JPH0536172B2 - - Google Patents

Info

Publication number
JPH0536172B2
JPH0536172B2 JP62037645A JP3764587A JPH0536172B2 JP H0536172 B2 JPH0536172 B2 JP H0536172B2 JP 62037645 A JP62037645 A JP 62037645A JP 3764587 A JP3764587 A JP 3764587A JP H0536172 B2 JPH0536172 B2 JP H0536172B2
Authority
JP
Japan
Prior art keywords
machining
nozzle
workpiece
machining fluid
nozzle device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62037645A
Other languages
Japanese (ja)
Other versions
JPS6316924A (en
Inventor
Kyoshi Inoe
Kazuyoshi Myano
Masahito Umetsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INOE JAPATSUKUSU KENKYUSHO KK
JAPATSUKUSU KK
Original Assignee
INOE JAPATSUKUSU KENKYUSHO KK
JAPATSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INOE JAPATSUKUSU KENKYUSHO KK, JAPATSUKUSU KK filed Critical INOE JAPATSUKUSU KENKYUSHO KK
Priority to JP3764587A priority Critical patent/JPS6316924A/en
Publication of JPS6316924A publication Critical patent/JPS6316924A/en
Publication of JPH0536172B2 publication Critical patent/JPH0536172B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤ電極と被加工物との間に形成
される加工間隙に加工液をワイヤ電極と同軸状に
噴出供給しながらワイヤカツト放電加工を行なう
加工方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides wire-cut electrical discharge machining while jetting and supplying machining liquid coaxially with the wire electrode into the machining gap formed between the wire electrode and the workpiece. The present invention relates to a processing method for performing.

〔従来の技術〕[Conventional technology]

ワイヤカツト放電加工に於ては、放電加工に伴
つて生成する加工屑を加工間隙から排除し、又放
電によつて加熱される加工部の被加工物とワイヤ
電極を冷却し、アーク等の異常放電の発生を防止
すると共に過熱によるワイヤ電極の溶断を防止し
て加工速度や加工精度の良好な加工を行なうため
に、加工中に加工液(通常は水)は供給して加工
間隙に介在する加工液を更新してやることが必要
となる。この加工液更新のために加工液をワイヤ
電極と同軸状に噴出供給することが従来から行な
われているが、被加工物の上下何れか一方から加
工液を噴出供給するだけでは、被加工物の表面か
ら加工間隙に流入した加工液が既に加工済みの加
工溝に沿つて次第に拡散してしまうため、被加工
物の反対側の表面に近い加工間隙まで充分な量の
加工液を供給することが困難である。又、配置位
置が手動によつて調整設定される通常のノズル装
置は被加工物の表面から数mm離隔した位置に設け
られているため、加工間隙に充分な量の加工液を
供給するために噴出加工液の液圧を高めると、ノ
ズル噴出口から噴出した加工液が前記離隔部位周
辺の空気を巻き込んでしまい、気泡等の空気が混
入した加工液が加工間隙に供給されることにな
り、加工液による冷却作用が低下するだけでなく
気中放電が生じやすくなつて、ワイヤ電極の断線
を引き起こす原因となる。更に、被加工物の片側
からだけ加工液を噴出供給して反対側から流出さ
せるようにしたのでは、噴出加工液の圧力を高め
ても、被加工物の反対側の表面近くの加工間隙、
特に加工間隙の上端部に安定した状態で加工液を
供給することが難しく、この部分での加工が不安
定になる問題がある。そこで、加工液を噴出供給
するノズル装置を被加工物の上部と下部の両側に
設けて、上下両方から加工液をワイヤ電極と同軸
状に噴出するのが普通である。
In wire cut electric discharge machining, machining debris generated during electric discharge machining is removed from the machining gap, and the workpiece and wire electrode in the machining section heated by electric discharge are cooled to prevent abnormal electric discharges such as arcs. In order to prevent the wire electrode from fusing due to overheating and to achieve high machining speed and accuracy, machining fluid (usually water) is supplied during machining to intervene in the machining gap. It is necessary to renew the fluid. In order to renew the machining fluid, it has been conventionally done to supply machining fluid coaxially with the wire electrode. Since the machining fluid that flows into the machining gap from the surface of the workpiece gradually spreads along the already machined machining groove, it is necessary to supply a sufficient amount of machining fluid to the machining gap near the opposite surface of the workpiece. is difficult. In addition, since a normal nozzle device whose position is manually adjusted and set is located several mm away from the surface of the workpiece, it is necessary to supply a sufficient amount of machining fluid to the machining gap. When the fluid pressure of the jetted machining fluid is increased, the machining fluid jetted from the nozzle spout will entrain the air around the separated area, and the machining fluid mixed with air such as bubbles will be supplied to the machining gap. This not only reduces the cooling effect of the machining fluid, but also makes it easier for air discharge to occur, causing wire electrode breakage. Furthermore, if the machining fluid is jetted out from only one side of the workpiece and flows out from the other side, even if the pressure of the jetted machining fluid is increased, the machining gap near the surface on the opposite side of the workpiece,
In particular, it is difficult to supply machining liquid in a stable manner to the upper end of the machining gap, resulting in a problem that machining becomes unstable in this area. Therefore, it is common practice to provide nozzle devices for jetting and supplying machining fluid on both sides of the upper and lower parts of the workpiece, and to jet the machining fluid from both the top and bottom coaxially with the wire electrode.

