JPH0456093B2 - - Google Patents

Info

Publication number
JPH0456093B2
JPH0456093B2 JP62051564A JP5156487A JPH0456093B2 JP H0456093 B2 JPH0456093 B2 JP H0456093B2 JP 62051564 A JP62051564 A JP 62051564A JP 5156487 A JP5156487 A JP 5156487A JP H0456093 B2 JPH0456093 B2 JP H0456093B2
Authority
JP
Japan
Prior art keywords
metal material
magnetic flux
shaped metal
induction heating
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62051564A
Other languages
Japanese (ja)
Other versions
JPS63317630A (en
Inventor
Tadashi Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62051564A priority Critical patent/JPS63317630A/en
Publication of JPS63317630A publication Critical patent/JPS63317630A/en
Publication of JPH0456093B2 publication Critical patent/JPH0456093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘導加熱装置に関するもので、特に帯
状金属材料(板、箔)の連続誘導加熱装置に適し
た誘導加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an induction heating device, and particularly to an induction heating device suitable for continuous induction heating of strip-shaped metal materials (plates, foils).

〔従来の技術〕[Conventional technology]

一般の誘導加熱装置では導電性物質に近接して
インダクタまたは加熱コイルを設ける。加熱コイ
ルには交番磁界を発生せしめ、電磁誘導作用によ
つて前記導電性物質に渦電流を発生させる。こ
の導電性物質に固有の電気抵抗Rによつて、導電
性物質にはジユール熱2Rが発生する。
In a typical induction heating device, an inductor or heating coil is provided in close proximity to a conductive substance. An alternating magnetic field is generated in the heating coil, and eddy currents are generated in the conductive material by electromagnetic induction. Due to the electric resistance R inherent in the conductive material, Joule heat 2 R is generated in the conductive material.

従来から、例えば特公昭55−36250号と特開昭
51−138937号でも開示されているように帯状金属
材料の焼鈍等の誘導加熱装置が用いられている。
このような帯状金属材料の加熱に対して誘導加熱
方式を適用するための方法として、第7図1に示
される縦方向磁束加熱方法(Longitudinal flux
heating法)と第7図2に示される直交方向磁束
加熱方法(Transverse flux heating法)とがあ
る。
Traditionally, for example, Japanese Patent Publication No. 55-36250 and Japanese Patent Publication No.
As disclosed in No. 51-138937, an induction heating device is used for annealing a band-shaped metal material.
As a method for applying the induction heating method to heating such a strip-shaped metal material, the longitudinal magnetic flux heating method shown in FIG.
There are two methods: heating method) and transverse flux heating method (transverse flux heating method) shown in FIG.

直交方向磁束加熱方法の一例を第8図に示す。
同図に於て、1,2は一定距離離間して対向配置
され且つ所定距離おいて対向面に凹部1s,2s
が形成されている鉄心1a,2aと、前記各凹部
1s,2sに収納され、且つ巻きはじめと巻き終
りとが近接した位置から引き出されるようにほぼ
四辺形状に巻回された誘導加熱コイル1b,2b
とからなる誘導加熱インダクタの相対向する上
辺、下辺である。5は誘導加熱インダクタ1,2
間の空間を移動しながら誘導加熱処理される帯状
金属材料である。
An example of the orthogonal magnetic flux heating method is shown in FIG.
In the figure, 1 and 2 are arranged facing each other with a certain distance apart, and have recesses 1s and 2s on the opposing surfaces at a certain distance.
iron cores 1a and 2a in which are formed an induction heating coil 1b that is housed in each of the recesses 1s and 2s and is wound in a substantially quadrilateral shape so that the winding start and winding end are pulled out from positions close to each other; 2b
These are the opposing upper and lower sides of the induction heating inductor. 5 is induction heating inductor 1, 2
This is a band-shaped metal material that undergoes induction heating treatment while moving through the space between the two.

