JPH0313012B2 - - Google Patents

Info

Publication number
JPH0313012B2
JPH0313012B2 JP57138230A JP13823082A JPH0313012B2 JP H0313012 B2 JPH0313012 B2 JP H0313012B2 JP 57138230 A JP57138230 A JP 57138230A JP 13823082 A JP13823082 A JP 13823082A JP H0313012 B2 JPH0313012 B2 JP H0313012B2
Authority
JP
Japan
Prior art keywords
machining
wire electrode
supply nozzle
auxiliary
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57138230A
Other languages
Japanese (ja)
Other versions
JPS5930626A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP13823082A priority Critical patent/JPS5930626A/en
Priority to US06/495,498 priority patent/US4507532A/en
Priority to DE19833318090 priority patent/DE3318090A1/en
Priority to KR1019830002173A priority patent/KR890000124B1/en
Priority to IT48313/83A priority patent/IT1167141B/en
Priority to GB08313762A priority patent/GB2121714B/en
Priority to FR8308262A priority patent/FR2527117B1/en
Publication of JPS5930626A publication Critical patent/JPS5930626A/en
Publication of JPH0313012B2 publication Critical patent/JPH0313012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/101Supply of working media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、ワイヤカツト放電加工装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire cut electric discharge machining apparatus.

ワイヤ電極を使用したワイヤカツト放電加工装
置は、ワイヤ電極を一方のリールから他方のリー
ルに引張りながら巻き取り、この軸方向に更新移
動するワイヤ電極の軸に略直角方向から被加工体
を対向させて放電加工間〓を形成させ、この間〓
に水、油等の加工液を供給すると共に、間欠的な
電圧パルスを繰返し供給して放電パルスを発生さ
せ、この放電を繰返すことにより被加工体を加工
するが、このときワイヤ電極若しくは被加工体に
前記直角方向の平面上において相対的に所定輪郭
形状等の加工送りを与えることによつて諸種な形
状の切断、抜き取り加工ができるものである。使
用するワイヤ電極は、線径が通常、0.05〜0.5mm
φ程度の細線が用いられるが、ワイヤ電極の径が
比較的細いため、切断し易いという欠点があつ
た。この欠点は、加工液の加工部位に対する噴流
供給の仕方等を工夫することによつてある程度改
善できるものである。これは加工液のより工夫さ
れた供給によつて、主として、当該放電加工部位
のワイヤ電極、被加工体、即ち、加工間〓を適度
に冷却すること、及び加工により生成される加工
屑等を加工間〓から除去し、加工間〓に加工屑等
を加工生成物濃度を所定値以下に低減させた加工
液を介在させることにより、アーク放電等の異常
放電が起らないで放電加工が行なわれるようにで
きるためである。即ち、単に加工液を、例えば外
部ノズルから加工部位に噴出するだけでは、加工
の際の加工屑を所定の状態以上に除去できず、又
例えば加工間〓の内部に加工液が供給されないた
めに所定の状態の冷却ができず、このため異常放
電やワイヤ電極断線が起ることが多々あつた。
A wire-cut electric discharge machining device using a wire electrode winds the wire electrode while pulling it from one reel to the other reel, and the workpiece is opposed from a direction approximately perpendicular to the axis of the wire electrode, which moves in the axial direction. During electrical discharge machining, a gap is formed, and during this time
In addition to supplying machining fluid such as water or oil to By relatively applying machining feed such as a predetermined contour shape to the body on the plane in the perpendicular direction, various shapes can be cut and punched. The wire electrode used usually has a wire diameter of 0.05 to 0.5 mm.
Although a thin wire of about φ is used, it has the disadvantage that it is easy to cut because the diameter of the wire electrode is relatively small. This drawback can be improved to some extent by devising a method for supplying a jet of machining liquid to the machining area. This is mainly achieved by appropriately cooling the wire electrode and workpiece in the electrical discharge machining area, that is, between machining, and by removing machining debris generated during machining, by supplying machining fluid in a more contrived manner. Electric discharge machining can be performed without abnormal discharge such as arc discharge by removing machining debris from the machining gap and interposing a machining fluid whose concentration of machining products is reduced to a predetermined value or less. This is so that it can be done. That is, simply spouting machining fluid from an external nozzle to the machining area cannot remove machining debris beyond a predetermined level, and the machining fluid is not supplied to the inside of the machining space. Cooling in a predetermined state could not be achieved, and as a result, abnormal discharge and wire electrode breakage often occurred.

例えば、被加工体の厚み又は加工形状が、多種
多様であるにもかかわらず加工液の噴射供給は、
例えば噴射圧や噴射流速、流量等を変更設定した
としても、ノズルによる噴射は一定の方向から加
工部表面付近に供給されるにすぎないものである
ため、被加工体の板厚方向(ワイヤ電極軸方向)
の被加工体中央部分に対する加工液の供給が不完
全である等種々な問題があつた。
For example, despite the wide variety of workpiece thicknesses and machining shapes, the injection supply of machining fluid
For example, even if the injection pressure, injection flow rate, flow rate, etc. are changed, the injection from the nozzle is only supplied from a fixed direction near the surface of the workpiece. axial direction)
There were various problems such as incomplete supply of machining fluid to the center of the workpiece.

又、加工液の供給圧力を高め、流速を速めるこ
とにより被加工体の板厚中央部分にまで充分な加
工液を供給することも考えられるが、このように
して充分な加工液を供給するには、供給圧力を相
当高くしなければならず、加工液の飛散が激しく
なる問題がある。
It is also possible to supply sufficient machining fluid to the center of the thickness of the workpiece by increasing the machining fluid supply pressure and speeding up the flow rate, but it is difficult to supply sufficient machining fluid in this way. In this case, the supply pressure must be made considerably high, and there is a problem in that the machining fluid scatters violently.

