JPH0335048B2 - - Google Patents

Info

Publication number
JPH0335048B2
JPH0335048B2 JP57082469A JP8246982A JPH0335048B2 JP H0335048 B2 JPH0335048 B2 JP H0335048B2 JP 57082469 A JP57082469 A JP 57082469A JP 8246982 A JP8246982 A JP 8246982A JP H0335048 B2 JPH0335048 B2 JP H0335048B2
Authority
JP
Japan
Prior art keywords
machining
nozzle
wire electrode
opening
elongated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57082469A
Other languages
Japanese (ja)
Other versions
JPS58202729A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP57082469A priority Critical patent/JPS58202729A/en
Priority to US06/495,498 priority patent/US4507532A/en
Priority to GB08313762A priority patent/GB2121714B/en
Priority to DE19833318090 priority patent/DE3318090A1/en
Priority to IT48313/83A priority patent/IT1167141B/en
Priority to KR1019830002173A priority patent/KR890000124B1/en
Priority to FR8308262A priority patent/FR2527117B1/en
Publication of JPS58202729A publication Critical patent/JPS58202729A/en
Publication of JPH0335048B2 publication Critical patent/JPH0335048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/101Supply of working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 ワイヤ電極を使用したワイヤカツト放電加工装
置は、ワイヤ電極を一方のリールから他方のリー
ルに引張りながら巻き取り、この軸方向に更新移
動するワイヤ電極の軸にほぼ直角方向から被加工
体を対向させて放電加工間隙を形成させ、この間
隙に水、油等の加工液を供給するとともに、間歇
的な電圧パルスを繰返し供給して放電パルスを発
生させ、この放電を繰返すことにより被加工体を
加工するが、このときワイヤ電極もしくは被加工
体に前記直角方向の平面上において相対的に所定
輪郭形状等の加工送りを与えることによつて諸種
な形状の切断、抜き取り加工ができるものであ
る。使用するワイヤ電極は、線径が通常、0.05〜
0.5mmφ程度の細線が用いられ、これに軸方向の
張力を充分与えると共に軸方向に更新移動させな
がら被加工体との間に微小間隙で対向させるた
め、被加部分は狭いスリツト状で常に微小に維持
される。
[Detailed Description of the Invention] A wire cut electric discharge machining device using a wire electrode winds the wire electrode while pulling it from one reel to the other reel, and then winds the wire electrode from a direction approximately perpendicular to the axis of the wire electrode, which is updated and moved in the axial direction. A method of forming a discharge machining gap by placing the workpieces facing each other, supplying a machining fluid such as water or oil to this gap, and repeatedly supplying intermittent voltage pulses to generate a discharge pulse, and repeating this discharge. The workpiece is machined by the wire electrode or the workpiece, and cutting and punching of various shapes can be performed by applying machining feed such as a relatively predetermined contour shape to the wire electrode or the workpiece on the plane in the perpendicular direction. It is possible. The wire electrode used usually has a wire diameter of 0.05~
A thin wire of approximately 0.5 mmφ is used, and in addition to applying sufficient tension in the axial direction, it is moved in the axial direction while facing the workpiece with a minute gap, so the applied part is a narrow slit and is constantly kept in a minute position. will be maintained.

一方この加工部分に供給される加工液は、通
常、加工部ワイヤ電極の側方に設けたノズルから
加工部分に向けて注ぎかけるようにして供給され
るものであるから、充分な液を間隙部分に供給す
ることができない恐れがあつた。そしてこの加工
液の作用は、放電の媒体であると同時に、加工部
分の冷却及び洗浄、そして加工屑の外部排除を行
うもので、これが間隙に充分供給され、かつ流通
しないと、間隙は加工液の分解ガス、蒸気及び空
気等のガス媒体で充満されるから、ガス中放電と
なつてアーク放電になり易く、また短絡したりし
て安定放電加工が行われず、加工電流も増大でき
ず、したがつて加工速度の増大、加工精度の向上
は期待できないことになる。
On the other hand, the machining liquid supplied to this machining part is usually poured from a nozzle provided on the side of the machining part wire electrode toward the machining part, so that sufficient liquid is supplied to the gap. There was a fear that it would not be possible to supply the The action of this machining fluid is to act as a medium for electrical discharge, as well as to cool and clean the machining part, and to remove machining debris from the outside.If this fluid is sufficiently supplied to the gap and does not flow, the machining fluid will close to the gap. Because it is filled with gaseous media such as decomposed gas, steam, and air, it is easy to cause discharge in the gas and cause arc discharge, and short circuits may occur, making it impossible to perform stable discharge machining and machining current cannot be increased. As a result, an increase in machining speed and an improvement in machining accuracy cannot be expected.

