JPH0455807B2 - - Google Patents

Info

Publication number
JPH0455807B2
JPH0455807B2 JP20523484A JP20523484A JPH0455807B2 JP H0455807 B2 JPH0455807 B2 JP H0455807B2 JP 20523484 A JP20523484 A JP 20523484A JP 20523484 A JP20523484 A JP 20523484A JP H0455807 B2 JPH0455807 B2 JP H0455807B2
Authority
JP
Japan
Prior art keywords
machining
workpiece
wire electrode
nozzle
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20523484A
Other languages
Japanese (ja)
Other versions
JPS6186131A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP20523484A priority Critical patent/JPS6186131A/en
Publication of JPS6186131A publication Critical patent/JPS6186131A/en
Publication of JPH0455807B2 publication Critical patent/JPH0455807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/101Supply of working media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ワイヤ電極を挿通する一対の加工液
噴射ノズルを相対向させ、両ノズル間に介在させ
る被加工物とワイヤ電極との間に間歇的な電圧パ
ルスあるいは放電パルスとなる電圧パルスを印加
し、かつ両ノズルから加工部に向けて加圧された
加工液を噴出するワイヤカツト放電加工方法に係
り、特に高速カツトに適した加工液洩れの防止手
段を有するものに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is characterized in that a pair of machining fluid injection nozzles through which a wire electrode is inserted are opposed to each other, and a workpiece that is interposed between both nozzles and the wire electrode are The wire cut electric discharge machining method applies intermittent voltage pulses or discharge pulses and spouts pressurized machining fluid toward the machined part from both nozzles, and is particularly suitable for high-speed cutting. It relates to things that have preventive measures.

(従来の技術) ワイヤカツト放電加工においては、高速加工を
行なうには、加工部分の加工液圧、または流速さ
らには流量を高くし、加工部における泡の発生や
外部からの空気気泡の巻込み流入を少なくすると
共に、加工部分における液流を多くして、気中放
電の発生の防止、加工屑の高速排除と共にワイヤ
電極の断線事故防止のためその温度を低く保つ必
要がある。
(Prior art) In wire cut electric discharge machining, in order to perform high-speed machining, the machining fluid pressure or flow rate or flow rate in the machining part is increased to prevent the generation of bubbles in the machining part and the entrainment of air bubbles from the outside. At the same time, it is necessary to increase the flow of liquid in the machined part and keep the temperature low in order to prevent the occurrence of atmospheric discharge, remove machined debris at high speed, and prevent wire electrode breakage accidents.

しかしながら、加工液の供給量や液圧を高くし
てノズルから加工部へ噴射供給すると、ノズル先
端から加工部を経過しないで外部へ洩れる量や周
囲へ飛散する量も多くなり、また折角一方のノズ
ルから噴出供給した加工液が、他方のノズルから
噴出供給されて加工部を流れる加工液流等に充分
な影響を与え得ず、期待したほどには加工部への
加工液の供給量、または流通流量が増加しないこ
とがあつた。
However, if the supply amount and pressure of machining fluid are increased and the fluid is injected from the nozzle to the machining part, the amount that leaks from the nozzle tip to the outside without passing through the machining part and the amount that scatters to the surroundings increases. The machining fluid jetted and supplied from one nozzle could not have sufficient influence on the flow of machining fluid flowing through the machining section when it was jetted out from the other nozzle, and the amount of machining fluid supplied to the machining section was not as high as expected. There were cases where the distribution flow did not increase.

(発明が解決しようとする問題点) 本発明は上記点に鑑み、高速加工をするため、
加工部を経過しないで外部に洩れるとか、無為に
流下する加工液流量を低下させ、その結果加工液
の加工部への流通流量および圧力を増大させるこ
とのできる上、必要により、加工形状に応じて加
工液洩れ流量、または加工部における加工液の流
れの状態を変更制御できて常に所定の加工液条件
で加工を行なうことが可能となるワイヤカツト放
電加工方法を提供しようとするものである。
(Problems to be Solved by the Invention) In view of the above points, the present invention has the following features for high-speed processing:
It is possible to reduce the flow rate of machining fluid that leaks to the outside without passing through the machining part or flows down unnecessarily, and as a result, increases the flow rate and pressure of machining fluid to the machining part. It is an object of the present invention to provide a wire cut electric discharge machining method that can change and control the leakage flow rate of machining fluid or the state of the flow of machining fluid in a machining section so that machining can always be performed under predetermined machining fluid conditions.