本発明は、叙上の問題点に鑑み、比較的低圧の
供給状態で加工液を加工部に充分に供給し得るよ
うにすることを目的として発明されたものであ
り、加工液をワイヤ電極と同軸状に噴射する加工
液供給ノズルと、加工溝幅と同じか又はそれより
小さい開口径を有し、ワイヤ電極から微小距離離
隔した位置に開口部が配置され、ワイヤ電極と略
平行に加工液を噴射する補助加工液供給ノズル
と、ワイヤ電極を中心として上記補助加工液供給
ノズルを回動させる回動機構と、該回動機構の作
動を制御する制御装置とを設け、上記補助加工液
供給ノズルの開口部が加工進行方向に対するワイ
ヤ電極の背面側に常時位置するように上記回動機
構を制御すると共に、上記加工液供給ノズルから
噴射される加工液よりも速い流速で上記補助加工
液供給ノズルから加工液を噴射させながら加工を
行なうことを特徴とするものである。
In view of the above-mentioned problems, the present invention was invented with the aim of making it possible to sufficiently supply machining fluid to the machining part under a relatively low pressure supply state, and the machining fluid is connected to a wire electrode. It has a machining fluid supply nozzle that sprays coaxially, an opening diameter that is the same as or smaller than the width of the machining groove, and an opening that is placed a minute distance away from the wire electrode. an auxiliary machining liquid supply nozzle that injects auxiliary machining liquid, a rotation mechanism that rotates the auxiliary machining liquid supply nozzle around a wire electrode, and a control device that controls the operation of the rotation mechanism, and a control device that controls the operation of the rotation mechanism. The rotation mechanism is controlled so that the opening of the nozzle is always located on the back side of the wire electrode with respect to the machining progress direction, and the auxiliary machining liquid is supplied at a faster flow rate than the machining liquid injected from the machining liquid supply nozzle. The feature is that machining is performed while jetting machining liquid from a nozzle.

以下、本発明を図示の実施例により説明する。 Hereinafter, the present invention will be explained with reference to illustrated embodiments.

第1図に示す本発明の実施例は、被加工体1を
ワイヤ電極2によつて放電加工している状態を示
す上方から見た斜視図であつて、被加工体1の下
面例も同様の構成態様のものであり、通常のワイ
ヤカツト放電加工装置に於て周知の構成部分、例
えばワイヤ電極のガイド、通電ピン、被加工体1
の取付移動テーブル等は省略されている。上記ワ
イヤ電極2によるワイヤカツト放電加工は、被加
工体1の所定の位置に形成されたスタート孔1a
から開始され、図示のように折曲した加工溝3を
形成し、現在の位置にあつて矢符3a方向に加工
を進行させる状態にある。しかして、このワイヤ
電極2の周囲には、点線で示すように加工液4が
通常のワイヤ電極同軸状加工液供給ノズル7から
ワイヤ電極2を同軸状に包皮した噴射流となつて
噴射供給されている。このノズル7の加工液噴射
開口の径は、加工溝3の幅よりも大きく構成設定
されている。そして、上記ワイヤ電極2の側近、
加工進行方向(加工間〓)に対するワイヤ電極2
の背面側直近、図に於てはワイヤ電極2の右側間
近に、補助加工液供給ノズル5の開口部が配置さ
れる。この補助加工液供給ノズル5は、ワイヤ電
極2と微小な距離、つまり約1mm前後程度の位置
にワイヤ電極2による放電加工によつて形成され
た被加工体の加工溝3の加工溝幅と同じか又はそ
の幅より小さい幅の開口を有し、ワイヤ電極と略
平行に加工液を供給する。そして、この補助加工
液供給ノズル5は後述する回動機構によりワイヤ
電極2を中心として回動する。従つて、ワイヤ電
極2と同軸状に噴射供給する加工液の中にあつ
て、この補助ノズル5より供給される加工液は、
ワイヤ電極2の直ぐ後ろの加工溝3内に直接ワイ
ヤ電極2の軸に略沿つて噴射され、ワイヤ電極2
及び加工間〓G部分に於ける加工液の流通介在、
即ち主としてノズル7による注入加工液の滞流、
流出を適度に制御し、加工液は加工部分に効率的
且つ適確に供給されることになり、その結果、加
工液による加工間〓G部分の冷却を適度のものに
すると共に加工間〓Gの加工屑等加工生成物の濃
度を適度に保ち、且つその加工部分に対する空気
の侵入を防止しているので、ワイヤ電極2の切断
が防止される。
The embodiment of the present invention shown in FIG. 1 is a perspective view seen from above showing a state in which a workpiece 1 is subjected to electrical discharge machining by a wire electrode 2, and the lower surface example of the workpiece 1 is also similar. It has the configuration mode shown in FIG.
The mounting and moving table etc. are omitted. Wire cut electrical discharge machining using the wire electrode 2 is performed using a starting hole 1a formed at a predetermined position of the workpiece 1.
The machining process starts from , forms a bent machining groove 3 as shown in the figure, and is in a state where machining progresses in the direction of the arrow 3a at the current position. As shown by the dotted line, the machining fluid 4 is sprayed around the wire electrode 2 from a normal wire electrode coaxial machining fluid supply nozzle 7 in the form of a jet flow that surrounds the wire electrode 2 coaxially. ing. The diameter of the machining fluid injection opening of this nozzle 7 is set to be larger than the width of the machining groove 3. And a close aide of the wire electrode 2,
Wire electrode 2 in the direction of machining progress (during machining)
The opening of the auxiliary machining liquid supply nozzle 5 is arranged close to the back side of the wire electrode 2, close to the right side of the wire electrode 2 in the figure. This auxiliary machining fluid supply nozzle 5 is located at a minute distance from the wire electrode 2, that is, approximately 1 mm, and has a width equal to the machining groove width of the machining groove 3 of the workpiece, which is formed by electric discharge machining using the wire electrode 2. or a width smaller than the width of the opening, and supplies the machining fluid approximately parallel to the wire electrode. The auxiliary machining liquid supply nozzle 5 is rotated about the wire electrode 2 by a rotation mechanism which will be described later. Therefore, among the machining fluids that are injected coaxially with the wire electrode 2, the machining fluid that is supplied from this auxiliary nozzle 5 is as follows:
It is sprayed directly into the machining groove 3 immediately behind the wire electrode 2 approximately along the axis of the wire electrode 2, and the wire electrode 2
and during processing = distribution of processing fluid in the G section,
That is, mainly the stagnation of the injected processing liquid by the nozzle 7,
By appropriately controlling the outflow, the machining fluid can be efficiently and accurately supplied to the machining part, and as a result, the machining fluid can moderately cool the part G between machining and reduce the Since the concentration of processed products such as processed waste is maintained at an appropriate level and air is prevented from entering the processed portion, cutting of the wire electrode 2 is prevented.

