional common electrode 3° shown in FIG. 5, except that in this embodiment it has a linear shape instead of a cross shape.

また、上記の共通電極3°に直角で、化合物半導体2を
通って高抵抗体の基板1にまで達する細い溝5を設けて
受光部を分割し、さらに共通電極3゜と平行に直線状の
独立した電極3を各光検出素子について設けている゛。
In addition, a thin groove 5 is provided at right angles to the common electrode 3°, passing through the compound semiconductor 2 and reaching the high-resistance substrate 1 to divide the light receiving section, and a linear groove parallel to the common electrode 3° is also provided. An independent electrode 3 is provided for each photodetector element.

このような構成では、受光部を細い共通電極3゜と溝5
により分割しているので、受光部の不感帯部分を小さく
でき、さらに、共通電極3“とこれに平行な各象限の電
極3間に流れるバイアス電流iBの強度分布は受光部全
体で均一となる。従って、各象限の光検知器の素子の感
度を均一化できる。
In such a configuration, the light receiving part is connected to the thin common electrode 3° and the groove 5.
Since it is divided by , the dead zone of the light receiving section can be made small, and furthermore, the intensity distribution of the bias current iB flowing between the common electrode 3'' and the electrodes 3 in each quadrant parallel thereto becomes uniform throughout the light receiving section. Therefore, the sensitivity of the photodetector elements in each quadrant can be made uniform.

また、第1図に示した実施例において、バイアス電流を
流すために印加する電圧については特に記載しなかった
が、第1図の共通電極3゛を他の電極3よりも高電位側
に設定することもこの発明の実施例の範囲である。以下
、これについて説明する。
In addition, in the embodiment shown in FIG. 1, the voltage applied to cause the bias current to flow was not particularly described, but the common electrode 3' in FIG. 1 was set to a higher potential side than the other electrodes 3. It is also within the scope of embodiments of this invention. This will be explained below.

第3図(a)、(ロ)は、この発明の一実施例による光
導電型4象限光検出素子の動作を説明する図で、(a)
は信号光強度分布、働)は発生する過剰キャリア濃度分
布を示す。
FIGS. 3(a) and 3(b) are diagrams for explaining the operation of a photoconductive four-quadrant photodetecting element according to an embodiment of the present invention.
is the signal light intensity distribution, and function) is the generated excess carrier concentration distribution.

これらの図において2は化合物半導体、3°は共通電極
、6は入射光強度分布、7.7′および71′は過剰キ
ャリア濃度分布を表す。
In these figures, 2 represents a compound semiconductor, 3° represents a common electrode, 6 represents an incident light intensity distribution, and 7.7' and 71' represent an excess carrier concentration distribution.

次に動作について説明する。Next, the operation will be explained.

第3図(a)は共通電極3°付近に入射した信号光を示
し、2は化合物半導体、3“は共通電極、6は入射した
信号光の強度分布を示す、第3図において、入射した信
号光6のうち、斜線を施した部分のみが化合物半導体2
で吸収されて有効な信号となる。第3図伽)は、信号光
6を吸収して化合物半導体2の中で発生した過剰キャリ
アの分布を表し、7は発生する分布、即ち信号光分布を
表す。
Figure 3(a) shows the signal light incident on the common electrode at around 3°, where 2 is a compound semiconductor, 3'' is the common electrode, and 6 is the intensity distribution of the incident signal light. Of the signal light 6, only the shaded portion is the compound semiconductor 2.
is absorbed and becomes a valid signal. 3) shows the distribution of excess carriers generated in the compound semiconductor 2 by absorbing the signal light 6, and 7 represents the generated distribution, that is, the signal light distribution.