直交方向磁束加熱方法は鉄心1,2を用いるた
め、誘導加熱処理される金属材料5が磁性材料で
ある場合、発生する強い電磁力により鉄心1,2
に金属材料5が吸引されて著しく走行が阻害され
るため、直交方向磁束加熱方法はアルミニウム、
オーステナイトステンレス鋼等のような非磁性材
料の加熱に用いられる。
Since the orthogonal magnetic flux heating method uses the iron cores 1 and 2, when the metal material 5 to be subjected to induction heating treatment is a magnetic material, the iron cores 1 and 2 are
Since the metal material 5 is attracted to the metal material 5 and the running is significantly inhibited, the orthogonal magnetic flux heating method is not suitable for aluminum,
Used for heating non-magnetic materials such as austenitic stainless steel.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第9図は、直交方向磁束加熱方法によりオース
テナイトステンレス鋼のような帯状金属材料5を
誘導加熱した場合の断面図及び帯状金属材料に生
ずる2次電流2の分布状態を示す。帯状金属材
料5は相対向する断面「凹」字形鉄心1a,2a
の間を矢印a方向に進む。磁束φは、例えば図示
の矢印方向に発生させて、磁気回路を形成する。
第9図1のように発生される磁束φにより帯状金
属材料5には第9図2で示されるような2次電流
2が生じる。この2次電流2により帯状金属
材料5が加熱される。このように加熱されながら
帯状金属材料5は矢印a方向に移動する。その結
果帯状金属材料5の幅方向の大部分は、均一な温
度分布で加熱されることになる。
FIG. 9 shows a cross-sectional view and a distribution state of the secondary current 2 generated in the band-shaped metal material 5 when a band-shaped metal material 5 such as austenitic stainless steel is induction-heated by the orthogonal magnetic flux heating method. The band-shaped metal material 5 has opposing cross-sectional "concave" shaped cores 1a, 2a.
Proceed in the direction of arrow a between the two. The magnetic flux φ is generated, for example, in the direction of the illustrated arrow to form a magnetic circuit.
Due to the magnetic flux φ generated as shown in FIG. 91, a secondary current 2 as shown in FIG. 92 is generated in the band-shaped metal material 5. This secondary current 2 heats the band-shaped metal material 5 . While being heated in this manner, the band-shaped metal material 5 moves in the direction of the arrow a. As a result, most of the band-shaped metal material 5 in the width direction is heated with uniform temperature distribution.

しかし、帯状金属材料5のエツジ部5aには、
それに加えてエツジ部を長手方向に流れる2次電
流による加熱が加わる。この結果、エツジ部5a
は過熱することになり、幅方向への均一加熱が困
難になる。
However, in the edge portion 5a of the band-shaped metal material 5,
In addition to this, heating is added due to the secondary current flowing in the longitudinal direction of the edge portion. As a result, the edge portion 5a
will overheat, making uniform heating in the width direction difficult.

このような従来法であつても、第9図2に示す
ように鉄心1a,2aの端部が帯状金属材料5よ
り内側の、ある一定距離にあるように鉄心1a,
2aを配置すれば、ほぼ均一加熱パターンが得ら
れる。しかし従来法に於て鉄心1a,2aの端部
が帯状金属材料5のエツジにほぼ等しいか又はエ
ツジより外側にあるように鉄心1a,2aを配置
する場合は前述したように帯状金属材料5のエツ
ジ部5aの過熱を回避することはできなかつた。
Even with such a conventional method, as shown in FIG.
2a, a substantially uniform heating pattern can be obtained. However, in the conventional method, when the iron cores 1a, 2a are arranged so that the ends of the iron cores 1a, 2a are approximately equal to or outside the edges of the band-shaped metal material 5, as described above, It was not possible to avoid overheating of the edge portion 5a.