更に本発明の作用について第2図を参照して説
明する。第2図は加工中のワイヤ電極2の状態を
示したものである。図示のように、被加工体1の
加工面又は加工間〓面の断面輪郭線1bは、いく
からなりでも加工速度等の加工性能をより大とす
るように制御により加工送りが与えられている以
上、加工送りの向き3aに円弧凸状となつてお
り、これ対するワイヤ電極2も放電圧力等の加工
間〓圧力により同様に湾曲した状態で軸方向に更
新送り移動されている。つまりワイヤ電極2の位
置は、被加工体1の表面付近と内部とで一致して
いるわけではなく、僅かにずれているわけであ
る。従つて、通常の加工液供給ノズル7,7′か
らの噴射加工液の噴射軸線と、加工部ワイヤ電極
2の軸線又は前記輪郭線1bとは一致しておら
ず、従つてワイヤ電極2と前記輪郭線1b間の加
工間〓Gには、必ずしも加工液が内部に迄円滑に
噴射注入されないばかりでなく、キヤビテーシヨ
ン作用等も生じ、加工屑の排除、加工液の更新が
充分でなく、又気中放電を生ずることが少なくな
いのが実情である。しかるに、本発明により補助
加工液供給ノズル5,5′を設けて、ワイヤ電極
2の加工間〓Gの背面側の近くに於て加工液をワ
イヤ電極2に沿つて、加工液を加工液供給ノズル
7,7′によつて噴射供給される加工液よりも速
い流速で噴射供給することにより、加工液供給ノ
ズル7,7′による噴射加工液の加工溝3側への
易流出を制御乃至は調整し、加工間〓Gへの流
入、回り込み更新を促進し、キヤビテーシヨンの
発生を抑制し、加工屑等加工生成物の排除も適度
に行なわれるようになり、加工間〓が好環境下で
加工を行なうことができ、ワイヤ電極2の断線を
極力押えることができる。
Further, the operation of the present invention will be explained with reference to FIG. FIG. 2 shows the state of the wire electrode 2 during processing. As shown in the figure, the cross-sectional contour line 1b of the machining surface or inter-machining surface of the workpiece 1 is given a machining feed by control so as to increase machining performance such as machining speed. As described above, the wire electrode 2 has an arcuate convex shape in the machining feed direction 3a, and the wire electrode 2 corresponding thereto is also renewed in the axial direction in a curved state due to pressure during machining such as discharge pressure. In other words, the position of the wire electrode 2 is not the same near the surface and inside the workpiece 1, but is slightly shifted. Therefore, the jet axis of the machining fluid injected from the normal machining fluid supply nozzles 7, 7' does not coincide with the axis of the machining part wire electrode 2 or the contour line 1b, and therefore the wire electrode 2 and the During the machining interval G between the contour line 1b, not only is the machining fluid not necessarily injected smoothly into the interior, but also cavitation effects occur, and machining waste is not removed sufficiently and the machining fluid is not refreshed, and the machining fluid is not sufficiently removed. The reality is that medium discharge often occurs. However, according to the present invention, auxiliary machining fluid supply nozzles 5 and 5' are provided to supply machining fluid along the wire electrode 2 near the back side of the machining gap G of the wire electrode 2. By injecting and supplying the machining fluid at a faster flow rate than the machining fluid that is injected and supplied by the nozzles 7 and 7', the easy outflow of the machining fluid injected by the machining fluid supply nozzles 7 and 7' to the machining groove 3 side can be controlled or By adjusting the machining interval, the inflow into the G and the rotation renewal are promoted, the occurrence of cavitation is suppressed, and processing products such as processing waste are appropriately removed, and the machining interval is processed in a favorable environment. Therefore, disconnection of the wire electrode 2 can be suppressed as much as possible.

又、補助加工液供給ノズル5,5′は、所望の
加工輪郭形状に沿つて加工が進むワイヤ電極2の
加工進行方向に合わせて、ワイヤ電極2の回りを
回動するように構成され、即ち、補助加工液供給
ノズル5,5′の加工液噴出口が常に加工済の加
工溝3側換言すれば加工進行方向に対するワイヤ
電極2の背面側の前記加工溝3上(又は内)に位
置するようになつている。次に補助加工液供給ノ
ズル5,5′の回動を図る回動機構の一例につい
て第3図に基づき説明する。
Further, the auxiliary machining liquid supply nozzles 5, 5' are configured to rotate around the wire electrode 2 in accordance with the machining progress direction of the wire electrode 2 in which machining progresses along the desired machining contour shape. The machining fluid spouting ports of the auxiliary machining fluid supply nozzles 5, 5' are always located on the machined groove 3 side, in other words, above (or inside) the machining groove 3 on the back side of the wire electrode 2 with respect to the machining progress direction. It's becoming like that. Next, an example of a rotation mechanism for rotating the auxiliary machining liquid supply nozzles 5, 5' will be explained based on FIG. 3.