(問題点を解決するための手段) 本発明の方法は、前記相対向するノズルまたは
ノズル近傍部から粉状磁石を磁性材でなる被加工
物の表面に供給することにより、被加工物の表面
にノズル先端にほぼ同軸環状に粉応磁石を吸着さ
せて一種の囲い状物を形成させ、ノズル先端当接
被加工物表面に沿う加工部以外への加工液の洩れ
を防止することにより、加工部の加工液の流れの
状態を所望に変るようにしたことを特徴とする。
(Means for Solving the Problems) The method of the present invention provides a method of supplying a powdered magnet to the surface of the workpiece made of a magnetic material from the opposing nozzles or the vicinity of the nozzle. A powder magnet is attracted to the nozzle tip in an almost coaxial ring shape to form a kind of enclosure, which prevents machining fluid from leaking to areas other than the machining area along the workpiece surface where the nozzle tip contacts. It is characterized in that the flow state of the machining fluid in the part can be changed as desired.

(作用) 本発明においては、加工部以外の部分への加工
液の洩れを防止、または易飛散性を妨害させるの
で、加工部における流量、液圧、あるいは流速を
大とすることができ、また、粉状磁石の供給量、
時機を制御すること、例えば、コーナ部の加工部
にのみ粉状磁石を供給するようにすることによ
り、直線部と同等または従来のコーナ部における
加工送り速度の減少制御や加工エネルギの減少制
御による場合よりも高速でかつ安定した加工を可
能にし、コーナ部のだれやコーナ部でのワイヤ電
極の断線事故等の不具合を少なくすることができ
る。
(Function) In the present invention, the leakage of machining liquid to parts other than the machining part is prevented or the easy scattering of the machining fluid is prevented, so the flow rate, fluid pressure, or flow velocity in the machining part can be increased. , powder magnet supply amount,
For example, by controlling the timing, for example, by supplying powdered magnet only to the machining part of the corner part, it is possible to reduce the machining feed rate or machining energy at the same level as the straight part or conventional corner part. This enables faster and more stable machining than would otherwise be possible, and reduces problems such as sag at corners and wire electrode breakage accidents at corners.

(実施例) 以下本発明の一実施例を図面により説明する。
図面は本発明を適用した加工液噴射ノズル回りの
構成例を示す図であり、1はワイヤ電極、6A,
6Bは該ワイヤ電極1のガイドローラ7A,7B
を取付けた上アームおよび下アームであり、これ
らは図示しない装置本体のカラム等に取付けられ
る。8A,8Bは手動ハンドルまたはモータ9
A,9Bによつて上下位置調節可能にアーム6
A,6Bに取付けられた支持部材、10は通電ピ
ンであり、これは支持部材8Aに取付けられ、耐
摩耗性で絶縁性の押付ピン10′により押圧変位
したワイヤ電極1と接触することによりワイヤ電
極に電圧を印加する上部通電装置を構成するもの
である。11は下部ガイドローラを兼用する下部
通電装置としての通電ローラ、12,13はそれ
ぞれ前記支持部材8A,8Bにワイヤ電極1の軸
心方向と直角方向に微小位置調節可能に、または
固定して取付けられた中空円筒状のノズル本体で
あり、これらのノズル本体12,13の上下端面
にはそれぞれ開口部14,15および16,17
が形成されている。
(Example) An example of the present invention will be described below with reference to the drawings.
The drawing is a diagram showing an example of the configuration around a machining fluid injection nozzle to which the present invention is applied, in which 1 is a wire electrode, 6A,
6B is the guide roller 7A, 7B of the wire electrode 1.
The upper arm and the lower arm are attached to a column or the like of the device main body (not shown). 8A, 8B are manual handles or motors 9
Arm 6 can be adjusted up and down by A and 9B.
A and 6B are attached to the support members, and 10 is a current-carrying pin, which is attached to the support member 8A and contacts the wire electrode 1 which is pressed and displaced by the abrasion-resistant and insulating press pin 10'. This constitutes an upper current supply device that applies voltage to the electrodes. Reference numeral 11 denotes a current-carrying roller serving as a lower current-carrying device that also serves as a lower guide roller; 12 and 13 are mounted to the supporting members 8A and 8B, respectively, in a direction perpendicular to the axial direction of the wire electrode 1 so as to be able to minutely adjust the position thereof, or to be fixed thereto; The nozzle bodies 12 and 13 have openings 14, 15 and 16, 17 at their upper and lower end surfaces, respectively.
is formed.