〔解決しようとする問題点〕[Problem to be solved]

しかして、このように被加工物の上下両側から
加工液を噴出供給すると、加工中最も高温状態と
なる被加工物の板厚中央部の加工間隙付近で上下
両側から流入した加工液が合流衝突し、ここで乱
流や渦が形成され、加工液が更新されずに滞留す
る部分が生じ、特に被加工物の板厚中央部付近で
生じた加工液の滞留は解消されにくく、長時間に
亘つて滞留しがちであるため、加工液の充分な更
新が行なわれなくなり、この結果、アーク等の異
常放電が生じたり加工部が異常に加熱されて、加
工精度の低下ワイヤ電極の断線を生じさせること
になる。又、加工液の滞留部分を生じさせないた
めに、ノズル装置から噴出供給される加工液の圧
力を高めて、加工間隙に供給される加工液の量を
増大させるようにすると、前述したように通常ノ
ズル装置は被加工物の表面から数mm離隔した位置
に配置されているため、やはり噴出加工液が周囲
の空気を巻き込み、空気の混入した加工液が加工
間隙に供給されることになつてしまう。
However, when machining fluid is sprayed and supplied from both the upper and lower sides of the workpiece in this way, the machining fluid flowing from both the upper and lower sides merges and collides near the machining gap at the center of the thickness of the workpiece, which is the highest temperature during machining. However, turbulence and vortices are formed here, and there are parts where the machining fluid stagnates without being renewed. In particular, the stagnation of machining fluid that occurs near the center of the thickness of the workpiece is difficult to eliminate, and the machining fluid remains for a long time. As the machining fluid tends to stagnate for a long time, the machining fluid is not refreshed sufficiently, and as a result, abnormal discharges such as arcs occur, and the machining area is abnormally heated, reducing machining accuracy and causing disconnection of the wire electrode. I will let you do it. In addition, in order to prevent the machining fluid from stagnating, the pressure of the machining fluid jetted out from the nozzle device is increased to increase the amount of machining fluid supplied to the machining gap. Since the nozzle device is located several millimeters away from the surface of the workpiece, the spouted machining fluid still entrains the surrounding air, resulting in machining fluid mixed with air being supplied to the machining gap. .

本発明は、叙上の問題点に鑑み、加工間隙に周
囲の空気を巻き込み混入することなく充分な量の
加工液を供給すると共に、加工間隙の各部位に於
ける加工液の更新を安定した状態で円滑に行なわ
せながら加工を行なうことができるワイヤカツト
放電加工方法の提供を目的とする。
In view of the above-mentioned problems, the present invention has been developed to supply a sufficient amount of machining fluid to the machining gap without entraining and mixing the surrounding air, and to stabilize the renewal of the machining fluid at each part of the machining gap. An object of the present invention is to provide a wire cut electric discharge machining method that allows machining to be carried out smoothly in a stable condition.

〔問題点を解決する手段〕[Means to solve problems]

この目的を達成するために、本発明は、被加工
物の上部と下部に配置されるノズル装置のうち少
なくとも下部に配置されるノズル装置として、加
工液の液圧によりワイヤ電極の軸線方向に移動せ
しめられると共に先端部に於て被加工物の加工溝
幅よりも大きい径をもつて開口する中空筒状体か
らなる浮動筒ノズルを有するノズル装置を用い、
下部ノズル装置から噴出供給される加工液の圧力
を上部ノズル装置から噴出供給される加工液の圧
力よりも高くした状態で、且つ被加工物の下面が
浮動筒ノズルの前記摺動可能範囲内に位置するよ
うに下部ノズル装置を配置して、供給加工液の液
圧を調整することにより、軸方向に移動して被加
工物の下面に当接しようとする浮動筒ノズルの先
端面と被加工物の下面との間に微小〓間の円板状
ノズルを自動的に形成させ、該円板状ノズルから
供給加工液の一部を放射状に流出させた状態で加
工を行なうようにしたことを特徴とするものであ
る。
In order to achieve this object, the present invention provides a nozzle device that is placed at least in the lower part of the nozzle devices that are placed in the upper and lower parts of the workpiece, and is moved in the axial direction of the wire electrode by the hydraulic pressure of the machining fluid. Using a nozzle device having a floating cylindrical nozzle consisting of a hollow cylindrical body that is pressed and opened at the tip with a diameter larger than the width of the processing groove of the workpiece,
The pressure of the machining fluid jetted and supplied from the lower nozzle device is higher than the pressure of the machining fluid jetted and supplied from the upper nozzle device, and the lower surface of the workpiece is within the slidable range of the floating tube nozzle. By arranging the lower nozzle device and adjusting the hydraulic pressure of the supplied machining fluid, the tip surface of the floating tube nozzle that moves in the axial direction and is about to contact the bottom surface of the workpiece and the workpiece A disc-shaped nozzle with a small distance is automatically formed between the bottom surface of the object and machining is performed while a part of the supplied machining fluid flows out radially from the disc-shaped nozzle. This is a characteristic feature.