第3図は補助加工液供給ノズル5,5′の回動
を図る機構の一例で、被加工体1の上面側等、両
側に実質状同一の構成のものがあるので、一方の
面にあるもののみを示し、他は省略してある。補
助加工液供給ノズル5は、取付腕51を介して回
動調節機構60に取付けられている。回動調節機
構60は、内部にワイヤ電極2が軸心を挿通する
加工機本体のアーム等固定部に固定支持された円
筒状支持部材61と、この円筒状支持部材61先
端部のリング状の突部62との間に距離を置いて
固着される2つのスラスト軸受63a,63b
と、これらスラスト軸受63aと63bとの間に
保持され設けられるワイヤ電極2を回動軸心とす
る歯車状の回動部材64と、この回動部材64外
周の歯溝と噛合する歯車65と、この歯車65の
回動を駆動制御する固定部に配置されたモータ6
6とからなつている。又円筒状支持部材61下部
には、ダイスガイド2Aを保持するガイドホルダ
2B及び前記加工液供給ノズル7が連結固定され
ている。そして回動部材64の中心に円筒状支持
部材61に挿通する孔67が形成され、回動部材
64が円筒支持部材61にワイヤ電極2を軸心と
して回転自在に取付けられ、モータ66による歯
車65の回転によつて回動部材64が回動され
る。更に回動部材64には、前記取付腕51に保
持された補助加工液供給ノズル5をワイヤ電極2
軸に沿つて上下往復又は振動運動させる運動機構
71が取付けられている。72は運動機構71の
駆動装置であり、数値制御装置を含む制御装置8
からの指令信号により前記運動のオン・オフ、各
種運動の選択、組合わせの切替え、各運動の周波
数・振幅・ストローク・回転半径、又は速度等の
切替えを行なう作動指令切換スイツチ73,74
が設けられている。
Fig. 3 shows an example of a mechanism for rotating the auxiliary machining liquid supply nozzles 5, 5'. Only the items shown are shown and the others are omitted. The auxiliary machining liquid supply nozzle 5 is attached to a rotation adjustment mechanism 60 via an attachment arm 51. The rotation adjustment mechanism 60 includes a cylindrical support member 61 fixedly supported by a fixed part such as an arm of the processing machine main body through which the wire electrode 2 is inserted through its axis, and a ring-shaped support member 61 at the tip of the cylindrical support member 61. Two thrust bearings 63a and 63b fixed to the protrusion 62 with a distance between them.
A gear-shaped rotating member 64 whose rotation axis is the wire electrode 2 held and provided between these thrust bearings 63a and 63b, and a gear 65 that meshes with tooth grooves on the outer periphery of this rotating member 64. , a motor 6 disposed on a fixed part that drives and controls the rotation of this gear 65.
It consists of 6. Further, a guide holder 2B that holds the die guide 2A and the machining fluid supply nozzle 7 are connected and fixed to the lower part of the cylindrical support member 61. A hole 67 is formed in the center of the rotating member 64 to be inserted into the cylindrical support member 61, and the rotating member 64 is attached to the cylindrical support member 61 so as to be rotatable about the wire electrode 2. The rotation of the rotating member 64 causes the rotating member 64 to rotate. Further, the rotating member 64 has the auxiliary machining liquid supply nozzle 5 held on the mounting arm 51 connected to the wire electrode 2.
A movement mechanism 71 is attached that causes vertical and reciprocating or vibrational movement along the axis. 72 is a drive device for the movement mechanism 71, and a control device 8 including a numerical control device.
Operation command changeover switches 73, 74 which turn on/off the movement, select various movements, switch combinations, and switch the frequency, amplitude, stroke, radius of rotation, or speed of each movement based on command signals from the
is provided.