7′および71′は、キャリアの拡散やドリフトおよび
再結合を考慮した実際の過剰キャリアの分布図を表し、
7′は共通電極3°が他の電極3に比べて低電位側(即
ちマイナス側)の場合、71′は高電位側(即ちプラス
側)の場合を示す。光導電型の光検出素子に用いる化合
物半導体2には、通常N型の半導体が用いられるので、
その過剰キャリア密度は少数キャリアである正孔の密度
で決定される。一方、入射信号光を吸収して化合物半導
体2の中で発生した電子を正孔のペアのうち、正孔は正
電荷を持っているので、共通電極3gの極性によってプ
ラスのとき共通電極31がら離れるようにドリフトする
。また、正孔および電子の過剰キャリアは共通電極3“
で再結合して消滅するので、過剰キャリアの分布は共通
iit掻3°の極性がマイナスのとき7′に、プラスの
とき7″になる。ところで光検出素子の感度は過剰キャ
リア数に比例するので、第3図(b)より明らかなよう
に、4象限検出素子の中央にある共通電極3°付近の感
度は共電極3°をプラス側にすることにより感度の低下
を防止できる。
7' and 71' represent actual distribution maps of excess carriers taking into account carrier diffusion, drift, and recombination,
7' indicates the case where the common electrode 3° is on the low potential side (ie, the negative side) compared to the other electrodes 3, and 71' indicates the case where the common electrode 3° is on the high potential side (ie, the positive side). Since the compound semiconductor 2 used in the photoconductive type photodetecting element is usually an N-type semiconductor,
The excess carrier density is determined by the density of holes, which are minority carriers. On the other hand, among the pairs of holes, the electrons generated in the compound semiconductor 2 by absorbing the incident signal light are transferred from the common electrode 31 when the hole has a positive charge depending on the polarity of the common electrode 3g. Drift away. In addition, excess carriers of holes and electrons are removed from the common electrode 3"
The distribution of excess carriers is 7' when the polarity of the common IIT 3° is negative and 7'' when it is positive. By the way, the sensitivity of the photodetecting element is proportional to the number of excess carriers. Therefore, as is clear from FIG. 3(b), the sensitivity around the common electrode 3° in the center of the four-quadrant detection element can be prevented from decreasing by setting the common electrode 3° to the positive side.

また、さらにこの発明の他の実施例を図について説明す
る。
Further, other embodiments of the present invention will be described with reference to the drawings.

第2図(a)この発明の他の実施例による光導電型4象
限検出素子の平面図であり、同図b)は(a)図のIb
矢視図、同図(C)は(a1図のIc矢視図である。
FIG. 2(a) is a plan view of a photoconductive four-quadrant detection element according to another embodiment of the present invention, and FIG. 2(b) is a plan view of Ib of FIG.
A view in the direction of the arrows, (C) is a view in the direction of the Ic arrows in Figure a1.

図において、1は高抵抗体の基板、2は化合物半導体、
3および3″は電極、5は細い溝である。
In the figure, 1 is a high-resistance substrate, 2 is a compound semiconductor,
3 and 3'' are electrodes, and 5 is a thin groove.

第2図に示した共通電極3°は、第5図に示した従来の
ものと同じであるが、共通電極3”に接する細い溝5と
共通電極と平行な直線状の電極3をそれぞれの象限の光
検出器について設けた点が異なる。このような本実施例
においても共通電極3°と他の電極3とを互いに平行な
位置関係となるように設けているので、各光検出器につ
いて、バイアス電流が均一化され上記第1図に示した実
施例と同様に、素子感度の均一化を図ることができる。
The common electrode 3° shown in FIG. 2 is the same as the conventional one shown in FIG. The difference is that the photodetectors in the quadrants are provided.In this embodiment as well, the common electrode 3° and the other electrodes 3 are provided in a parallel positional relationship with each other, so the , the bias current is made uniform, and as in the embodiment shown in FIG. 1, the element sensitivity can be made uniform.