ノズル本体12,13の内部には、上下位置決
めガイド18,19のガイドホルダ20,21が
同軸状にそれぞれ固設してあり、また上方のノズ
ル本体12の下端開口部15と、下方のノズル本
体13の上端開口部17には、それぞれノズル2
2,23が互いに対向するように同軸状に固設さ
れる(ノズル22)かまたは軸方向に移動可能に
嵌設されている(ノズル23)。前記ガイドホル
ダ20,21はノズル本体12,13内加工液が
流通する孔20a,21aを有する中空の筒体で
ある。また、ノズル22,23は所望の軸方向長
さ、内径および軸方向径絞りを有する中空円筒状
体であり、下方のノズル23はフランジ23aに
よつてノズル本体13からの脱落を防いでいる。
この他必要に応じて、加工液圧に対抗するように
押しバネを設ける場合もある。
Inside the nozzle bodies 12 and 13, guide holders 20 and 21 of the upper and lower positioning guides 18 and 19 are coaxially fixed, respectively, and the lower end opening 15 of the upper nozzle body 12 and the lower nozzle body Each nozzle 2 is provided in the upper end opening 17 of 13.
2 and 23 are coaxially fixed so as to face each other (nozzle 22), or are fitted so as to be movable in the axial direction (nozzle 23). The guide holders 20 and 21 are hollow cylindrical bodies having holes 20a and 21a through which the processing liquid in the nozzle bodies 12 and 13 flows. Further, the nozzles 22 and 23 are hollow cylindrical bodies having a desired axial length, inner diameter, and axial diameter restriction, and the lower nozzle 23 is prevented from falling off from the nozzle body 13 by a flange 23a.
In addition, if necessary, a push spring may be provided to counteract the machining fluid pressure.

前記ノズル本体12,13には、加工液の加圧
供給ホース25,26がそれぞれ取付けられ、こ
こから加工液が各ノズル本体12,13内にそれ
ぞれ所定の圧力および流量で供給され、内部の位
置決めガイド18,19を冷却し、上下のノズル
22,23から被加工物24の加工部27へそれ
ぞれワイヤ電極に沿つて同軸状に上方、下方から
噴出すると共に、各ノズル本体12の上端の開口
部14およびノズル本体13の下端から噴出して
通電ピン10および通電ローラ11とワイヤ電極
1との間にも加工液を供給してワイヤ電極1と通
電ピン10および通電ローラ11を冷却するよう
になつている。30は加工溝、39,40はそれ
ぞれ上下のノズル22,23から噴出される加工
液の流れを示す。
Pressurized machining fluid supply hoses 25 and 26 are attached to the nozzle bodies 12 and 13, respectively, from which the machining fluid is supplied into each nozzle body 12 and 13 at a predetermined pressure and flow rate, thereby controlling the internal positioning. The guides 18 and 19 are cooled, and the jets are ejected from the upper and lower nozzles 22 and 23 to the processing section 27 of the workpiece 24 coaxially along the wire electrode from above and below, respectively, and from the opening at the upper end of each nozzle body 12. 14 and the lower end of the nozzle body 13 to supply machining fluid also between the current-carrying pin 10 and the current-carrying roller 11 and the wire electrode 1, thereby cooling the wire electrode 1, the current-carrying pin 10, and the current-carrying roller 11. ing. Reference numeral 30 indicates a machining groove, and 39 and 40 indicate flows of machining fluid ejected from the upper and lower nozzles 22 and 23, respectively.

前記被加工物24は、加工テーブル31に固定
され、該加工テーブル31はX軸モータ32、Y
軸モータ33によつてワイヤ電極1の軸と直角な
平面上を数値制御装置による制御の下に所定の輪
郭形状等に沿つて自在に移動できるようになつて
いる。また、ワイヤ電極1は、図示しない装置本
体のカラム等に設けた貯蔵リールからブレーキロ
ーラ等を介して引き出され、ガイドローラ7A部
から下方へ延び、前記通電ピン10、上部ノズル
本体12、ガイド18、およびノズル22、被加
工物24の加工部27、下部ノズル23、ガイド
19、下部ノズル本体13、そして下方のアーム
6Bの通電ローラ11およびガイドローラ7Bを
介して図示しない巻取りローラを経てカラム本体
等の巻取りリールまたは回収容器に巻取りまたは
回収されるようになつている。そして、被加工物
24とワイヤ電極1との間に間歇的な電圧パルス
を印加し、放電加工を行なうものである。
The workpiece 24 is fixed to a processing table 31, and the processing table 31 is connected to an X-axis motor 32 and a Y-axis motor 32.
The shaft motor 33 allows the wire electrode 1 to be freely moved along a predetermined contour on a plane perpendicular to the axis under the control of a numerical controller. Further, the wire electrode 1 is pulled out via a brake roller or the like from a storage reel provided in a column or the like of the apparatus main body (not shown), extends downward from the guide roller 7A section, and is connected to the energizing pin 10, the upper nozzle main body 12, and the guide 18. , the nozzle 22, the processing section 27 of the workpiece 24, the lower nozzle 23, the guide 19, the lower nozzle main body 13, and the column via the energizing roller 11 and guide roller 7B of the lower arm 6B, via a winding roller (not shown). It is adapted to be wound up or collected on a take-up reel of the main body or a collection container. Then, intermittent voltage pulses are applied between the workpiece 24 and the wire electrode 1 to perform electrical discharge machining.