又図示はしないが、被加工体1が固定される加
工用のxyクロステーブル等の固定台は、加工輪
郭形状に関する信号により移動するようになつて
いる。この信号は紙又は磁気テープからの読み出
し信号又は手動入力信号等数値制御装置を含む制
御装置の情報を演算処理する数値8から前記図示
しないクロステーブルのxy駆動装置に送られる
ものであつて、固定台を移動させ、被加工体1を
所望の形状に加工するようになつている。更に制
御装置8はモータ66の駆動装置を含むスイツチ
機構9に接続されており、該スイツチ機構9は、
モータ66に設けられたロータリイエンコーダ等
の部材64の回転角度又は位置検出装置75から
の検出期間信号76により制御装置8が出力する
信号によつて、オン・オフされ、モータ66が作
動・停止等回転角度が、ワイヤ電極2と被加工体
1間の当該時点に於ける加工輪郭形状、特にその
輪郭形状の接触方向に応じ、補助加工液供給ノズ
ル5の位置が、前記接線方向のワイヤ電極2背面
側に位置するように制御されるようになつてい
る。このように被加工体1の移動を図る固定台と
ワイヤ電極2間の相対作動と、モータ66の作動
つまり回動部材64の回動とは、予めプログラム
設定等された信号情報に基づく制御装置8の出力
信号によつて制御され、固定台による被加工体1
の移動に合わせて回動部材64が回動される。そ
して回動部材64の回動によつて、補助加工液供
給ノズル5を加工溝3上或いは溝内の所定位置に
於て、加工進行方向に対するワイヤ電極2の背面
側に常に位置するようになつている。詳述する
と、被加工体1をx−y平面上の所定輪郭形状に
切抜き切断等加工するためには、その形状に合わ
せて被加工体1を固定台を作動させることによつ
て移動させる。この固定台の作動は、数値制御を
含む制御装置8に予めプログラム入力された情報
を基に行なわれるが、これらの情報中に回動部材
64の回動角度制御情をも予め設定入力しておく
ことにより、固定台と回動部材64つまり補助加
工液供給ノズル5とを連動させることができる。
Although not shown, a fixing table such as an xy cross table for processing to which the workpiece 1 is fixed is moved in response to a signal related to the contour shape to be processed. This signal is sent to the xy drive device of the cross table (not shown) from the numerical value 8, which processes the information of the control device including the numerical control device, such as a readout signal from paper or magnetic tape or a manual input signal, and is fixed. The workpiece 1 is machined into a desired shape by moving the table. Furthermore, the control device 8 is connected to a switch mechanism 9 that includes a drive device for the motor 66, and the switch mechanism 9 includes:
The motor 66 is turned on and off by the rotation angle of a member 64 such as a rotary encoder provided on the motor 66, or by a detection period signal 76 from a position detection device 75, which is output by the control device 8, and the motor 66 is activated and stopped. The position of the auxiliary machining fluid supply nozzle 5 is determined by the equal rotation angle depending on the machining contour shape at that point in time between the wire electrode 2 and the workpiece 1, especially the contact direction of the contour shape. 2. It is designed to be controlled so that it is located on the back side. The relative operation between the fixed base and the wire electrode 2 for moving the workpiece 1 and the operation of the motor 66, that is, the rotation of the rotating member 64, are controlled by a control device based on signal information set in a program in advance. The workpiece 1 is controlled by the output signal of 8, and the workpiece 1 is
The rotating member 64 is rotated in accordance with the movement of. By rotating the rotating member 64, the auxiliary machining fluid supply nozzle 5 is always positioned on the machining groove 3 or at a predetermined position within the groove, on the back side of the wire electrode 2 with respect to the machining progress direction. ing. Specifically, in order to process the workpiece 1 into a predetermined contour shape on the xy plane by cutting or cutting, the workpiece 1 is moved according to the shape by operating the fixing table. The operation of this fixed base is performed based on information that is programmed in advance into the control device 8, including numerical control, and the rotation angle control information of the rotation member 64 is also input in advance in this information. By placing it there, the fixed base and the rotating member 64, that is, the auxiliary machining liquid supply nozzle 5 can be interlocked.

図面第4図は、本発明の効果を説明するための
一実施例の特性曲線図で、横軸に補助加工液供給
ノズル5の加工液噴出流速(m/s)、縦軸に平
均加工電流(A)を目盛つた場合の線図で、加工条件
は下記の通りである。
FIG. 4 is a characteristic curve diagram of one embodiment for explaining the effects of the present invention, in which the horizontal axis represents the machining fluid ejection flow rate (m/s) of the auxiliary machining fluid supply nozzle 5, and the vertical axis represents the average machining current. This is a diagram with the scale shown in (A), and the processing conditions are as follows.

ワイヤ電極:約0.2mmφの6:4黄銅電極、ワ
イヤ電極送り速度:約2.5m/min、ワイヤ電極
張力:約1Kg、被加工体:板圧約20mmのSKD11、
電圧パルス:無負荷電圧約130v、電圧パルス
幅:約7μs、電圧パルス間休止幅:約10μs、電流
振幅:約15A、コンデンサ容量:1.5μF、加工液
供給ノズル7,7′の口径:約0.6mmφ、加工液噴
出流速:約0.6m/s、補助加工液供給ノズル5,
5′の口径:約0.23mmφ。
Wire electrode: 6:4 brass electrode with approximately 0.2mmφ, wire electrode feed speed: approximately 2.5m/min, wire electrode tension: approximately 1Kg, workpiece: SKD11 with plate pressure approximately 20mm,
Voltage pulse: No-load voltage approximately 130V, voltage pulse width: approximately 7μs, pause width between voltage pulses: approximately 10μs, current amplitude: approximately 15A, capacitor capacity: 1.5μF, diameter of machining fluid supply nozzle 7, 7': approximately 0.6 mmφ, machining fluid jet flow rate: approximately 0.6 m/s, auxiliary machining fluid supply nozzle 5,
5' diameter: approx. 0.23mmφ.