以上説明したように、直交方向磁束加熱方法に
よる帯状金属材料の誘導加熱に於ては、帯状金属
材料の幅方向の均一加熱が難しいということで、
及び同一の誘導加熱インダクタで各種の幅を有す
る種々の帯状金属材料を均一加熱することが困難
であるということの2つの欠点があつた。特開昭
55−36250(公知例1という)及び特公昭55−
36250(公知例2という)は、これらの欠点を解消
して直交方向磁束加熱方法による帯状金属材料の
幅方向の均一誘導加熱を行うことを目的とする装
置の提案である。第10図は誘導加熱装置を帯状
金属材料5の幅方向に切つて、帯状金属材料5を
中心に上部領域、下部領域、左側部領域、
右側部領域及び帯状金属材料5がその長手方向
に移動するに必要な空間領域の5つの主要領域
に分割した図を示す。勿論公知例1及び公知例2
で用いられる誘導加熱装置も第10図に示したよ
うに少なくとも5つの主要領域に分けることがで
きる。公知例1、及び公知例2で用いられる誘導
加熱インダクタが共通する点は、1)第8図に示
すような鉄心1a,2aと、誘導加熱コイル1
b,2bとから構成されている点、2)帯状金属
材料5のエツジ部5aの磁束密度制御を行なうた
めに、公知例1及び公知例2が夫々に特徴を持つ
磁束制御部材を付属した鉄心1a,2aを備えて
いる点、3)磁束制御部材を付属した鉄心1a,
2aが第10図に於ける5つの領域のうち、上部
領域及び下部領域に属し左側部領域及び右
側部領域には属していない点、及び4)帯状金
属材料5が領域に属しているという4つの点で
ある。即ち、公知例1及び公知例2を含む従来の
直交方向磁束加熱方法では第10図に示した左側
部領域及び右側部領域には帯状金属材料5の
エツジ部5aの磁束密度制御を行つて均一加熱す
るため磁束制御部材又は装置は備えられていなか
つた。
As explained above, in induction heating of a strip metal material using the orthogonal magnetic flux heating method, it is difficult to uniformly heat the strip metal material in the width direction.
The two disadvantages are that it is difficult to uniformly heat various strip metal materials having various widths with the same induction heating inductor. Tokukai Akira
55-36250 (referred to as known example 1) and Special Publication No. 55-
36250 (referred to as Known Example 2) is a proposal for an apparatus that aims to eliminate these drawbacks and perform uniform induction heating in the width direction of a strip-shaped metal material by an orthogonal magnetic flux heating method. FIG. 10 shows the induction heating device cut in the width direction of the band-shaped metal material 5, and centering on the band-shaped metal material 5, an upper region, a lower region, a left side region,
The figure is divided into five main areas: the right side area and the space area required for the strip-shaped metal material 5 to move in its longitudinal direction. Of course, known example 1 and known example 2
The induction heating device used in the invention can also be divided into at least five main areas as shown in FIG. The points that the induction heating inductors used in the known examples 1 and 2 have in common are 1) iron cores 1a and 2a as shown in FIG. 8, and an induction heating coil 1;
2) In order to control the magnetic flux density of the edge portion 5a of the strip-shaped metal material 5, the known examples 1 and 2 each have an iron core attached with a magnetic flux control member having characteristics. 1a, 2a; 3) iron core 1a with attached magnetic flux control member;
2a belongs to the upper and lower regions of the five regions in FIG. 10 and does not belong to the left and right regions, and 4) that the band-shaped metal material 5 belongs to the region. There are two points. That is, in the conventional orthogonal magnetic flux heating methods including the known examples 1 and 2, the magnetic flux density of the edge portion 5a of the band-shaped metal material 5 is controlled to be uniform in the left side region and right side region shown in FIG. No flux control members or devices were provided for heating.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の主たる目的は直交方向磁束加熱方法
による帯状金属材料の誘導加熱に於ては、帯状金
属材料の幅方向の均一加熱が難しいという欠点を
解消して、幅の異なる帯状金属材料を常に均一加
熱し得る、公知例1及び公知例2とは異なる誘導
加熱装置を提供することにある。
The main purpose of the present invention is to solve the drawback that it is difficult to uniformly heat the strip metal material in the width direction in the induction heating of the strip metal material using the orthogonal magnetic flux heating method, and to always uniformly heat the strip metal material with different widths. An object of the present invention is to provide an induction heating device that is different from the known examples 1 and 2 and is capable of heating.

この発明の要旨は、帯状金属材料をその長手横
行に走行させながら誘導加熱する誘導加熱装置に
於て、所定距離離間して対向配置され且つ所定距
離において対向面に凹部が形成されている鉄心
と、前記各凹部に収納され、且つ巻きはじめと巻
き終りとが近接した位置から引き出されるように
ほぼ四辺形状に巻回された誘導加熱コイルとから
なる誘導加熱インダクタの相対向する上辺、下辺
の間であつて、前記帯状金属材料の幅方向両端部
分を覆う位置に夫々磁束集中部材を備え、また前
記磁束集中部材を前記帯状金属材料の幅方向及び
長手方向に又両方向に移動自在とした移動調整装
置に連設してなる誘導加熱装置を提供する。
The gist of the present invention is to provide an induction heating device for inductively heating a band-shaped metal material while running it longitudinally, which includes iron cores that are arranged facing each other at a predetermined distance apart, and that have recesses formed on the opposing surfaces at a predetermined distance. , between the opposing upper and lower sides of an induction heating inductor that is housed in each of the recesses and is wound in a substantially quadrilateral shape so that the winding start and winding end are pulled out from positions close to each other. A magnetic flux concentrating member is provided at a position covering both ends of the strip-shaped metal material in the width direction, and the magnetic flux concentration members are movable in the width direction and the longitudinal direction of the strip-shaped metal material, or in both directions. An induction heating device is provided which is connected to the device.