このため前記加工液噴出ノズルとして、例えば
特開昭50−54538号公報に記載されているような
ワイヤ電極を包囲して同軸状に加工液を噴射供給
する同軸加工液噴射ノズル方式のものや、例えば
実開昭54−167496号公報に記載されているような
前記同軸ノズルを高速度噴出の細いノズルとし
て、該ノズルと同軸に低速度噴出ノズルを設けた
周りの気体吸込防止のノズル方式のもの、或いは
また特開昭47−20797号公報に記載されているよ
うな加工液中に被加工体、従つて加工部を浸漬し
て、さらにノズル噴射を行なうもの等種々のもの
が提案されているが、未だ充分満足できるものが
ないのが実情である。
For this reason, the machining fluid jetting nozzle may be of a coaxial machining fluid jetting nozzle type that surrounds a wire electrode and sprays machining fluid coaxially, as described in JP-A-50-54538, for example. For example, a nozzle system as described in Japanese Utility Model Application Publication No. 54-167496, in which the coaxial nozzle is a narrow nozzle for high-velocity jetting, and a low-speed jetting nozzle is provided coaxially with the nozzle to prevent gas from being sucked into the surrounding area. Various methods have been proposed, such as the method described in JP-A-47-20797, in which the object to be processed, and therefore the processing part, is immersed in a processing liquid and further sprayed from a nozzle. However, the reality is that there is still nothing that is completely satisfying.

しかして、その原因につき思考するに、一般的
に被加工体の板厚が数10mm以下の比較的薄いもの
や適度の厚さの被加工体の場合には、加工電流の
設定(放電繰返し周波数)や加工精度維持上等に
問題が残るとしても加工速度等の加工性能は殆ん
ど問題なく高効率の加工が可能であるが、被加工
体の板厚が数10mm以上になると、種々の加工条件
設定に応じて種々の微妙に異なる加工状態が生
じ、前述の如き従来型式の加工液噴出ノズルでは
充分な対応ができず、加工性能、特に加工速度
が、例えば被加工体の板厚に或る割合でほぼ比例
するように上らず、又、加工精度面に於いても問
題があり、アーク放電等の異常放電により加工精
度が悪化し易いだけでなく、後述する第1図及び
第3図に示すように加工送り方向の加工面の輪郭
形状が円弧凸状になることにより特に角部や小さ
な曲率半径のコーナ部等の加工精度が出にくく、
また加工速度を向上させようとすると、ワイヤ電
極の断線事故が多くなる等の問題があつた。
However, when considering the cause of this problem, in general, when the workpiece is relatively thin (less than a few tens of millimeters thick), or when the workpiece is moderately thick, the setting of the machining current (discharge repetition frequency ) and maintaining machining accuracy, high efficiency machining is possible with almost no problems with machining performance such as machining speed, but when the thickness of the workpiece exceeds several tens of mm, various problems arise. Various slightly different machining conditions occur depending on the machining condition settings, and conventional machining liquid jet nozzles such as those mentioned above cannot adequately handle the situation. In addition, there are problems in terms of machining accuracy, and machining accuracy tends to deteriorate due to abnormal discharge such as arc discharge, as well as As shown in Figure 3, the contour shape of the machined surface in the machining feed direction is circular and convex, making it difficult to achieve machining accuracy, especially at corners and corners with a small radius of curvature.
Furthermore, when attempting to improve the processing speed, problems such as an increase in wire electrode breakage accidents occurred.