しかして本実施例においては、上下のノズル2
2,23(またはノズル本体12,13)に、ノ
ズル22,23を包囲するように粉状磁石供給用
補助ノズル43,45を取付け、各補助ノズル4
3,45にそれぞれ粉状磁石供給用ホース44,
46を取付ける。
However, in this embodiment, the upper and lower nozzles 2
2, 23 (or the nozzle bodies 12, 13), the powder magnet supplying auxiliary nozzles 43, 45 are attached to surround the nozzles 22, 23, and each auxiliary nozzle 4
3 and 45, respectively, a powder magnet supply hose 44,
Install 46.

第2図は前記ノズル22,23および補助ノズ
ル43,45に対する加工液、粉状磁石の供給装
置等を示す図であり、41は粉状磁石を水等の加
工液に混入して流動性を持たせた流体42を入れ
たホツパ、47はその下端に設けた弁装置、48
はモータ48aにより作動させられて前記流体4
2を管路49を介して前記補助ノズル43,45
から流出、または噴出させるポンプ、50は加工
排液を溜める加工液受け、51は加工排液を液と
加工屑および粉状磁石等の固形物とに分離するサ
イクロン等の固形分分離装置で、加工液はサイク
ロン51の管壁の内側を流上して分離され、前記
加工液タンク52に流入し貯蔵され、一方、分離
加工屑は、サイクロンの内壁から降下し、底部排
出口から流下して貯蔵タンク53に流下して貯蔵
される。54はモータ54aにより作動させられ
て前記タンク52内の加工液を管路55を介して
前記ノズル22,23から噴出させるポンプであ
る。
FIG. 2 is a diagram showing a supply device for machining fluid and powdered magnets to the nozzles 22, 23 and auxiliary nozzles 43, 45, and numeral 41 indicates a powdery magnet mixed into the machining fluid such as water to improve fluidity. A hopper containing the fluid 42 held therein, 47 a valve device provided at its lower end, 48
is actuated by a motor 48a to supply the fluid 4
2 to the auxiliary nozzles 43, 45 through a pipe 49.
50 is a processing liquid receiver for storing processing liquid, and 51 is a solid content separation device such as a cyclone that separates the processing liquid into liquid and solids such as processing waste and powdered magnets. The machining fluid flows up the inside of the pipe wall of the cyclone 51 and is separated, and flows into the machining fluid tank 52 and stored therein, while the separated machining waste descends from the inside wall of the cyclone and flows down from the bottom outlet. It flows down to the storage tank 53 and is stored. A pump 54 is actuated by a motor 54a to jet the machining liquid in the tank 52 from the nozzles 22 and 23 through a pipe 55.

56は加工電源であり、出力電圧パルスおよび
該電圧パルスによる放電パルスの電気的条件(電
圧パルス幅、休止幅、無負荷電圧、短絡電流値
等)の選択切換機能を有する。57は該加工電源
56および前記モータ32,33,48a,54
aおよびワイヤ電極1の巻取りリール58の駆動
モータ58aを、補助記憶装置59に記憶された
加工情報に基づいて制御するNC装置である。
Reference numeral 56 denotes a processing power source, which has a function of selecting and switching electrical conditions (voltage pulse width, pause width, no-load voltage, short-circuit current value, etc.) of the output voltage pulse and the discharge pulse caused by the voltage pulse. 57 is the processing power source 56 and the motors 32, 33, 48a, 54
This is an NC device that controls the drive motor 58a of the winding reel 58 of the wire electrode 1 and the winding reel 58 of the wire electrode 1 based on processing information stored in an auxiliary storage device 59.