〔実施例〕 第1図1,2はこの発明の一実施例の誘導加熱
装置の側面断面図及び正面断面図を示す。本実施
例は、帯状金属材料5をその長手方向に走行させ
ながら誘導加熱する誘導加熱装置に於て、一定距
離離間して対向配置され、且つ所定距離おいて対
向面に凹部1s,2sが形成された鉄心1a,2
aと、各凹部1s,2sに収納され、且つ巻きは
じめと巻き終りとが近接した位置から引き出され
るようにほぼ四辺形状に巻回された誘導加熱コイ
ル1b,2bとからなる誘導加熱インダクタの相
対向する上辺1、下辺2の間にあつて、帯状金属
材料5の幅方向両端部分を覆う位置に夫々「コ」
字形磁束集中部材61,62を備え、「コ」字形
磁束集中部材61,62を帯状金属材料5の幅方
向及び長手方向に又両方向に移動自在とした移動
調整装置71,72に連設していることである。
勿論、簡易的には、予め位置を決めて上辺、下辺
のインダクタ1,2の間で半固定式とすることも
可能である。更に本発明が公知例1及び公知例2
と相異する点は、本発明の鉄心1a,2aは従来
から用いられているもので特別の磁束制御部材を
附属していない点、及び「コ」字形磁束集中部材
61,62が第10図に示した左側部領域及び
右側部領域に属して備えられている点である。
[Embodiment] FIGS. 1 and 2 show a side sectional view and a front sectional view of an induction heating device according to an embodiment of the present invention. This embodiment is an induction heating device that inductively heats a band-shaped metal material 5 while traveling in its longitudinal direction, which are arranged opposite to each other at a certain distance apart, and recesses 1s and 2s are formed on the opposing surfaces at a predetermined distance. iron cores 1a, 2
a, and induction heating coils 1b and 2b that are housed in respective recesses 1s and 2s and are wound in a substantially quadrilateral shape so that the winding start and winding end are pulled out from positions close to each other. A "co" is placed between the upper side 1 and the lower side 2 facing toward each other, and at a position covering both ends of the band-shaped metal material 5 in the width direction.
The "U"-shaped magnetic flux concentration members 61, 62 are provided, and the "U"-shaped magnetic flux concentration members 61, 62 are connected to movement adjustment devices 71, 72 that are movable in the width direction and the longitudinal direction of the strip-shaped metal material 5, and in both directions. It is that you are.
Of course, for simplicity, it is also possible to determine the position in advance and make it semi-fixed between the inductors 1 and 2 on the upper and lower sides. Furthermore, the present invention is known in the known example 1 and the known example 2.
The difference is that the iron cores 1a and 2a of the present invention are conventionally used and do not include a special magnetic flux control member, and that the "U"-shaped magnetic flux concentration members 61 and 62 are the same as those shown in FIG. This point belongs to the left side area and the right side area shown in FIG.

「コ」字形磁束集中部材61,62の形状、寸
法について更に詳細に第2図により説明する。第
2図は本実施例の誘導加熱装置右辺側の正面部分
拡大図を示す。磁束集中部材61,62の形状、
寸法は左右対称とする。
The shape and dimensions of the "U"-shaped magnetic flux concentration members 61, 62 will be explained in more detail with reference to FIG. FIG. 2 shows a partially enlarged front view of the right side of the induction heating device of this embodiment. The shape of the magnetic flux concentration members 61 and 62,
The dimensions shall be symmetrical.

「コ」字形磁束集中部材61,62の凹部と凹
部の間を通る帯状金属材料5の端部とがラツプす
る部分の幅w、「コ」字形磁束集中部材61,6
2の上辺a、下辺bの内面空隙間隔g1,「コ」字
形磁束集中部材61,62の垂直部c内面と帯状
金属材料5のエツジEとの空隙間隔g2、「コ」
字形磁束集中部材61,62の長さLy、及び
「コ」字形磁束集中部材61,62と鉄心1a,
2aとの間の空隙間隔g3,g4について説明する。
g1、及びg2は主として本発明の誘導加熱装置を
構成する誘導加熱インダクタ1,2と「コ」字形
磁束集中部材61,62により囲まれる空間を走
行しながら誘導加熱される帯状金属材料5の走行
性と関連する。g1は帯状金属材料5の端部が
「コ」字形磁束集中部材61,62の上下水平部
a,b間の中心部を通るように帯状金属材料5の
厚みtより大とする。g1を大きくすることは帯
状金属材料5の走行性を良くする反面、相対向す
る上辺、下辺の誘導加熱インダクタ1,2間の間
隔Gcが大きくなりそのため帯状金属材料5が加
熱されにくくなるのでg1をむやみに大きくしな
いほうが好ましい。g2は帯状金属材料5の端部
が走行中に「コ」字形磁束集中部材61,62の
垂直部cと接触しないように、特に走行する帯状
金属材料5の最大蛇行量sを考慮して選ぶことが
好ましい。一般的には最大蛇行量sよりも10mm以
上余裕をとるほうが好ましい。g3,g4は「コ」
字形磁束集中部材61,62が相対向する上辺、
下辺の誘導加熱インダクタ1,2間を帯状金属材
料5の幅方向に移動する必要な空隙である。g3,
g4もg2と同様でGcを大きくしないように必要最
少限にすることが好ましい。
Width w of the portion where the concave portion of the “U”-shaped magnetic flux concentrating members 61, 62 and the end of the band-shaped metal material 5 passing between the concave portions overlap, the “U”-shaped magnetic flux concentrating members 61, 6
2, the gap g2 between the inner surface of the vertical part c of the U-shaped magnetic flux concentrating members 61 and 62 and the edge E of the band-shaped metal material 5,
The length Ly of the U-shaped magnetic flux concentration members 61 and 62, and the length Ly of the U-shaped magnetic flux concentration members 61 and 62 and the iron core 1a,
The air gap distances g3 and g4 between 2a and 2a will be explained.
g1 and g2 are the running of the band-shaped metal material 5 which is induction heated while running in a space mainly surrounded by the induction heating inductors 1 and 2 and the "U" shaped magnetic flux concentrating members 61 and 62 that constitute the induction heating device of the present invention. Related to sex. g1 is made larger than the thickness t of the band-shaped metal material 5 so that the end of the band-shaped metal material 5 passes through the center between the upper and lower horizontal parts a and b of the U-shaped magnetic flux concentration members 61 and 62. Increasing g1 improves the runnability of the strip metal material 5, but it also increases the distance Gc between the induction heating inductors 1 and 2 on the opposing upper and lower sides, making it difficult for the strip metal material 5 to be heated. It is preferable not to make it unnecessarily large. g2 is selected with particular consideration to the maximum meandering amount s of the running belt-shaped metal material 5 so that the end of the belt-shaped metal material 5 does not come into contact with the vertical part c of the U-shaped magnetic flux concentration members 61, 62 while running. It is preferable. Generally, it is preferable to provide a margin of 10 mm or more relative to the maximum meandering amount s. g3 and g4 are "ko"
The upper side where the letter-shaped magnetic flux concentration members 61 and 62 face each other,
This is a necessary gap that moves in the width direction of the band-shaped metal material 5 between the induction heating inductors 1 and 2 on the lower side. g3,
Similar to g2, g4 is also preferably kept to the minimum necessary so as not to increase Gc.