〔実施例〕〔Example〕

以下、図面に基づき本発明の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は放電加工開始前の準備段階を示すと共
にノズル装置1を備えたワイヤカツト放電加工装
置の加工部周り2を示す。ワイヤカツト放電加工
装置は、通常のものと同様の構造であつて、被加
工物3の加工輪郭形状の一部に対応する加工溝3
1を貫通して、ワイヤ電極4が鉛直に延設され、
このワイヤ電極4は、被加工物3上方の上部ノズ
ル装置5及び下方の下部ノズル装置6内を同軸状
に挿通して延び、上下に配設されたローラ、ダイ
ス又は船形状等の位置決めガイド部材67(上部
ガイドは図示せず)、及びローラ7,8に案内さ
れて下方から上方へ、又はその逆に走行しなが
ら、ブラシ70,80を介してワイヤ電極4と被
加工物3との間に設けられた放電加工用電源9か
らの供給パルスによりパルス放電し、被加工物3
を設定定速又は加工状態に応ずるサーボ送り制御
により加工送りすることにより被加工物3を放電
加工する。
FIG. 1 shows a preparatory stage before the start of electrical discharge machining, and also shows the vicinity 2 of a machining section of a wire cut electrical discharge machining apparatus equipped with a nozzle device 1. As shown in FIG. The wire cut electrical discharge machining device has a structure similar to a normal one, and has a machining groove 3 corresponding to a part of the machining contour shape of the workpiece 3.
1, a wire electrode 4 extends vertically,
The wire electrode 4 extends coaxially through an upper nozzle device 5 above the workpiece 3 and a lower nozzle device 6 below the workpiece 3, and has positioning guide members such as rollers, dies, or ship-shaped rollers arranged above and below. 67 (the upper guide is not shown) and rollers 7 and 8 while traveling from the bottom to the top or vice versa, between the wire electrode 4 and the workpiece 3 via the brushes 70 and 80. A pulse discharge is generated by the supply pulse from the electric discharge machining power supply 9 provided in the workpiece 3.
The workpiece 3 is subjected to electrical discharge machining by being fed at a set constant speed or by servo feed control depending on the machining state.

次にノズル装置1について説明する。被加工物
3の上方に位置する上部ノズル装置5は、図示し
ない加工機ヘツド、又は上部アームに設けられる
もので、加工液噴出口と被加工物表面との間隔が
所定間隔に固定して設定される従来のノズル装置
と同様なものか、以下に説明する下部ノズル装置
6と同一のものであり、上部の管51より加工液
を注入して下端部の開口部52(ワイヤ電極0.2
mmφの場合、通常開口径3mmφ前後)より被加工
物3表面にワイヤ電極4を包囲して同軸状に且つ
柱状に加工液が噴出するようになつている。
Next, the nozzle device 1 will be explained. The upper nozzle device 5 located above the workpiece 3 is provided on the processing machine head or upper arm (not shown), and the distance between the processing fluid spout and the surface of the workpiece is fixed at a predetermined interval. The nozzle device is similar to the conventional nozzle device, or the same as the lower nozzle device 6 described below.
In the case of mmφ, the machining liquid is spouted coaxially and columnarly from the opening diameter (usually around 3 mmφ) surrounding the wire electrode 4 on the surface of the workpiece 3.

この実施例では、上部ノズル装置5として従来
通常のノズル装置を用いる場合について説明す
る。上部ノズル装置5は、被加工物3上面と上部
ノズル装置5の開口部52との隙間が数mm程度少
なくとも約1mmとなるように近接配置し、一部の
加工液は加工間隙内に注入されることがあるもの
の、他の加工液は矢印(第2図)のように被加工
物3表面を放射拡大して流れるようになることが
望ましく、このため、上部ノズル装置は、図示し
ない適宜手段により上下動位置調節可能に構成さ
れ、開口部52と被加工物3との間隔が調整でき
るようになつている。又、下部ノズル装置6は、
加工機本体又は下部アーム10端部に固定して、
又図示していないが、上下動位置調節自在に取付
けて設けられ、上端に於て開口する筒状の中空部
61を有するノズル本体62と、中空筒状体から
なりノズル本体62の筒状中空部61の側壁面に
鍔部68によつて軸方向に摺動自在に支承される
と共に少なくとも先端部の外径が前記ノズル本体
62の開口部の径より小さく形成され、中空部が
前記先端部に被加工物の加工構幅よりも大きい径
をもつて於て開口して加工液噴出口を形成すると
共に他端部に於てノズル本体62の筒状中空部6
1に連通してなる浮動筒ノズル63と、この浮動
筒ノズル63の内側に同軸上に位置し、ワイヤ電
極4が挿通されて位置決め案内されるガイド部材
67を先端部に有し、ノズル本体62に固定して
設けられるワイヤ電極案内部材64とから構成さ
れている。ノズル本体62の内部下面には、円筒
状の溝65が形成され、この溝65は下部ノズル
装置6外部に延出する管66に連通し、この管6
6より加工液が溝65から上記浮動筒ノズル63
の鍔部68により上下に区切られた中空部61の
下部室へと加圧注入される。浮動筒ノズル63の
加工液噴出口は、ワイヤ電極4が約0.2mmφとす
ると、通常約3mmφ前後である。このように下部
ノズル装置6は、ノズル本体62の中空部61の
略中心に固定されたワイヤ電極案内部材64と、
ノズル本体62との間に浮動筒ノズル63をワイ
ヤ及びノズル軸方向に摺動自在に配設したもので
ある。
In this embodiment, a case will be described in which a conventional normal nozzle device is used as the upper nozzle device 5. The upper nozzle device 5 is arranged close to the upper surface of the workpiece 3 and the opening 52 of the upper nozzle device 5 so that the gap is about several mm or at least about 1 mm, and a part of the machining liquid is injected into the machining gap. However, it is desirable that the other machining fluids flow radially across the surface of the workpiece 3 as shown by the arrows (Fig. 2), and for this reason, the upper nozzle device is equipped with appropriate means (not shown). It is configured such that the vertical movement position can be adjusted, and the distance between the opening 52 and the workpiece 3 can be adjusted. Moreover, the lower nozzle device 6 is
Fixed to the processing machine body or the end of the lower arm 10,
Also, although not shown, there is a nozzle body 62 that is installed so as to be vertically adjustable and has a cylindrical hollow part 61 that opens at the upper end, and a cylindrical hollow part of the nozzle body 62 that is made of a hollow cylindrical body. It is slidably supported in the axial direction by a flange 68 on the side wall surface of the part 61, and at least the outer diameter of the tip is formed smaller than the diameter of the opening of the nozzle body 62, and the hollow part is formed in the tip. The cylindrical hollow part 6 of the nozzle body 62 is opened at the other end with a diameter larger than the width of the machining structure of the workpiece to form a machining fluid spout.
1, and a guide member 67 located coaxially inside the floating tube nozzle 63, through which the wire electrode 4 is inserted and guided for positioning. The wire electrode guide member 64 is fixedly provided to the wire electrode guide member 64. A cylindrical groove 65 is formed on the inner lower surface of the nozzle body 62, and this groove 65 communicates with a pipe 66 extending outside the lower nozzle device 6.
6, the machining fluid flows from the groove 65 to the floating cylinder nozzle 63.
The liquid is injected under pressure into the lower chamber of the hollow part 61 which is divided into upper and lower parts by the flange part 68 . If the wire electrode 4 has a diameter of about 0.2 mm, the machining fluid jetting opening of the floating cylinder nozzle 63 is usually about 3 mm in diameter. In this way, the lower nozzle device 6 includes the wire electrode guide member 64 fixed approximately at the center of the hollow portion 61 of the nozzle body 62,
A floating tube nozzle 63 is disposed between the nozzle body 62 and slidable in the wire and nozzle axial directions.