この装置を用いて加工を行なう場合は、NC装
置57によりモータ58aを作動させて巻取りリ
ール58にをワイヤ電極1を巻取ることにより、
ワイヤ電極1をその軸線方向に移動させると同時
に、補助記憶装置59に記憶された加工位置情報
によつてX軸モータ32およびY軸モータ33を
作動させて被加工物24をワイヤ電極1に対して
相対移動させ、かつ加工電源56から間歇的に電
圧パルスを印加してワイヤ電極1と被加工物24
との間で放電させるか、あるいは前記電圧パルス
または一定の直流電圧を内蔵コンデンサに印加し
て充電させ、ワイヤ電極1と被加工物24との間
で放電させる動作を繰返すかし、さらにホツパ4
1の弁装置47を好適な開度に開き、かつモータ
48a,54aを作動させて、ノズル22,23
から加工液を加工部27に対して噴出させ、かつ
補助ノズル43,45から粉状磁石を含む流体を
流出させる。
When processing using this device, the motor 58a is operated by the NC device 57 to wind the wire electrode 1 onto the take-up reel 58.
At the same time as moving the wire electrode 1 in its axial direction, the X-axis motor 32 and the Y-axis motor 33 are operated based on the machining position information stored in the auxiliary storage device 59 to move the workpiece 24 relative to the wire electrode 1. The wire electrode 1 and the workpiece 24 are moved relative to each other, and voltage pulses are intermittently applied from the processing power source 56.
Either the voltage pulse or a constant DC voltage is applied to the built-in capacitor to charge it, and the operation of discharging between the wire electrode 1 and the workpiece 24 is repeated, and then the hopper 4
1 valve device 47 is opened to a suitable opening degree, and the motors 48a, 54a are operated to open the nozzles 22, 23.
The machining liquid is ejected from the auxiliary nozzles 43 and 45 toward the machining section 27, and the fluid containing the powdered magnet flows out from the auxiliary nozzles 43 and 45.

このように、粉状磁石を含む流体42をノズル
22,23のまわりから流出させれば、第3図に
上方のノズル22のまわりについて示すように、
被加工物24が磁性体であ場合に限るが、この粉
状磁石60が被加工物24の表面にワイヤ電極1
にほぼ同軸状等環状に付着し、これらがノズル2
2から仮想線61に示す加工液の洩れ流を抑制、
妨害、さらには防止する上、下側のノズル23か
らの加工液流40が加工溝30を通つて上部から
流出するのに対して抵抗となるので、加工部27
に流れる加工液の流量、液圧あるいは液密度が増
大することになり、気泡の発生が無く、加工屑を
確実に洗い流し、安定で、高速加工が可能とな
る。
In this way, if the fluid 42 containing the powdered magnet flows out from around the nozzles 22 and 23, as shown around the upper nozzle 22 in FIG.
This powder magnet 60 is attached to the wire electrode 1 on the surface of the workpiece 24 only when the workpiece 24 is a magnetic material.
These are attached to the nozzle 2 in an almost coaxial and equicyclic shape.
2 to suppress the leakage flow of the machining fluid shown by the imaginary line 61,
In addition to blocking and even preventing the machining fluid flow 40 from the lower nozzle 23 from flowing out from the top through the machining groove 30, the machining section 27
This increases the flow rate, pressure, or density of the machining fluid, which eliminates the generation of bubbles, ensures that machining debris is washed away, and enables stable, high-speed machining.

ところで、第4図の仮想線62に示すように、
加工溝30のコーナ部においては、だれや噴流加
工液の割れによる加工不安定を生じるが、このだ
れは、コーナ部で加工不安定を解消し、従来より
も加工速度を上げ、ガイド18,19間ワイヤ電
極1の直線度を改善することにより、実線63で
示すように小さくなり、ワイヤ電極1の断線事故
も少なくなる。このことを縦断面図で示すと第5
図のようになる。第5図に示すように、加工速度
が遅い場合には、仮想線62で示すようにワイヤ
電極1と加工面とのギヤツプ(膨らみ)が大き
く、高速加工であれば、実線63で示すようにギ
ヤツプが小さくなる。
By the way, as shown by the imaginary line 62 in FIG.
At the corners of the machining groove 30, machining instability occurs due to dripping and cracking of the jet machining fluid, but this droop eliminates machining instability at the corner portions, increases the machining speed compared to the past, and guides 18, 19. By improving the straightness of the wire electrode 1, the wire electrode 1 becomes smaller as shown by the solid line 63, and the number of breakage accidents of the wire electrode 1 is reduced. This can be seen in the 5th longitudinal cross-sectional view.
It will look like the figure. As shown in FIG. 5, when the machining speed is slow, the gap (bulge) between the wire electrode 1 and the machining surface is large as shown by the imaginary line 62, and when the machining speed is high, the gap (bulge) between the wire electrode 1 and the machining surface is large as shown by the solid line 63. The gap becomes smaller.