また、本実施例はこれ以外に第2図に示すように細い溝
5を十字型の共通電極3“に接して設けているので、中
央部の不感体は多少増加するが、電気的および光学的に
各光検出素子の独立性が高くなり、第4図に示した従来
の4象限光検出素子と同程度にまでクロストークを減ら
すことができる。
In addition, in this embodiment, a thin groove 5 is provided in contact with the cross-shaped common electrode 3'' as shown in FIG. In other words, the independence of each photodetection element is increased, and crosstalk can be reduced to the same level as the conventional four-quadrant photodetection element shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば受光部の中央に直線状
の細い共通電極と細い溝を直角に設け、さらに各光検出
素子の電極を共通電極に平行になるように配置したので
、受光面内の不感帯領域を少なくできるとともに、バイ
アス電流を均一化でき、感度の均一性を向上できる効果
がある。さらにこのような構成において、受光部中央の
直線状の共通電極の電位を他の電極に対して高電位側に
したので、共通電極付近の感度を向上できる効果がある
As described above, according to the present invention, a linear thin common electrode and a thin groove are provided at right angles to each other in the center of the light receiving section, and furthermore, the electrodes of each photodetecting element are arranged parallel to the common electrode. This has the effect of reducing the in-plane dead zone area, making the bias current uniform, and improving the uniformity of sensitivity. Furthermore, in such a configuration, since the potential of the linear common electrode at the center of the light receiving section is set to a higher potential side than the other electrodes, there is an effect that the sensitivity near the common electrode can be improved.

また、受光部中央の十字状の共通電極に接して溝を設け
、その溝に直角に他の電極を配置したので、受光面内の
不感帯領域を少なくできるとともに、バイアス電流を均
一化、感度の均一性を向上でき、さらに各光検出素子間
のクロストークを低減できる効果がある。
In addition, a groove is provided in contact with the cross-shaped common electrode at the center of the light-receiving section, and other electrodes are placed at right angles to the groove, which reduces the dead zone area within the light-receiving surface, equalizes the bias current, and improves sensitivity. This has the effect of improving uniformity and further reducing crosstalk between each photodetecting element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光導電型4象限光検
出素子を示す図、第2図はこの発明の他の一実施例によ
る光導電型4象限検出素子を示す図、第3図はこの発明
のさらに他の一実施例による光導電型4象限光検出素子
の動作を示す図、第4図は従来例による光導電型4象限
光検出素子を示す図、第5図は他の従来例による光導電
型4象限光検出素子を示す図である。 図において、1は高抵抗の基板、2は化合物半導体層、
3は電極(独立電極)、3“は共通電極、5は溝、7は
過剰キャリアの分布を示す。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a diagram showing a photoconductive type four-quadrant photodetecting element according to one embodiment of the present invention, FIG. 2 is a diagram showing a photoconductive type four-quadrant photodetecting element according to another embodiment of the present invention, and FIG. is a diagram showing the operation of a photoconductive type four-quadrant photodetecting element according to yet another embodiment of the present invention, FIG. 4 is a diagram showing a conventional photoconductive type four-quadrant photodetecting element, and FIG. FIG. 2 is a diagram showing a conventional photoconductive four-quadrant photodetecting element. In the figure, 1 is a high-resistance substrate, 2 is a compound semiconductor layer,
Reference numeral 3 indicates an electrode (independent electrode), 3" indicates a common electrode, 5 indicates a groove, and 7 indicates distribution of excess carriers. Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)高抵抗体の基板と、 該基板上に形成した化合物半導体層と、 該化合物半導体層上に形成した電極とを有する光導電型
4象限光検出素子であって、 前記化合物半導体層表面の受光部の中央に直線状に配置
された共通電極と、 該共通電極により2分割されたそれぞれの受光部の中央
に前記共通電極に対して直角に配置された、少なくとも
前記基板に達する溝と、 上記共通電極と上記溝とにより4分割されたそれぞれの
受光部に、上記共通電極と平行に配置された4つの独立
電極とを備えたことを特徴とする光導電型4象限光検出
素子。
(1) A photoconductive four-quadrant photodetecting element comprising a high-resistance substrate, a compound semiconductor layer formed on the substrate, and an electrode formed on the compound semiconductor layer, the surface of the compound semiconductor layer being a common electrode arranged linearly in the center of the light receiving section; and a groove reaching at least the substrate, arranged at right angles to the common electrode at the center of each light receiving section divided into two by the common electrode. . A photoconductive four-quadrant photodetecting element, characterized in that each light receiving section divided into four by the common electrode and the groove is provided with four independent electrodes arranged in parallel to the common electrode.
(2)前記共通電極の電位は、前記独立電極に対して高
電位であることを特徴とする請求項1記載の光導電型4
象限光検出素子。
(2) The photoconductive type 4 according to claim 1, wherein the potential of the common electrode is higher than that of the independent electrode.
Quadrant light detection element.
(3)高抵抗体の基板と、 該基板上に形成した化合物半導体層と、 該化合物半導体層上に形成した電極とを有する光導電型
4象限光検出素子であって、 前記化合物半導体層表面の受光部の中央に、該受光部を
4分割するように十字形状に配置された共通電極と、 前記4分割された受光部のそれぞれの領域に前記共通電
極に接するように配置された、少なくとも前記基板に達
する溝と、 前記4分割された受光部の領域に、それぞれ前記溝に対
して直角に配置された4つの独立電極とを備えたことを
特徴とする光導電型4象限光検出素子。
(3) A photoconductive four-quadrant photodetecting element comprising a high-resistance substrate, a compound semiconductor layer formed on the substrate, and an electrode formed on the compound semiconductor layer, the surface of the compound semiconductor layer being a common electrode disposed in the center of the light receiving section in a cross shape so as to divide the light receiving section into four; and at least one common electrode disposed in each region of the four divided light receiving section so as to be in contact with the common electrode. A photoconductive four-quadrant photodetecting element comprising: a groove reaching the substrate; and four independent electrodes arranged perpendicularly to the groove in each of the four-divided areas of the light-receiving section. .
JP2163651A 1990-06-21 1990-06-21 Photoconductive type 4-quadrant light-detection element Pending JPH0456174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2163651A JPH0456174A (en) 1990-06-21 1990-06-21 Photoconductive type 4-quadrant light-detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2163651A JPH0456174A (en) 1990-06-21 1990-06-21 Photoconductive type 4-quadrant light-detection element