前記のように構成された上部及び下部ノズル装
置5及び6の作用について第1図及び第2図を参
照して説明する。第1図に示した状態は、ワイヤ
カツト放電加工装置が作動していない、つまりノ
ズル装置1に加工液が送り込まれていない状態で
ある。この第1図の状態より上部ノズル装置5及
び下部ノズル装置6の上下方向位置を調節設定
し、上部ノズル装置5に関しては上述した通り配
置すると共に、下部ノズル装置6に関しては、被
加工物3の下面が浮動筒ノズル63の軸方向摺動
可能範囲内に位置するように配置し、次いで管5
1,66より加工液を加圧注入する。
The operation of the upper and lower nozzle devices 5 and 6 configured as described above will be explained with reference to FIGS. 1 and 2. The state shown in FIG. 1 is a state in which the wire cut electrical discharge machining apparatus is not operating, that is, machining fluid is not being fed into the nozzle device 1. The vertical positions of the upper nozzle device 5 and the lower nozzle device 6 are adjusted and set from the state shown in FIG. The lower surface of the floating tube nozzle 63 is positioned within the axially slidable range, and then the tube 5
Processing fluid is injected under pressure from No. 1 and 66.

上部管51より、特別の場合以外は約0.1〜0.5
Kg/cm2、通常は約0.2〜0.3Kg/cm2程度で好ましく
は数10g/cm2単位で圧力が調整できるように構成
された加工液供給部から加圧供給された加工液
は、開口部52より被加工物、3及びワイヤ電極
4に噴出される。一方下部管66より通常約1〜
2Kg/cm2程度で好ましくは数10乃至100g/cm2
位で圧力が調整できるように構成された加工液供
給液から加圧供給された加工液は、管66と連通
した溝65から、浮動筒ノズル63と電極案内部
材64との間の円筒状の間隙を通り、浮動筒ノズ
ル63先端からワイヤ電極4を同軸状に包囲して
被加工物3下部表面へ噴出する。この場合浮動筒
ノズル63の鍔部68はピストンの作用をして浮
動筒ノズル63が加工液の圧力により上昇し本体
62から突出して被加工物3の下面に当接しよう
とする。浮動筒ノズル63先端より径約3mmφで
噴出した加工液の一部は加工溝31内に注入され
て、加工間隙及び切断溝内を噴流上昇するが、浮
動筒ノズル63の先端開口部の径が加工溝幅(加
工間隙は通常数10μ程度であるからワイヤ電極が
0.2mmφの場合、加工溝幅は、0.3mm以下である)
より充分大きく形成されているため、噴出加工液
の一部は加工溝周縁の被加工物表面に衝突して側
方に流路を求め、この加工液の作用によつて浮動
筒ノズル63の先端面と被加工物3の下面との間
に微小隙間の円板状流路が形成され、この微小隙
間から加工液が第2図の矢印の如く放射状に外部
に噴出する。この場合浮動筒ノズル63の先端面
と被加工物3下面との間には、約0.5mm程度以下、
通常約0.1〜0.3mm程度の微小間隔が形成され、該
微小隙間の円板状ノズルから、一部の加工液が矢
印の如く噴出することにより、浮動筒ノズル63
が前述の如く押し付けられるだけでなく、被加工
物3下面に吸引される状態となるように供給加工
液の圧力が調整される。しかして、下部ノズル装
置から噴出される加工液の圧力の方が高いため、
下部ノズル装置6から噴出した加工液は加工溝3
1内を上昇し、上部ノズル装置5側に噴き上がり
上部ノズル装置5から噴出された加工液と被加工
物3の上面で又は加工液の一部は上面より少し下
の加工溝31内で合流し、被加工物3の上面を流
れ、一部の加工液は加工済の加工溝31方向へ流
れる。このように、上部ノズル装置5からの加工
液の噴出圧力と下部ノズル装置6からのそれと
は、前述の如く下部ノズル装置6からの噴出圧力
の方が高く設定されていると共に、上部ノズル装
置5と被加工物3上面との隙間の方が下部ノズル
装置6と被加工物3下面との隙間よりも大きくな
るため、下部ノズル装置6からの加工液は加工溝
31内を上部ノズル装置5側又はその近くまで上
昇することができ、上部ノズル装置5からの加工
液と合流して被加工物3の上部表面及び加工済み
の加工溝31内を側方へ流れ落ちる。又、浮動筒
ノズル63は、前述の如く加工液による鍔部68
の押し上げと、浮動筒ノズル63先端面と被加工
物3下面との間の微小間隙の円板状ノズルから比
較的速く噴出する加工液による吸着により、加工
液供給時にはその先端が被加工物3の表面から所
定の微小距離だけ離隔した位置に常に保持され、
形成される円板ノズルの微小隙間から加工液の一
部が外部に噴出することになるため、被加工物に
極めて近接した位置から高圧の加工液を噴出して
加工間隙に充分な量の加工液を供給することがで
きると共に、下部ノズル装置6側から加工溝31
中に入る加工液中に空気が混入することがなく、
更に加工液は加工溝31内を上昇して上部ノズル
装置5からの加工液に合流するため、この経路に
於ても加工液に空気が混入することがなく、加工
液の冷却能の低下を防ぐことができ、気中放電の
発生も少なくなり、又、上下両ノズル装置5,6
からの噴出加工液が被加工物3の中央部で合流衝
突して滞留するようなことがなく、加工間〓の各
部位に於ける加工液の更新が円滑に行なわれる。
又、浮動筒ノズル63の先端面と被加工物3の下
面との間の間隔が、被加工物3の表面に多少の起
伏があつたり、或いは被加工物3の厚さが不均一
であつたりしても、この起伏等の形状変化に追従
して所定の微小間隔の保持されるため、常に被加
工物3の表面から所定の微小距離だけ離隔した位
置から加工液が噴出されることにより、加工間隙
に常に一定量の加工液を供給して安定した加工を
行なうことでき、更に、ノズル先端が被加工物3
に圧接等接触することがないから、短絡を生じた
り被加工物3の表面を傷付けたりすることもな
い。
From the upper pipe 51, approximately 0.1 to 0.5 except in special cases.
The machining fluid is supplied under pressure from the machining fluid supply section, which is configured so that the pressure can be adjusted in kg/cm 2 , usually about 0.2 to 0.3 Kg/ cm 2 , and preferably in units of several tens of g/cm 2 . The liquid is ejected from the part 52 onto the workpiece 3 and the wire electrode 4. On the other hand, from the lower pipe 66, it is usually about 1~
The machining fluid supplied under pressure from the machining fluid supply liquid configured to be able to adjust the pressure in units of about 2 kg/cm 2 , preferably several tens to 100 g/cm 2 , floats from the groove 65 communicating with the pipe 66 . It passes through the cylindrical gap between the cylindrical nozzle 63 and the electrode guide member 64, and is ejected from the tip of the floating cylindrical nozzle 63 to the lower surface of the workpiece 3 while coaxially surrounding the wire electrode 4. In this case, the flange 68 of the floating tube nozzle 63 acts as a piston, and the floating tube nozzle 63 rises due to the pressure of the machining fluid, protrudes from the main body 62, and attempts to come into contact with the lower surface of the workpiece 3. A part of the machining liquid spouted from the tip of the floating tube nozzle 63 with a diameter of approximately 3 mmφ is injected into the machining groove 31 and rises as a jet in the machining gap and cutting groove. Machining groove width (the machining gap is usually about several tens of microns, so the wire electrode
In the case of 0.2mmφ, the processing groove width is 0.3mm or less)