そこで第6図に示すように、コーナ部64で噴
流液割れ等が生ぜずに安定な高速加工が行なえる
ように、コーナ部の加工輪郭経路が曲り始める直
前ないし少し前に前記弁装置47を一時的に開く
と共に、モータ48aを作動させて流体42を補
助ノズル43,45から被加工物24に供給する
ようにして、前記加工液の洩れを防止すれば、コ
ーナ部のだれや加工不安定あるいはワイヤ電極断
線事故を減少させることができる。
Therefore, as shown in FIG. 6, in order to perform stable high-speed machining without causing jet liquid cracking or the like at the corner portion 64, the valve device 47 is installed just before or a little before the machining contour path of the corner portion begins to curve. If the fluid 42 is temporarily opened and the motor 48a is operated to supply the fluid 42 from the auxiliary nozzles 43 and 45 to the workpiece 24 to prevent leakage of the machining fluid, sag at the corner and unstable machining can be avoided. Alternatively, wire electrode breakage accidents can be reduced.

第7図および第8図は本発明の他の実施例を示
すもので、ノズル本体12の外側に前記ホース4
4を接続する筒状体65を、該筒状体65とノズ
ル本体12との間に環状流路66が形成されるよ
うに取付け、該筒状体65およびノズル22に対
して軸受67,68を介して一方のみに流出口6
9aを有する回転体69を該回転体69の外周に
取付けた外歯歯車70を、前記筒状体65に取付
けたモータ71により回転される歯車72に噛合
させ、前記モータ71を加工位置情報に応じて作
動させことにより、加工直後の加工溝30上をカ
バーするようにすることにより、特に相手側ノズ
ル23からの加工溝30を介する加工液流40が
阻まれ、加工液がワイヤ電極1の加工進行方前方
から流出するようにすることにより、少ない粉状
磁石で加工液洩れが有効になされるようにしたも
のである。
7 and 8 show another embodiment of the present invention, in which the hose 4 is provided outside the nozzle body 12.
4 is attached so that an annular flow path 66 is formed between the cylindrical body 65 and the nozzle body 12. Outlet 6 only on one side through
An external gear 70 having a rotary body 69 having a diameter of 9a attached to the outer periphery of the rotary body 69 is meshed with a gear 72 rotated by a motor 71 attached to the cylindrical body 65, and the motor 71 is set to the machining position information. By activating the process accordingly, the machining fluid flow 40 through the machining groove 30 from the counterpart nozzle 23 is blocked, and the machining fluid flows into the wire electrode 1 by covering the machining groove 30 immediately after machining. By arranging the flow to flow from the front in the direction of machining progress, leakage of machining fluid can be effectively prevented with a small number of powdered magnets.

なお、上記実施例においては、2本のノズル2
2,23が上下方向に対向する例について示した
が、横方向に対向する場合もある。また、ノズル
22,23あるいはノズル本体12,13のいず
れかに粉状磁石の流出手段を設けるようにしても
良く、また粉状磁石は、ノズル22,23をほぼ
同軸環状に囲繞する補助ノズル43,45や流出
口69aを有する回転体69等からでなく、ノズ
ル22,23から加工液に混合されて噴出する構
成であつても良く、従つてその場合補助ノズル4
3,45や回転体69の付設は必要でなくなる
が、ノズル22,23から加工液と共に噴出され
た粉状磁石がノズル22,23先端開口廻りと被
加工物24表面との間に吸着して滞留し易いよう
に、前記ノズル22,23先端開口廻りを肉厚に
構成したり、該肉厚に構成したノズル22,23
先端開口廻りの被加工物24との対向面に鉄材等
強磁性体の環状体を埋設して、該環状体にも粉状
磁石を吸着させるようにすることができ、また該
環状体を永久磁石とすれば、前記粉状磁石は永久
磁石でない強磁性体粉として、被加工物24表面
ではなく、ノズル22,23先端開口廻りの被加
工物24との対向面に吸着させた状態とすること
ができ、このようにすれば、粉状磁石を被加工物
24表面の加工輪郭線に阻つて吸着さて行く場合
と異なり前記強磁性体粉は大部分がノズル22,
23と共に移動することになるから、その補給は
少量で、時々行なえば済むことになる。なお、こ
の環状磁石は、前記補助ノズル43,45や回転
体69の先端開口廻りの被加工物対向面に設けて
も良く、かかる方式によれば、被加工物24が磁
性材でない物の加工の場合のにも本発明と実質上
同一の目的、作用効果を享受する加工を行なうこ
とができる。
In addition, in the above embodiment, two nozzles 2
2 and 23 have been shown in the example in which they face each other in the vertical direction, but they may also face each other in the horizontal direction. Further, a means for discharging the powdered magnet may be provided in either the nozzles 22, 23 or the nozzle bodies 12, 13, and the powdered magnet is supplied to the auxiliary nozzle 43 which surrounds the nozzles 22, 23 in a substantially coaxial annular shape. , 45 or the rotating body 69 having the outlet 69a, etc., but may be configured to mix with the machining liquid and eject from the nozzles 22, 23. Therefore, in that case, the auxiliary nozzle 4
3, 45 and the rotating body 69 are no longer necessary, but the powdered magnet ejected from the nozzles 22, 23 together with the machining fluid is attracted between the openings at the tips of the nozzles 22, 23 and the surface of the workpiece 24. The nozzles 22, 23 have a thick wall around their tip openings to facilitate retention, or the nozzles 22, 23 have a thick wall.
A ring-shaped body made of a ferromagnetic material such as iron can be embedded in the surface facing the workpiece 24 around the tip opening so that the powder magnet can also be attracted to the ring-shaped body, and the ring-shaped body can be permanently attached. If it is a magnet, the powder magnet is a ferromagnetic powder that is not a permanent magnet and is attracted not to the surface of the workpiece 24 but to the surface facing the workpiece 24 around the openings at the tips of the nozzles 22 and 23. In this way, most of the ferromagnetic powder is absorbed by the nozzle 22, unlike the case where the powder magnet is blocked by the machining contour line on the surface of the workpiece 24 and is attracted.
Since they will be traveling together with 23, their supplies will be small and will only need to be done once in a while. Note that this annular magnet may be provided on the surface facing the workpiece around the tip opening of the auxiliary nozzles 43, 45 or the rotating body 69. According to this method, the workpiece 24 is not made of a magnetic material. In this case, it is also possible to perform processing that enjoys substantially the same objectives, effects, and effects as those of the present invention.