Publications (1)

Publication Number Publication Date
JPH0456174A true JPH0456174A (en) 1992-02-24

Family

ID=15777992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2163651A Pending JPH0456174A (en) 1990-06-21 1990-06-21 Photoconductive type 4-quadrant light-detection element

Country Status (1)

Country Link
JP (1) JPH0456174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950590A (en) * 2014-03-28 2015-09-30 格罗方德半导体公司 Metrology pattern layout and method of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950590A (en) * 2014-03-28 2015-09-30 格罗方德半导体公司 Metrology pattern layout and method of use thereof

Similar Documents

Publication Publication Date Title
US4999692A (en) Semiconductor magnetic field sensor
US4649409A (en) Photoelectric transducer element
JP2001291853A (en) Semiconductor energy detecting element
JP4571267B2 (en) Radiation detector
EP1113504A1 (en) Semiconductor position sensor
JPH0456174A (en) Photoconductive type 4-quadrant light-detection element
US4973935A (en) Infrared detector
JPS59127883A (en) Photosensitive semiconductor device
JPS5956774A (en) Semiconductor device for detecting incidence position of particle ray, and the like
JPH05226686A (en) Photodetector
JP2545144Y2 (en) Semiconductor optical position detector
JPH0226082A (en) Photodiode
JP4180708B2 (en) Semiconductor position detector
JPH0442919Y2 (en)
JPS6311821A (en) Photoconductive infrared detector
JPH06140659A (en) Optical semiconductor device
JPS60189975A (en) Solid-state light receiving element
JPH0820210B2 (en) Optical position detector
JPS62245118A (en) Photoconductive type infrared detector
JPH03270181A (en) Hall element
JPH02224281A (en) Semiconductor device for detecting incident position
JPS63119588A (en) Semiconductor photo detecting device
JPH02241065A (en) Photodetector
JPH0543308B2 (en)
JPH04360584A (en) Optical semiconductor device