Because it is formed sufficiently larger, a part of the jetted machining fluid collides with the surface of the workpiece at the periphery of the machining groove and seeks a flow path laterally, and the tip of the floating cylinder nozzle 63 is caused by the action of this machining fluid. A disk-shaped flow path with a minute gap is formed between the surface and the lower surface of the workpiece 3, and the machining liquid is radially jetted outside as shown by the arrows in FIG. 2 from this minute gap. In this case, there is a distance of about 0.5 mm or less between the tip surface of the floating tube nozzle 63 and the lower surface of the workpiece 3.
Normally, a minute gap of about 0.1 to 0.3 mm is formed, and a part of the machining fluid is ejected from the disk-shaped nozzle in the minute gap as shown by the arrow, causing the floating tube nozzle 63
The pressure of the supplied machining fluid is adjusted so that it is not only pressed as described above, but also sucked into the lower surface of the workpiece 3. However, since the pressure of the machining fluid ejected from the lower nozzle device is higher,
The machining liquid spouted from the lower nozzle device 6 flows into the machining groove 3.
The machining liquid rises in the upper nozzle device 5 side and merges with the machining fluid spouted from the upper nozzle device 5 on the upper surface of the workpiece 3 or in the machining groove 31 slightly below the upper surface. The machining liquid flows on the upper surface of the workpiece 3, and a part of the machining fluid flows toward the machined groove 31. In this way, the ejection pressure of the machining fluid from the upper nozzle device 5 and that from the lower nozzle device 6 are such that, as described above, the ejection pressure from the lower nozzle device 6 is set higher, and the ejection pressure from the upper nozzle device 5 is set higher. Since the gap between the upper surface of the workpiece 3 and the upper surface of the workpiece 3 is larger than the gap between the lower nozzle device 6 and the lower surface of the workpiece 3, the machining liquid from the lower nozzle device 6 flows inside the machining groove 31 toward the upper nozzle device 5 side. It can rise to or near there, merge with the machining liquid from the upper nozzle device 5, and flow down laterally on the upper surface of the workpiece 3 and inside the machined groove 31. In addition, the floating cylinder nozzle 63 has a flange 68 formed by the machining fluid as described above.
When the machining fluid is supplied, the tip of the floating cylinder nozzle 63 is pushed up and adsorbed by the machining fluid that is ejected relatively quickly from the disk-shaped nozzle in the minute gap between the tip surface of the floating tube nozzle 63 and the bottom surface of the workpiece 3. is always held at a predetermined minute distance from the surface of the
A portion of the machining fluid will be ejected to the outside from the small gap formed by the disc nozzle, so high-pressure machining fluid will be ejected from a position extremely close to the workpiece to fill the machining gap with a sufficient amount. In addition to being able to supply liquid, the processed groove 31 can be opened from the lower nozzle device 6 side.
Air does not get mixed into the machining fluid that enters,
Furthermore, since the machining fluid rises within the machining groove 31 and joins the machining fluid from the upper nozzle device 5, air is not mixed into the machining fluid in this path as well, thereby reducing the cooling ability of the machining fluid. can be prevented, the occurrence of air discharge is reduced, and both upper and lower nozzle devices 5, 6
The machining fluid ejected from the workpiece 3 does not merge and collide at the center of the workpiece 3 and stagnate therein, and the machining fluid can be smoothly refreshed at each location between machining operations.
In addition, the distance between the tip end surface of the floating tube nozzle 63 and the lower surface of the workpiece 3 may be different if the surface of the workpiece 3 has some undulations or the thickness of the workpiece 3 is uneven. Even if the surface of the workpiece 3 is undulated, the machining fluid is always ejected from a position that is a predetermined distance away from the surface of the workpiece 3, so that the predetermined minute interval is maintained by following the shape changes such as undulations. , it is possible to perform stable machining by always supplying a constant amount of machining liquid to the machining gap, and furthermore, the nozzle tip is located close to the workpiece 3.
Since there is no contact such as pressure welding with, there is no possibility of short circuits or damage to the surface of the workpiece 3.