第4図に於て、曲線20は加工液供給ノズル
7,7′のみを用いた従来方法による実験結果を
示し、ノズル7からの噴出流速を高めても、図示
するように1.2m/s程度の流速では、平均加工
電流をそれ程増大させることができない。曲線2
1は、本発明による実験結果を示すものであり、
ノズル7からの噴出流速を一定の約0.6m/sと
した状態で補助加工液供給ノズル5,5′を付設
して、その位置が加工進行方向に対してワイヤ電
極2の背面側にあるように回動位置制御した場合
で、該ノズル5,5′よりの加工液噴出流速に比
較的にワイヤ電極2の断線事故がない状態で平均
加工電流が増大させ得るが、この場合にはノズル
7,7′の噴出流速の約2倍で加工電流増大が飽
和しており、この実験結果から、本発明の方法に
よれば、ノズル7からの噴出圧力を高めることな
く、平均加工電流を約1.6倍増大させ得ることが
分かる。この実験例の場合は、加工液供給ノズル
7,7′の各噴出流速を相互に同一としたが、
夫々のノズル7,7′の噴出流速に応じて対応補
助ノズル5,5′の噴出流速を調整することが好
ましく、ノズル7,7′の噴出流速がより高い場
合には、補助ノズル5,5′の噴出流速を2倍以
上数倍に増大し得るようであり、又被加工体1上
側のノズル7に対して下側のノズル7′の噴出流
速は通常大きく設定されるのに対し、補助ノズル
5,5′の噴出流速を逆の関係に設定しても良く、
この場合加工電流のより大きな増大が可能で加工
性能が向上する。
In FIG. 4, curve 20 shows the experimental results of the conventional method using only machining fluid supply nozzles 7 and 7'. At a flow rate of , the average machining current cannot be increased that much. curve 2
1 shows experimental results according to the present invention,
The auxiliary machining liquid supply nozzles 5 and 5' are attached with the ejection flow velocity from the nozzle 7 being constant at about 0.6 m/s, and their positions are on the back side of the wire electrode 2 with respect to the machining progress direction. When the rotational position is controlled, the average machining current can be increased while the machining fluid jet flow velocity from the nozzles 5 and 5' is relatively free from wire electrode 2 breakage. , 7', the increase in machining current is saturated at approximately twice the jet flow velocity of nozzle 7. From this experimental result, according to the method of the present invention, the average machining current can be increased to approximately 1.6 without increasing the jet pressure from nozzle 7. It turns out that it can be increased by a factor of two. In the case of this experimental example, the jet flow velocity of each of the machining fluid supply nozzles 7 and 7' was set to be the same.
It is preferable to adjust the jet flow speed of the corresponding auxiliary nozzles 5, 5' according to the jet flow speed of the respective nozzles 7, 7', and when the jet flow speed of the nozzles 7, 7' is higher, the jet flow speed of the auxiliary nozzles 5, 5 is adjusted. It seems possible to increase the ejection flow velocity of ' by more than twice or several times, and the ejection flow velocity of the lower nozzle 7' of the workpiece 1 is usually set higher than that of the nozzle 7 on the upper side of the workpiece 1. The ejection flow speeds of the nozzles 5 and 5' may be set in the opposite relationship,
In this case, it is possible to increase the machining current to a greater extent and improve machining performance.

このように、平均加工電流を増大させてもワイ
ヤ電極が断線しなくなるのは、加工部のワイヤ電
極に対する冷却作用が向上すると共に、加工間〓
からの加工屑の排除が適度に良好に行なわれるよ
うになるからであるが、補助ノズル5から噴出す
る加工液は、加工進行方向に対するワイヤ電極の
背面側の1mm前後程度の間近をワイヤ電極に沿つ
て噴流するものであるから、補助ノズル5からの
噴出加工液が加工間〓に供給されることは多少あ
るとしても僅かなものであり、補助ノズル5は、
上記作用を顕著になし得る程、加工間〓への加工
液の供給量の増大に寄与するものではなく、本発
明による上記作用は、次のように説明される。即
ち、ワイヤ電極の背面側の間近をワイヤ電極と平
行に噴流する補助ノズル5からの噴出液流が、加
工済の加工溝を仕切る作用をなし、仕切り壁が形
成されることにより、加工間〓及びワイヤ電極の
周囲に柱状の流路が形成され、ノズル7から噴出
した加工液が、加工済みの加工溝方向に噴流する
ことなく、この流路を収束状態で流れるようにな
るため、ノズル7から噴出された加工液が効率良
く加工部に供給され、実質的に加工部への加工液
の供給量が増大することによるものと考えられ
る。そして、第4図の実験結果から、ノズル7か
ら噴射される加工液よりも速い流速で補助ノズル
5から加工液を噴出させることにより上述した仕
切り作用がはつきりと現れ、この仕切り作用は加
工液流の流速の増大に応じて増大し、流速を増大
させることによりノズル7から噴出される加工液
の加工溝方向への流出が防止されて、加工部に効
率良く加工液が供給されるようになり、補助ノズ
ル5からの流速がノズル7からの流速の2倍程度
になつたとき、この仕切り作用の増大が限界に達
することが理解される。
In this way, the reason why the wire electrode does not break even when the average machining current is increased is that the cooling effect on the wire electrode in the machining section is improved and the time between machining is
This is because machining debris can be removed reasonably well from the auxiliary nozzle 5, but the machining fluid spouted from the auxiliary nozzle 5 is applied to the wire electrode approximately 1 mm from the back side of the wire electrode in the direction of machining progress. Since the machining liquid is jetted along the auxiliary nozzle 5, the machining liquid jetted from the auxiliary nozzle 5 is only slightly supplied during machining, if at all.
As much as the above effect can be achieved, it does not contribute to an increase in the amount of machining fluid supplied to the machining chamber, and the above effect according to the present invention can be explained as follows. That is, the ejected liquid flow from the auxiliary nozzle 5 which is jetted in parallel to the wire electrode near the back side of the wire electrode acts to partition the machined groove, and by forming a partition wall, the machining time is reduced. A columnar flow path is formed around the wire electrode, and the machining fluid jetted from the nozzle 7 flows through this flow path in a convergent state without jetting in the direction of the machined groove. This is thought to be due to the fact that the machining fluid ejected from the wafer is efficiently supplied to the machining section, and the amount of machining fluid supplied to the machining section substantially increases. From the experimental results shown in Fig. 4, the above-mentioned partitioning effect clearly appears when the machining fluid is jetted from the auxiliary nozzle 5 at a flow rate higher than that of the machining fluid jetted from the nozzle 7. It increases as the flow rate of the liquid flow increases, and by increasing the flow rate, the machining liquid ejected from the nozzle 7 is prevented from flowing out in the direction of the machining groove, so that the machining liquid is efficiently supplied to the machining part. It is understood that when the flow velocity from the auxiliary nozzle 5 becomes approximately twice the flow velocity from the nozzle 7, the increase in this partitioning effect reaches its limit.