次にwについて説明する、wは帯状金属材料5
の幅方向、特に端部温度分布の均一性に関連す
る。wについて第3図で模式図を用いて説明す
る。第3図は誘導加熱して得られる帯状金属材料
5の幅方向温度分布を示す図である。温度分布A
は本発明の誘導加熱装置を構成する誘導加熱イン
ダクタ1,2を用いて「コ」字形磁束集中部材6
1,62を備えていない場合である。Bは、目標
温度T(℃)、許容温度幅±ΔT/2(℃)の均一
加熱条件のある場合の目標温度帯域である。目標
温度帯域Bの上限と温度分布Aとの交点Pと帯状
金属材料5のエツジE間の距離をWeとすると、
「コ」字形磁束集中部材61,62の凹部と凹部
の近傍を通る帯状金属材料5の端部とがラツプす
る部分の幅wは経験的にWe以下とするのが好ま
しく、その範囲でwを選定すれば帯状金属材料5
の幅方向温度分布の均一性が良好となつた。wが
決まれば、「コ」字形磁束集中部材61,62の
上下水平部a,bの幅Wyは、Wy=w+g2とな
る。wの符号は、帯状金属材料5と「コ」字形磁
束集中部材61,62がラツプする場合を正符
号、ラツプしない場合を負符号とする。
Next, w will be explained, where w is the band-shaped metal material 5
related to the uniformity of temperature distribution in the width direction, especially at the edges. w will be explained using a schematic diagram in FIG. FIG. 3 is a diagram showing the temperature distribution in the width direction of the band-shaped metal material 5 obtained by induction heating. Temperature distribution A
is a U-shaped magnetic flux concentration member 6 using the induction heating inductors 1 and 2 constituting the induction heating device of the present invention.
1 and 62 are not provided. B is a target temperature band when there is a uniform heating condition of target temperature T (°C) and allowable temperature range ±ΔT/2 (°C). If We is the distance between the intersection P of the upper limit of the target temperature band B and the temperature distribution A and the edge E of the band-shaped metal material 5, then
Empirically, it is preferable that the width w of the portion where the recesses of the U-shaped magnetic flux concentrating members 61 and 62 and the end of the band-shaped metal material 5 that passes near the recesses wraps is less than We, and w is within that range. If selected, band-shaped metal material 5
The uniformity of the temperature distribution in the width direction was improved. Once w is determined, the width Wy of the upper and lower horizontal portions a and b of the U-shaped magnetic flux concentration members 61 and 62 becomes Wy=w+g2. The sign of w is a positive sign when the band-shaped metal material 5 and the U-shaped magnetic flux concentration members 61 and 62 overlap, and a negative sign when they do not overlap.