尚、本発明は、上部ノズル装置から噴出される
加工液の圧力よりも下部ノズル装置から噴出され
る加工液の圧力を高めて、加工液を加工間隙の下
から上に向かつて噴流させるものであるから、高
液圧で加工液を噴出しても周囲の空気を巻き込み
混入する虞のない浮動筒ノズルを有するノズル装
置を下部ノズル装置として用いるものであるが、
上部ノズル装置は、噴出される加工液の圧力が比
較的低く且つ加工間隙内への加工液の注入を図ら
なくてもよいものであるから、手動設定が比較的
容易な被加工物表面から数mm程度離隔した位置に
噴出口を配置しても問題が生じることなく、この
ため、上部ノズル装置としては従来通常のノズル
装置を用いることが可能である。従つて、前述し
た実施例では、上部ノズル装置として従来通常の
ノズル装置を用いる場合について説明したが、上
部ノズル装置としても、下部ノズル装置と同様の
浮動筒ノズルを有するノズル装置を用いるように
しても良いことは勿論である。
In addition, in the present invention, the pressure of the machining fluid jetted from the lower nozzle device is made higher than the pressure of the machining fluid jetted from the upper nozzle device, and the machining fluid is jetted from the bottom to the top of the machining gap. Therefore, a nozzle device having a floating cylinder nozzle that does not cause the risk of entraining and mixing in the surrounding air even if machining fluid is ejected under high pressure is used as the lower nozzle device.
The upper nozzle device has a relatively low pressure of the machining fluid spouted out, and there is no need to inject the machining fluid into the machining gap, so manual setting is relatively easy. No problem occurs even if the ejection ports are arranged at positions separated by about mm, and therefore, it is possible to use a conventional nozzle device as the upper nozzle device. Therefore, in the above-mentioned embodiments, a conventional nozzle device is used as the upper nozzle device, but a nozzle device having a floating cylinder nozzle similar to the lower nozzle device can also be used as the upper nozzle device. Of course, this is also a good thing.

〔効果〕〔effect〕

以上説明したように、本発明によれば、被加工
物の上部と下部にノズルを装置を配置し、上部に
配置されるノズル装置から噴出される加工液の圧
力よりも下部に配置されるノズル装置から噴出さ
れる加工液の圧力を高くしたことにより、下部ノ
ズル装置から噴出供給された加工液が加工間隙及
び加工溝内を上昇して被加工物の上面にまで噴き
上がり、被加工物の上面で上部ノズル装置からの
加工液と合流して被加工物の上面を放射状に流れ
るようになるため、加工間隙に於て渦や乱流が生
じて加工液が滞留するようなことがなく、又加工
間隙及び加工溝内を上昇して被加工物の上面に噴
き上がつた加工液に上部ノズル装置から噴出する
比較的低圧の加工液が合流することによつて、被
加工物上面や或いは加工間隙上端部に於ける加工
液の流れも整えられるため加工間隙の全ての部位
に安定した状態で加工液を供給して円滑に加工液
を更新することができる。
As explained above, according to the present invention, nozzles are disposed at the upper and lower parts of the workpiece, and the nozzle is disposed at a position lower than the pressure of the machining fluid ejected from the nozzle disposed at the upper part. By increasing the pressure of the machining fluid jetted out from the device, the machining fluid jetted out from the lower nozzle device rises in the machining gap and the machining groove and sprays out onto the top surface of the workpiece, causing damage to the workpiece. Since the machining fluid from the upper nozzle device joins with the machining fluid from the upper nozzle device on the top surface and flows radially over the top surface of the workpiece, there is no possibility that the machining fluid will stagnate due to vortices or turbulence occurring in the machining gap. In addition, the relatively low pressure machining fluid ejected from the upper nozzle device joins the machining fluid that has risen through the machining gap and the machining groove and spouted onto the top surface of the workpiece, causing the upper surface of the workpiece or Since the flow of the machining fluid at the upper end of the machining gap is also adjusted, the machining fluid can be stably supplied to all parts of the machining gap and the machining fluid can be smoothly renewed.