従つて、本発明によれば、加工部に加工液を供
給するノズル7からの噴出圧力を高めなくても実
質的に加工部に充分な量の加工液を供給して、ワ
イヤ電極の冷却作用を向上させることができると
共に、加工間〓からの加工屑の排除を良好に行な
うことができるため、ワイヤ電極の過熱や異常放
電による断線、及び異常放電による加工精度の悪
化を防止することができ、又、加工液の加工部へ
の充分な供給が、低圧供給状態で且つノズル7及
び補助ノズル5から共にワイヤ電極と平行に加工
液を噴出させることによつて行なわれるため、加
工液流によりワイヤ電極に不規則的な不要な振動
を発生させることが少なく、この点からも加工精
度の悪化防止に効果がある。又、加工液の供給が
低圧供給で足りるため、加工液の飛散を防止する
ことができ、補助ノズル5からの噴出供給は、ノ
ズル7からの噴出供給に比べて高圧状態となる
が、補助ノズル5は、その開口径が加工溝幅と同
じかそれより小さいものであるから、噴出加工液
は加工溝内に注入され、被加工体の表面に衝突し
て激しく飛散するようなことはない。
Therefore, according to the present invention, a sufficient amount of machining fluid can be substantially supplied to the machining section without increasing the ejection pressure from the nozzle 7 for supplying machining fluid to the machining section, thereby achieving a cooling effect on the wire electrode. In addition to being able to effectively remove machining debris from the machining gap, it is possible to prevent overheating of the wire electrode, wire breakage due to abnormal discharge, and deterioration of machining accuracy due to abnormal discharge. In addition, sufficient supply of machining fluid to the machining section is achieved by jetting the machining fluid from both the nozzle 7 and the auxiliary nozzle 5 parallel to the wire electrode in a low-pressure supply state. It is less likely that irregular and unnecessary vibrations will be generated in the wire electrode, and from this point of view as well, it is effective in preventing deterioration of processing accuracy. In addition, since a low-pressure supply of machining fluid is sufficient, it is possible to prevent the machining fluid from scattering. In No. 5, the opening diameter is the same as or smaller than the width of the machining groove, so the jetted machining liquid is injected into the machining groove and does not collide with the surface of the workpiece and be violently scattered.

又、補助加工液供給ノズル5,5′の付設によ
りワイヤ電極2の加工部に於ける直線性が改善さ
れるようで、特に加工液噴出流速を約数m/s前
後等大きく設定した場合の、加工輪郭形状角部の
加工精度向上が顕著なものとなる。
In addition, it seems that the linearity of the machining part of the wire electrode 2 is improved by the addition of the auxiliary machining fluid supply nozzles 5 and 5', especially when the machining fluid jet flow velocity is set high, such as around several m/s. , the machining accuracy of the corners of the machining contour shape is significantly improved.

尚、前述図示説明の本発明実施例は、補助加工
液供給ノズル5,5′を被加工体1の上側及び下
側の両方に付設使用した場合について説明を加え
たものだが、本発明は上記補助加工液ノズルを、
上側及び下側の何れか一方の少なくとも加工液を
供給噴出する加工液供給ノズル7又は7′の側に
設けて使用した場合にも、本発明の目的、作用効
果を達し得ることは前述の説明から明らかであつ
て、本発明はかかる実施態様をも包含するもので
ある。
The embodiment of the present invention described above with reference to the drawings has been described with reference to the case where the auxiliary machining liquid supply nozzles 5, 5' are attached to both the upper side and the lower side of the workpiece 1, but the present invention is applicable to the above-mentioned embodiment. Auxiliary processing liquid nozzle,
As explained above, the objects and effects of the present invention can be achieved even when the machining fluid supply nozzle 7 or 7', which supplies and spouts machining fluid, is provided on either the upper side or the lower side. It is clear from the above that the present invention also includes such embodiments.