次にLyについて説明する。Lyはwと同様に帯
状金属材料5の幅方向、特に端部温度分布の均一
性に関連する。「コ」字形磁束集中部材61,6
2は帯状金属材料5の誘導加熱中に、第9図2に
示した帯状金属材料5のエツジ部5aに集中する
2次電流を分散させるように磁束を制御するため
に設けられている。「コ」字形磁束集中部材61,
62は誘導加熱インダクタの相対向する上辺1,
下辺2の間にあつて被加熱材料5の誘導加熱に寄
与する磁束を制御するために設けられるものであ
るから、「コ」字形磁束集中部材61,62の長
さLyは鉄心1a,2aの長さLcとほぼ等しくす
る。実施例で説明した「コ」字形磁束集中部材以
外にも第4図に示すように、例えば「>」形磁束
集中部材、「□」形磁束集中部材等を選ぶことも
できる。また「コ」字形磁束集中部材61,62
の長さLyは鉄心1a,2aの長さLcとほぼ等し
くする以外に、第5図に示すように「コ」字形磁
束集中部材61,62を長手方向に分割してスペ
ーサ、例えばセラミツクス等を挟む構造にするこ
ともできる。
Next, I will explain about Ly. Similar to w, Ly is related to the uniformity of the temperature distribution in the width direction of the band-shaped metal material 5, particularly at the end portions. "U" shaped magnetic flux concentration members 61, 6
2 is provided to control the magnetic flux during induction heating of the band-shaped metal material 5 so as to disperse the secondary current concentrated at the edge portion 5a of the band-shaped metal material 5 shown in FIG. "U" shaped magnetic flux concentration member 61,
62 is the opposing upper side 1 of the induction heating inductor;
Since it is provided to control the magnetic flux that is located between the lower side 2 and contributes to the induction heating of the material to be heated 5, the length Ly of the "U"-shaped magnetic flux concentration members 61 and 62 is equal to that of the iron cores 1a and 2a. Make it approximately equal to the length Lc. In addition to the "U"-shaped magnetic flux concentrating member described in the embodiment, as shown in FIG. 4, for example, a ">"-shaped magnetic flux concentrating member, a "□"-shaped magnetic flux concentrating member, etc. can also be selected. In addition, "U" shaped magnetic flux concentration members 61, 62
In addition to making the length Ly approximately equal to the length Lc of the iron cores 1a and 2a, as shown in FIG. A sandwiching structure can also be used.

「コ」字形磁束集中部材61,62の材料は積
層鉄心、線状結束鉄心、あるいはフエライトコア
ー等の焼結系成型鉄心等が用いられる。また、
「コ」字形磁束集中部材61,62は多少なりと
も加熱中に鉄損に起因する発熱があり、除熱する
ための水冷または空冷の冷却構造とすることが好
ましい。
As the material of the "U"-shaped magnetic flux concentration members 61 and 62, a laminated iron core, a linear bundled iron core, a sintered molded iron core such as a ferrite core, etc. are used. Also,
The "U"-shaped magnetic flux concentrating members 61 and 62 generate some heat due to iron loss during heating, so it is preferable to use a water-cooled or air-cooled cooling structure to remove the heat.

以下に、本発明を実施した例について具体的に
説明する。帯状金属材料5のオーステナイトステ
ンレス鋼(1.0mm厚み×300mm幅)を毎分1mの速
度で連続的に加熱した。相対向する上辺、下辺の
2極鉄心1a,2aの長さLc、幅Wc、及び上下
辺の空隙Gcは夫々200mm、600mm、及び900mmと
し、加熱周波数を500Hz、目標温度帯域を200℃〜
230℃とした。また、g1,g2,g3及びg4は夫々30
mm、30mm、10mm、及び10mmとした。LyはLcと同
じ長さの200mmとした。
Examples of implementing the present invention will be specifically described below. Austenitic stainless steel (1.0 mm thickness x 300 mm width) of band-shaped metal material 5 was heated continuously at a rate of 1 m/min. The length Lc, width Wc, and gap Gc of the upper and lower sides of the bipolar cores 1a and 2a on the opposing upper and lower sides are 200 mm, 600 mm, and 900 mm, respectively, the heating frequency is 500 Hz, and the target temperature range is 200°C ~
The temperature was 230℃. Also, g1, g2, g3 and g4 are each 30
mm, 30mm, 10mm, and 10mm. Ly was 200 mm, the same length as Lc.