(発明の効果) 本発明によれば、加工部に供給される加工液の
流量、流速あるいは液圧を高めることができ、加
工部における泡の発生や外部からの空気気泡の巻
込み流入を少なくして気中放電の発生の防止する
と共に、高速加工に適した加工液流を発生させる
ことができる。また、粉状磁石の供給を制御する
ことにより、加工部の形状に応じた洩れ量の制御
を行なうことができ、固定の洩れ防止部材を設け
た場合に比較し、フレキシビリテイーに富んだ加
工液流を発生させることができる。
(Effects of the Invention) According to the present invention, it is possible to increase the flow rate, flow velocity, or liquid pressure of the machining fluid supplied to the machining section, thereby reducing the generation of bubbles in the machining section and the entrainment of air bubbles from the outside. In addition to preventing the occurrence of aerial discharge, it is possible to generate a machining fluid flow suitable for high-speed machining. In addition, by controlling the supply of powdered magnets, it is possible to control the amount of leakage according to the shape of the processed part, allowing for more flexible processing compared to the case where a fixed leakage prevention member is installed. A liquid flow can be generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すノズルまわり
の構成を示す断面図、第2図は本発明の加工液お
よび粉状磁石の供給を行なうシステムの構成図、
第3図は本発明の作用を説明する断面図、第4図
はコーナ部のだれの説明図、第5図は同じく加工
部の中央部の膨らみを説明する断面図、第6図は
本発明における粉状磁石の供給態様の一例を示す
説明図、第7図は本発明の他の実施例を示す断面
図、第8図は第7図のE−E断面図である。
FIG. 1 is a sectional view showing the configuration around a nozzle according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a system for supplying machining liquid and powdered magnet of the present invention,
FIG. 3 is a cross-sectional view explaining the action of the present invention, FIG. FIG. 7 is a sectional view showing another embodiment of the present invention, and FIG. 8 is a sectional view taken along line EE in FIG. 7.

Claims (1)