以上詳述したように本発明によれば、加工液を
比較的低圧状態で充分に加工部に供給することが
できるため、加工液の周囲への飛散を防止するこ
とができると共に、ワイヤ電極の切断事故を防止
して加工性能、加工速度を向上させることがで
き、加工精度向上にも寄与させることができる。
As detailed above, according to the present invention, machining fluid can be sufficiently supplied to the machining part under relatively low pressure, so that it is possible to prevent the machining fluid from scattering around the wire electrode. Cutting accidents can be prevented, machining performance and machining speed can be improved, and machining accuracy can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すワイヤカツト
放電加工装置の部分拡大斜視図、第2図は加工状
態を示す断面図、第3図は本発明補助加工液供給
ノズルの回動機構の一例を示す構成図、第4図は
従来方法と本発明方法による加工特性を示す図で
ある。 1……被加工体、2……ワイヤ電極、3……加
工溝、4……従来の加工液、5……補助加工液供
給ノズル。
Fig. 1 is a partially enlarged perspective view of a wire-cut electric discharge machining apparatus showing an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the machining state, and Fig. 3 is an example of the rotation mechanism of the auxiliary machining fluid supply nozzle of the present invention. FIG. 4 is a diagram showing processing characteristics by the conventional method and the method of the present invention. DESCRIPTION OF SYMBOLS 1...Workpiece, 2...Wire electrode, 3...Machining groove, 4...Conventional machining fluid, 5...Auxiliary machining fluid supply nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 軸線方向に更新送りの与えられるワイヤ電極
と被加工体とを微小間〓を介して対向配置し、両
者間に加工液を介在させた状態で電圧パルスを印
加して間欠的な放電を生じさせると共に、上記両
者間にワイヤ電極の軸線と略直交する平面方向の
相対的な加工送りを与えることにより、所望輪郭
形状の切抜き加工を行なうワイヤカツト放電加工
方法に於て、加工液をワイヤ電極と同軸状に噴射
する加工液供給ノズルと、加工溝幅と同じか又は
それより小さい開口径を有し、ワイヤ電極から微
小な距離離隔した位置に開口部が配置され、ワイ
ヤ電極と略平行に加工液を噴射する補助加工液供
給ノズルと、ワイヤ電極を中心として上記補助加
工液供給ノズルを回動させる回動機構と、該回動
機構の作動を制御する制御装置とを設け、上記補
助加工液供給ノズルの開口部が加工進行方向に対
するワイヤ電極の背面側に常時位置するように上
記回動機構を制御すると共に、上記加工液供給ノ
ズルから噴射される加工液よりも速い流速で上記
補助加工液供給ノズルから加工液を噴射させなが
ら加工を行なうことを特徴とするワイヤカツト放
電加工方法。
1. A wire electrode that is given a renewed feed in the axial direction and a workpiece are placed facing each other with a small gap between them, and voltage pulses are applied with machining fluid interposed between the two to generate intermittent electrical discharge. In the wire cut electrical discharge machining method, which cuts out a desired contour shape by applying a relative machining feed between the two in a plane direction substantially orthogonal to the axis of the wire electrode, the machining fluid is mixed with the wire electrode. It has a machining fluid supply nozzle that sprays coaxially, an opening diameter that is the same as or smaller than the width of the machining groove, and the opening is placed a minute distance away from the wire electrode, and the machining fluid is machined approximately parallel to the wire electrode. An auxiliary machining liquid supply nozzle that sprays a liquid, a rotation mechanism that rotates the auxiliary machining liquid supply nozzle around a wire electrode, and a control device that controls the operation of the rotation mechanism are provided. The rotation mechanism is controlled so that the opening of the supply nozzle is always located on the back side of the wire electrode with respect to the machining progress direction, and the auxiliary machining liquid is supplied at a flow rate higher than that of the machining liquid injected from the machining liquid supply nozzle. A wire cut electric discharge machining method characterized in that machining is performed while jetting machining fluid from a supply nozzle.
JP13823082A 1982-05-18 1982-08-09 Wire cut type electric discharge machining device Granted JPS5930626A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP13823082A JPS5930626A (en) 1982-08-09 1982-08-09 Wire cut type electric discharge machining device
US06/495,498 US4507532A (en) 1982-05-18 1983-05-17 Wire-cut electric discharge machine
DE19833318090 DE3318090A1 (en) 1982-05-18 1983-05-18 WIRE CUTTING ELECTRIC DISCHARGE DEVICE
KR1019830002173A KR890000124B1 (en) 1982-05-18 1983-05-18 Wire-cut electric discharge machine
IT48313/83A IT1167141B (en) 1982-05-18 1983-05-18 ELECTRIC DISCHARGE MACHINE FOR METAL WIRE TALGIO
GB08313762A GB2121714B (en) 1982-05-18 1983-05-18 Wire electrode electrical spark erosion machine
FR8308262A FR2527117B1 (en) 1982-05-18 1983-05-18 WORKING FLUID SUPPLY NOZZLE FOR A CUTTING WIRE ELECTRO-EROSION MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13823082A JPS5930626A (en) 1982-08-09 1982-08-09 Wire cut type electric discharge machining device

Publications (2)

Publication Number Publication Date
JPS5930626A JPS5930626A (en) 1984-02-18
JPH0313012B2 true JPH0313012B2 (en) 1991-02-21

Family

ID=15217125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13823082A Granted JPS5930626A (en) 1982-05-18 1982-08-09 Wire cut type electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS5930626A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704511A (en) * 1985-10-17 1987-11-03 Inoue-Japax Research Incorporated Traveling-wire electroerosion machine with swiveling nozzle assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384296A (en) * 1976-12-29 1978-07-25 Fanuc Ltd Working flued supplying direction control system for electrically discharging wire cutting machine
JPS56134134A (en) * 1980-03-13 1981-10-20 Inoue Japax Res Inc Wire-cutting electric conduction machining apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384296A (en) * 1976-12-29 1978-07-25 Fanuc Ltd Working flued supplying direction control system for electrically discharging wire cutting machine
JPS56134134A (en) * 1980-03-13 1981-10-20 Inoue Japax Res Inc Wire-cutting electric conduction machining apparatus

Also Published As

Publication number Publication date
JPS5930626A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
EP0219587B1 (en) Traveling-wire electroerosion machine with swiveling nozzle assembly
US4629854A (en) TW-electroerosion with means for regulating flushing liquid in cutting slot
JPH0313012B2 (en)
JPH0126807B2 (en)
US4458130A (en) Immersion-type traveling-wire electroerosion machining method
JPS63196320A (en) Working device and method through electrocorrosion
JPS59332B2 (en) Wire-cut electrical discharge machining equipment
JPS58217232A (en) Wire-cut electric discharge machine
JPS59166426A (en) Nozzle device for wire cutting by electric discharge machining
JPS5843210B2 (en) Wire
JPH0335048B2 (en)
JPS5988221A (en) Wire-cut electric discharge machine
JP2002337026A (en) Electric discharge machining device and method
JPH0573527B2 (en)
JPS59182030A (en) Wire cut electric discharge machining device
JPS5919640A (en) Working liquid feeder
JPS59166424A (en) Nozzle device for wire cutting by electric discharge machining
JPH0258045B2 (en)
JPH0455805B2 (en)
JPS63306835A (en) Electric discharge machine
JPS6119516A (en) Wire cut electric discharge machining apparatus
JPH0790422B2 (en) Wire cut electrical discharge machine
JPS629821A (en) Electric discharge machine
JPH0536172B2 (en)
JPH0620672B2 (en) Nozzle device for wire cut electrical discharge machining