第6図は実施例に於いて、「コ」字形磁束集中
部材61,62の種々なる設置条件での帯状金属
材料幅方向温度分布を示す。「コ」字形磁束集中
部材61,62を設けない場合について帯状金属
材料5の幅方向温度分布は、帯状金属材料5の幅
方向中央部の温度が目標温度帯域下限、即ち200
℃近い温度になるように電源の出力調整を行つ
た。加熱の結果、第6図に示すように帯状金属材
料5の端部が過熱し目標温度帯域200℃〜230℃を
超えて300℃になつた。得られた帯状金属材料5
の幅方向温度分布と目標温度帯域上限230℃との
交点Pから帯状金属材料5のエツジEまでの距離
Weは30mmであつた。この結果からwを30mm,10
mm,0mmの3つの場合について加熱を実施した。
第6図に示すように「コ」字形磁束集中部材6
1,62を設けない場合には帯状金属材料5のエ
ツジ部温度が300℃と目標温度帯域200℃〜230℃
を70℃と大きく超える温度になるが、本発明によ
る「コ」字形磁束集中部材61,62を設けるこ
とにより帯状金属材料5のエツジ部の過熱が抑え
られ、特にwが10mmの場合は帯状金属材料5の幅
方向全域で目標温度帯域200℃〜230℃の範囲に入
り飛躍的に加熱温度の均一性が改善された。
FIG. 6 shows the temperature distribution in the width direction of the strip-shaped metal material under various installation conditions of the U-shaped magnetic flux concentration members 61 and 62 in the embodiment. In the case where the U-shaped magnetic flux concentrating members 61 and 62 are not provided, the temperature distribution in the width direction of the band-shaped metal material 5 is such that the temperature at the center of the band-shaped metal material 5 in the width direction is the lower limit of the target temperature band, that is, 200
The output of the power supply was adjusted so that the temperature was close to ℃. As a result of the heating, as shown in FIG. 6, the end portion of the band-shaped metal material 5 was overheated, exceeding the target temperature range of 200°C to 230°C to reach 300°C. Obtained band-shaped metal material 5
Distance from the intersection P of the width direction temperature distribution and the target temperature band upper limit of 230°C to the edge E of the band-shaped metal material 5
We were 30mm. From this result, w is 30mm, 10
Heating was performed in three cases: mm and 0 mm.
As shown in FIG.
If 1 and 62 are not provided, the edge temperature of the strip metal material 5 is 300°C and the target temperature range is 200°C to 230°C.
However, by providing the U-shaped magnetic flux concentrating members 61 and 62 according to the present invention, overheating of the edge portion of the strip metal material 5 can be suppressed, especially when w is 10 mm. The entire widthwise direction of material 5 fell within the target temperature range of 200°C to 230°C, and the uniformity of the heating temperature was dramatically improved.

〔発明の効果〕〔Effect of the invention〕

以上の説明のように、本発明の誘導加熱装置を
用いることにより帯状金属材料エツジ部に集中す
る2次電流を分散させることができ、また、同一
加熱インダクタで幅の異なる帯状金属材料の均一
加熱が可能となつた。この結果、帯状金属材料の
熱処理、塗膜の乾燥、焼付、その他帯状金属材料
の加熱に関する技術に有利に応用することができ
る。
As explained above, by using the induction heating device of the present invention, it is possible to disperse the secondary current that concentrates on the edge portion of the strip-shaped metal material, and it is also possible to uniformly heat strip-shaped metal materials with different widths using the same heating inductor. became possible. As a result, the present invention can be advantageously applied to heat treatment of band-shaped metal materials, drying and baking of coating films, and other techniques related to heating of band-shaped metal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1は本発明を示す側面概略図、2は正面
概略図、第2図は第1図2の部分拡大図、第3図
は本発明の具体例説明図、第4図は本実施例とは
別の磁束集中部材の具体例説明図、第5図は本実
施とは別の磁束集中部材分割の具体例説明図、第
6図は本発明磁束集中部材の設置条件での帯状金
属材料幅方向温度分布例図、第7図1は従来の縦
方向磁束加熱方法の原理図、第7図2は直交方向
磁束加熱方法の原理図、第8図は直交方向磁束加
熱方法の概略説明図、第9図は直交方向磁束加熱
方法の具体例説明図、第9図2は第9図1の作用
を説明するための2次電流分布特性図、第10図
は直交方向磁束加熱方法による誘導加熱装置の主
要領域分割図である。 図中、5は帯状金属材料、1,2は誘導加熱イ
ンダクタ、61,62は「コ」字形磁束集中部材
を示す。
1 is a schematic side view showing the present invention, 2 is a schematic front view, FIG. 2 is a partially enlarged view of FIG. FIG. 5 is an explanatory diagram of a specific example of a magnetic flux concentrating member different from the example, FIG. 5 is an explanatory diagram of a specific example of dividing a magnetic flux concentrating member different from this embodiment, and FIG. 6 is a strip metal under the installation conditions of the magnetic flux concentrating member of the present invention. An example of temperature distribution in the width direction of the material, Figure 7 1 is a principle diagram of the conventional longitudinal magnetic flux heating method, Figure 7 2 is a principle diagram of the orthogonal magnetic flux heating method, and Figure 8 is a schematic explanation of the orthogonal magnetic flux heating method. Figure 9 is an explanatory diagram of a specific example of the orthogonal magnetic flux heating method, Figure 9 2 is a secondary current distribution characteristic diagram for explaining the effect of Figure 9 1, and Figure 10 is based on the orthogonal magnetic flux heating method. It is a main area division diagram of an induction heating device. In the figure, 5 is a strip-shaped metal material, 1 and 2 are induction heating inductors, and 61 and 62 are U-shaped magnetic flux concentration members.