【特許請求の範囲】 1 間隔を置いて配置した一対の位置決めガイド
間にワイヤ電極を軸方向に更新送り移動させなが
ら前記ワイヤ電極の軸方向に対して略直角方向に
被加工物を相対的に移動させ、両者が相対向する
加工部へ被加工物の両側へ相対向するように配置
した加工液噴射ノズルからワイヤ電極に沿つて加
工液を噴射供給させつつ前記ワイヤ電極と被加工
物との間に間歇的な電圧パルスまたは放電パルス
となる電圧パルスを印加し、発生する放電により
加工を行なうワイヤカツト放電加工において、前
記相対向するノズルまたはノズル近傍部から粉状
磁石を磁性材でなる被加工物の表面に供給するこ
とにより、被加工物に粉状磁石をノズル先端の廻
りにほぼ同軸環状に吸着させて加工部以外への加
工液の洩れを防止したことを特徴とするワイヤカ
ツト放電加工方法。 2 前記粉状磁石の被加工物表面への供給を、被
加工物の加工直後の部分に対して行なうようにし
たことを特徴とする特許請求の範囲第1項記載の
ワイヤカツト放電加工方法。 3 前記粉状磁石の被加工物表面への供給を、コ
ーナ部加工の際にのみ行なうようにしたことを特
徴とする特許請求の範囲第1項または第2項記載
のワイヤカツト放電加工方法。
[Scope of Claims] 1. While a wire electrode is updated and moved in the axial direction between a pair of positioning guides arranged at intervals, the workpiece is relatively moved in a direction substantially perpendicular to the axial direction of the wire electrode. The wire electrode and the workpiece are moved and the machining fluid is sprayed and supplied along the wire electrode from machining fluid spray nozzles arranged so as to face each other on both sides of the workpiece to the machining section where the wire electrodes and the workpiece face each other. In wire cut electrical discharge machining, in which intermittent voltage pulses or voltage pulses are applied in between, and machining is performed by the generated discharge, a powdered magnet is applied from the opposing nozzles or the vicinity of the nozzle to the workpiece made of a magnetic material. A wire cut electric discharge machining method characterized in that a powdered magnet is attracted to the workpiece in a substantially coaxial annular shape around the nozzle tip by supplying it to the surface of the workpiece, thereby preventing leakage of machining fluid to areas other than the machining area. . 2. The wire cut electric discharge machining method according to claim 1, wherein the powdered magnet is supplied to the surface of the workpiece to a portion of the workpiece immediately after being machined. 3. The wire cut electric discharge machining method according to claim 1 or 2, characterized in that the powdered magnet is supplied to the surface of the workpiece only during corner machining.
JP20523484A 1984-09-28 1984-09-28 Wire-cut electric spark machining Granted JPS6186131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20523484A JPS6186131A (en) 1984-09-28 1984-09-28 Wire-cut electric spark machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20523484A JPS6186131A (en) 1984-09-28 1984-09-28 Wire-cut electric spark machining

Publications (2)

Publication Number Publication Date
JPS6186131A JPS6186131A (en) 1986-05-01
JPH0455807B2 true JPH0455807B2 (en) 1992-09-04

Family

ID=16503624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20523484A Granted JPS6186131A (en) 1984-09-28 1984-09-28 Wire-cut electric spark machining

Country Status (1)

Country Link
JP (1) JPS6186131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306828A (en) * 1987-06-05 1988-12-14 Fanuc Ltd Machining liquid nozzle for wire electric discharge machining device
DE4128771C2 (en) * 1990-09-17 1996-01-04 Mitsubishi Electric Corp Machining device for spark-erosive wire cutting

Also Published As

Publication number Publication date
JPS6186131A (en) 1986-05-01

Similar Documents

Publication Publication Date Title
JP2522695B2 (en) Method for reducing ambient effects on powder coating and powder coating apparatus thereof
EP0140694B1 (en) Automatic spark-depositing apparatus
GB2138341A (en) Traveling-wire electroerosion machining
JPH0455807B2 (en)
KR940018156A (en) Apparatus and method for welding orbital cylindrical parts on curved walls
US4473733A (en) EDM Method and apparatus using hydrocarbon and water liquids
JPS6250251B2 (en)
JPS6268225A (en) Wire cut electric discharge machine
JPS59175927A (en) Working liquid supplying device in wire-cut electric discharge
JPH0620672B2 (en) Nozzle device for wire cut electrical discharge machining
JPS6247130B2 (en)
JPH0518013Y2 (en)
JP2571053B2 (en) Machining fluid supply device for wire electric discharge machine
JPS6316924A (en) Wire cut electric discharge machining method
JPH06226543A (en) Wire electrode automatic charging method and device for wire electric discharging machine
JPH0455805B2 (en)
JPS5843210B2 (en) Wire
JPS59182030A (en) Wire cut electric discharge machining device
JPS63306826A (en) Machining liquid feeding device for wire cut electric discharge machine
JPH0313012B2 (en)
WO1993013902A1 (en) Wirecut electrical discharge machining apparatus
JPS59232735A (en) Wire-cut electric discharge machining method and machining liquid rectifier used in the machining method
JPS63251123A (en) Processing liquid injecting device for wire cut electric discharge machining equipment
JPH0425090B2 (en)
JPS62166922A (en) Wire-cut electric discharge machine