又、下部ノズル装置からの加工液と上部ノズル
装置からの加工液が被加工物上面より少し下の加
工間隙で合流するような状態となつても、被加工
物の板厚中央部の加工間隙で合流する場合のよう
に、加工液の滞留が長時間に亘つて生ずるような
ことがない。又、下部ノズル装置から噴出される
加工液の圧力を高くすると、周囲の空気を巻き込
んで加工液中に空気が混入する虞があるが、本発
明によれば、下部ノズル装置として、浮動筒ノズ
ルを有するノズル装置を用い、被加工物の下面が
該浮動筒ノズルの軸方向摺動可能範囲内に位置す
るように下部ノズル装置を配置して、供給加工液
の液圧を調整することにより、軸方向に移動して
被加工物の下面に当接しようとする浮動筒ノズル
の先端面と被加工物の下面との間に微小隙間の円
板状ノズルを自動的に形成させ、該円板状ノズル
から供給加工液の一部を放射状に流出させた状態
で加工を行なうようにしたことにより、液圧を高
めて充分な量の加工液を空気を混入させることな
く加工間隙に供給することができる。又、自動的
に形成される微小〓間の円板状ノズルから供給加
工液の一部を流出させるようにしたことにより、
被加工物の表面に多少の起伏等があつても、浮筒
ノズルの先端面と被加工物下面との間隔がこの起
伏等の形状変化に追従しても所定の微小間隔に保
持されるため、常に被加工物表面から所定距離離
隔した位置から加工液を噴出供給し、周囲の空気
を混入させることなく加工間〓に常に一定量の加
工液を供給して安定した加工を行なうことがで
き、又、ノズル先端が被加工物に圧接等接触する
ことがなく、短絡を生じたり被加工物の表面を傷
付けたりすることもない。しかして、本発明によ
れば、これ等の作用効果を奏することによつて、
アークや気中放電等の異常放電の発生を防止する
ことができると共に、加工屑の排除や加工部の冷
却を能率良く行なうことができ、高精度の加工を
高速度で行なうことができる。
In addition, even if the machining fluid from the lower nozzle device and the machining fluid from the upper nozzle device meet in the machining gap slightly below the top surface of the workpiece, the machining gap at the center of the thickness of the workpiece There is no possibility that the machining fluid will remain stagnant for a long period of time, unlike in the case of merging at the Furthermore, if the pressure of the machining fluid ejected from the lower nozzle device is increased, there is a risk that surrounding air will be drawn in and air will be mixed into the machining fluid. By using a nozzle device having a lower nozzle device, arranging the lower nozzle device so that the lower surface of the workpiece is located within the axially slidable range of the floating tube nozzle, and adjusting the hydraulic pressure of the supplied machining fluid, A disk-shaped nozzle with a minute gap is automatically formed between the tip surface of the floating cylinder nozzle that is about to move in the axial direction and come into contact with the lower surface of the workpiece, and the lower surface of the workpiece is automatically formed. By performing machining with a portion of the supplied machining fluid flowing out radially from the shaped nozzle, it is possible to increase the fluid pressure and supply a sufficient amount of machining fluid to the machining gap without introducing air. I can do it. In addition, by allowing a portion of the supplied machining fluid to flow out from the disc-shaped nozzle between the microscopic holes that are automatically formed,
Even if there are some undulations on the surface of the workpiece, the distance between the tip of the floating nozzle and the bottom surface of the workpiece is maintained at a predetermined minute distance even if it follows the shape changes such as the undulations. The machining fluid is always sprayed and supplied from a position a predetermined distance away from the workpiece surface, and a constant amount of machining fluid is always supplied between machining without mixing in the surrounding air, allowing stable machining. In addition, the nozzle tip does not come into pressure contact with the workpiece, thereby preventing short circuits or damaging the surface of the workpiece. According to the present invention, by achieving these effects,
It is possible to prevent the occurrence of abnormal discharges such as arcs and aerial discharges, and also to efficiently remove machining debris and cool the machined part, allowing high-precision machining to be performed at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すワイヤカツト
放電加工装置の一部省略断面図、第2図はノズル
装置の作動状態を示すワイヤカツト放電加工装置
の一部省略断面図である。 1……ノズル装置、2……ワイヤカツト放電加
工装置の加工部周り、3……被加工物、4……ワ
イヤ電極、5……上部ノズル装置、6……下部ノ
ズル装置、61……中空部、62……ノズル本
体、63……浮動筒ノズル、64……ワイヤ電極
案内部材。
FIG. 1 is a partially omitted cross-sectional view of a wire-cut electric discharge machining apparatus showing an embodiment of the present invention, and FIG. 2 is a partially omitted cross-sectional view of the wire-cut electric discharge machining apparatus showing the operating state of a nozzle device. DESCRIPTION OF SYMBOLS 1... Nozzle device, 2... Around the machining part of the wire cut electrical discharge machining device, 3... Workpiece, 4... Wire electrode, 5... Upper nozzle device, 6... Lower nozzle device, 61... Hollow part , 62... Nozzle body, 63... Floating cylinder nozzle, 64... Wire electrode guide member.

Claims (1)