Claims (1)

【特許請求の範囲】 1 帯状金属材料をその長手方向に走行させなが
ら誘導加熱する誘導加熱装置に於て、所定距離離
間させて相対設し、かつその対向面に凹部を形成
した鉄心と、前記各凹部に収納し、巻きはじめと
巻き終りとが近接した位置から引き出されるよう
にほぼ四辺形状に巻回された誘導加熱コイルとか
らなる誘導加熱インダクタの相対向する上辺、下
辺の間であつて、前記帯状金属材料の幅方向両端
部分を覆う位置に夫々磁束集中部材を備えてなる
ことを特徴とする誘導加熱装置。 2 前記磁束集中部材を前記帯状金属材料の幅方
向及び長手方向に又両方向に移動自在とした移動
調整装置に連設してなる特許請求の範囲第1項記
載の誘導加熱装置。
[Scope of Claims] 1. In an induction heating device for inductively heating a strip-shaped metal material while running it in its longitudinal direction, an iron core that is disposed opposite to each other at a predetermined distance and has a concave portion formed on its opposing surface; Between the opposing upper and lower sides of an induction heating inductor that is housed in each recess and is wound in a substantially quadrilateral shape so that the winding start and winding end are pulled out from close positions. , An induction heating device comprising magnetic flux concentrating members at positions covering both widthwise end portions of the strip-shaped metal material. 2. The induction heating device according to claim 1, wherein the magnetic flux concentrating member is connected to a movement adjustment device that is movable in the width direction and the longitudinal direction of the strip-shaped metal material, and in both directions.
JP62051564A 1987-03-06 1987-03-06 Induction heater Granted JPS63317630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051564A JPS63317630A (en) 1987-03-06 1987-03-06 Induction heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051564A JPS63317630A (en) 1987-03-06 1987-03-06 Induction heater

Publications (2)

Publication Number Publication Date
JPS63317630A JPS63317630A (en) 1988-12-26
JPH0456093B2 true JPH0456093B2 (en) 1992-09-07

Family

ID=12890463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051564A Granted JPS63317630A (en) 1987-03-06 1987-03-06 Induction heater

Country Status (1)

Country Link
JP (1) JPS63317630A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838282B1 (en) * 2002-04-04 2004-06-11 Celes IMPROVEMENTS IN OR RELATING TO HEATING INDUCERS, ESPECIALLY METAL STRIPS
JP4069002B2 (en) * 2003-03-28 2008-03-26 新日本製鐵株式会社 Metal strip heating device with excellent temperature uniformity in the plate width direction
JP4833740B2 (en) * 2006-06-02 2011-12-07 新日本製鐵株式会社 Metal strip heating device with excellent temperature uniformity in the plate width direction
JP5042909B2 (en) * 2008-04-16 2012-10-03 新日本製鐵株式会社 Induction heating apparatus and induction heating method for metal plate
JP4959651B2 (en) * 2008-08-11 2012-06-27 新日本製鐵株式会社 Transverse induction heating system

Also Published As

Publication number Publication date
JPS63317630A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
EP1854336B1 (en) Induction heating device for a metal plate
US4185183A (en) Induction heating apparatus with adjustable flux concentrators
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
EP2800452A1 (en) Heating apparatus and heating method
JP2008204648A (en) Induction heating device
KR101981407B1 (en) Induction heating device for metal strip
EP0108574B1 (en) Radio frequency induction heating device
US7671307B2 (en) Transversal field heating installation for inductively heating flat objects
JP6331900B2 (en) Induction heating device for metal strip
JP4069002B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JPH0456093B2 (en)
JPS62281291A (en) Induction heater
JP2935087B2 (en) Induction heating device
JP4890278B2 (en) Metal plate induction heating device
JP5015345B2 (en) Induction heating apparatus and induction heating method for metal plate
JP7124515B2 (en) Induction heating equipment for metal strips
JP3112617B2 (en) Induction heating method for rolled material
JPS6035985Y2 (en) induction heating device
JPS6125190Y2 (en)
JP2002075628A (en) Single turn type induction heating coil
JP2007324010A (en) Induction heating apparatus excellent in uniformity in temperature in widthwise direction of metal strip
JPS63279591A (en) Inductor for metal pipe heating
JPH0280510A (en) Transverse flux heating apparatus
JPH0126155B2 (en)
JPH08213159A (en) Induction heater device