【特許請求の範囲】[Claims] 1 被加工物の上部と下部とに加工液供給用のノ
ズル装置を配置し、両ノズル装置から加工液をワ
イヤ電極と同軸状に噴出供給しながら加工を行な
うワイヤカツト放電加工方法に於て、少なくとも
被加工物の下部に配置されるノズル装置として、
一端が開口する筒状の中空部を有すると共に該筒
状中空部の他端側に連通する加工液供給管路に具
備するノズル本体と、該ノズル本体により該本体
の筒状中空部と同軸状に且つ該本体の筒状中空部
の軸方向に摺動自在に支承されると共に先端部に
於て被加工物の加工溝幅よりも大きい径をもつて
開口する中空部を有する中空筒状体からなり前記
加工液供給管路から供給される加工液の液圧によ
り軸方向に移動せしめられる浮動筒ノズルと、該
浮動筒ノズルの中空部に該ノズルと同軸状に前記
ノズル本体に固定して設けられ、その中心部軸方
向に形成される貫通孔と該貫通孔に挿通されるワ
イヤ電極の位置決めガイド部材とを有するワイヤ
電極案内部材とから構成されるノズル装置を用
い、下部ノズル装置から噴出供給される加工液の
圧力を上部ノズル装置から噴出供給される加工液
の圧力よりも高くした状態で、且つ被加工物の下
面が浮動筒ノズルの前記摺動可能範囲内に位置す
るように下部ノズル装置を配置して、供給加工液
の液圧を調整することにより、軸方向に移動して
被加工物の下面に当接しようとする浮動筒ノズル
の先端面と被加工物の下面との間に微小〓間の円
板状ノズルを自動的に形成させ、該円板状ノズル
から供給加工液の一部を放射状に流出させた状態
で加工することを特徴とするワイヤカツト放電加
工方法。
1. In a wire cut electric discharge machining method in which nozzle devices for supplying machining fluid are arranged at the upper and lower parts of the workpiece, and machining is performed while machining fluid is jetted and supplied coaxially with the wire electrode from both nozzle devices, at least As a nozzle device placed at the bottom of the workpiece,
A nozzle body that has a cylindrical hollow part with one end open and is provided in a machining fluid supply conduit communicating with the other end of the cylindrical hollow part, and a nozzle body that is coaxial with the cylindrical hollow part of the main body by the nozzle body. and a hollow cylindrical body that is slidably supported in the axial direction of the cylindrical hollow part of the main body and has a hollow part that opens at the tip with a diameter larger than the width of the processing groove of the workpiece. a floating tube nozzle that is moved in the axial direction by the hydraulic pressure of the machining fluid supplied from the machining fluid supply pipe; A nozzle device configured of a wire electrode guide member having a through hole formed in the central axial direction and a positioning guide member for a wire electrode inserted through the through hole is used to eject water from a lower nozzle device. While the pressure of the machining fluid being supplied is higher than the pressure of the machining fluid jetting and being supplied from the upper nozzle device, the lower part is placed such that the lower surface of the workpiece is located within the slidable range of the floating cylinder nozzle. By arranging the nozzle device and adjusting the fluid pressure of the supplied machining fluid, the contact between the tip surface of the floating cylinder nozzle that moves in the axial direction and attempts to contact the bottom surface of the workpiece and the bottom surface of the workpiece is A wire cut electric discharge machining method characterized in that a small disc-shaped nozzle is automatically formed in between, and machining is performed in a state in which a part of the supplied machining fluid flows out radially from the disc-shaped nozzle.
JP3764587A 1987-02-20 1987-02-20 Wire cut electric discharge machining method Granted JPS6316924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3764587A JPS6316924A (en) 1987-02-20 1987-02-20 Wire cut electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3764587A JPS6316924A (en) 1987-02-20 1987-02-20 Wire cut electric discharge machining method

Publications (2)

Publication Number Publication Date
JPS6316924A JPS6316924A (en) 1988-01-23
JPH0536172B2 true JPH0536172B2 (en) 1993-05-28

Family

ID=12503385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3764587A Granted JPS6316924A (en) 1987-02-20 1987-02-20 Wire cut electric discharge machining method

Country Status (1)

Country Link
JP (1) JPS6316924A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH681704A5 (en) * 1988-12-23 1993-05-14 Mitsubishi Electric Corp
EP0381277A1 (en) * 1989-01-31 1990-08-08 Charmilles Technologies S.A. Injection device and wire electrode erosion machine for high-speed precision machining
US9199255B2 (en) * 2012-08-30 2015-12-01 Honeywell International Inc. Variable length flush nozzles for wire electrical discharge machines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775740A (en) * 1980-10-30 1982-05-12 Mitsubishi Electric Corp Machining liquid jet device of wire cut electric discharge machining device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135795U (en) * 1978-03-15 1979-09-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775740A (en) * 1980-10-30 1982-05-12 Mitsubishi Electric Corp Machining liquid jet device of wire cut electric discharge machining device

Also Published As

Publication number Publication date
JPS6316924A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
US4564431A (en) TW-electroerosion machines with double-floating nozzle assemblies
JPH0757446B2 (en) Liquid injection device for electrical discharge machining with wire electrodes
JPH0123701Y2 (en)
JPH0536172B2 (en)
JP3623363B2 (en) Wire feeding device in wire electric discharge machine
JP3328577B2 (en) Machining fluid supply nozzle device for wire cut electric discharge machine
JPH0455804B2 (en)
JPS59175927A (en) Working liquid supplying device in wire-cut electric discharge
US6294749B1 (en) Wire electrical discharge machine
JPS59166424A (en) Nozzle device for wire cutting by electric discharge machining
WO1999061191A1 (en) Wire electric discharge machine
JPS59156623A (en) Wire electrode guide of wire cut electric discharge machining
JP2571053B2 (en) Machining fluid supply device for wire electric discharge machine
JPH0425090B2 (en)
JPS59166426A (en) Nozzle device for wire cutting by electric discharge machining
JPS6346196Y2 (en)
JPH1043947A (en) Work liquid supply nozzle and work liquid jet device using this
JPH0325870Y2 (en)
JPS6126454B2 (en)
JPH0677884B2 (en) Wire cut electrical discharge machine
JPS6214368B2 (en)
JPS5930625A (en) Discharge liquid ejector of wire cut type electric spark machine
JPS59196129A (en) Nozzle apparatus for wire-cut electrical discharge machining
WO1993013902A1 (en) Wirecut electrical discharge machining apparatus
JPS59175928A (en) Working liquid supplying device of electric discharge machine for parting line working