本発明は、上述の問題点に鑑み、加工間隙に充
分な加工液を供給して高精度、高速度の加工を可
能とすると共に、特に加工面の輪郭形状が円弧凸
状となるのを防止して、精度の良い加工を行い得
るようにすることを目的として発明されたもので
あり、本発明のワイヤカツト放電加工用加工液噴
出ノズル装置は、ワイヤ電極の軸方向と直角方向
の平面上に開口する一軸方向に長尺状の噴出開口
部を有し、前記平面上に於ける該長尺状噴出開口
部の位置が移動可能に構成されるノズルと、ワイ
ヤ電極と被加工体間の相対的な加工送り進行方向
を検知する検知装置と、前記長尺状噴出開口部の
長尺方向が加工送り進行方向と常に略一致するよ
うに、且つワイヤ電極が前記長尺状噴出開口部の
加工送り進行方向の常に前縁側端部に位置するよ
うに前記検知装置の出力信号により前記長尺状噴
出開口部を移動制御する制御装置を備えてなるこ
とを特徴とするものである。以下図面に基づき具
体的に説明する。
In view of the above-mentioned problems, the present invention enables high precision and high speed machining by supplying sufficient machining liquid to the machining gap, and in particular prevents the contour shape of the machining surface from becoming circular convex. The machining fluid spouting nozzle device for wire cut electric discharge machining of the present invention was invented with the aim of enabling highly accurate machining. a nozzle having an elongated ejection opening opening in a uniaxial direction and configured such that the elongated ejection opening is movable in position on the plane; and a relative relationship between the wire electrode and the workpiece. a detection device for detecting a machining feed advancing direction; The present invention is characterized by comprising a control device that controls the movement of the elongated ejection opening based on the output signal of the detection device so that it is always located at the leading edge side end in the feeding direction. A detailed explanation will be given below based on the drawings.

第1図は、従来型のワイヤカツト放電加工装置
の機械部分の概略構成を示す正面説明図で、1は
ベツド、2はベツド1に載置されたX−Yクロス
スライダ、3及び4はクロススライダ2の各軸方
向移動スライダ2A,2Bの各駆動モータ、5は
加工液受け、6はクロススライダ2に結合して設
けた被加工物7の支持加工テーブル、8はベツド
1上の一方の端部側に立てて設けられたカラム、
9及び10は前記カラム8より水平方向に、かつ
その先端部が、前記加工テーブル6と対応位置す
るように、上下に離隔し、かつ平行に伸長して形
成された上部及び下部アーム、11は上部アーム
9に対し上下に移動設置可能に設けた加工ヘツ
ド、12及び13は前記上部アーム9の加工ヘツ
ド11と下部アーム10とに鉛直方向に相対向す
るように設けたワイヤ電極ガイド、14はワイヤ
電極15の貯蔵ドラム、16は同巻取りドラム、
17はワイヤ電極15を引出し走行させるキヤブ
スタンとピンチローラを備えた引き出し装置、1
8は前記ワイヤ電極15の引き出しに対してブレ
ーキをかけて緊張張力を付与するブレーキドラム
とピンチローラとから成る張力付与装置、19及
び20は前記加工ヘツド11と下部アーム10に
設けたガイド12及び13よりも図示の如く被加
工体7側又は前記ガイド12及び13を夫々内包
するように、かつワイヤ電極15と同軸状に貫通
させて上記加工ヘツド11と下部アーム10に設
けた同一又は異口径の加工液噴射ノズル、21及
び22は図示しない加工液供給装置から各ノズル
19及び20に同一又は夫々異なる所定の流量、
圧力の加工液を供給する加工液パイプ、矢印23
はワイヤ電極15に対する被加工体7の加工送り
方向、7Aは前記加工送り方向23に対応する被
加工体7の加工溝の一方の切断面、7Bは前記加
工送り方向23の加工面の輪郭を示したものであ
る。
FIG. 1 is a front explanatory view showing a schematic configuration of the mechanical parts of a conventional wire-cut electrical discharge machining device, in which 1 is a bed, 2 is an X-Y cross slider placed on the bed 1, and 3 and 4 are cross sliders. 2 is a drive motor for each of the axially movable sliders 2A and 2B; 5 is a machining fluid receiver; 6 is a supporting machining table for a workpiece 7 which is connected to the cross slider 2; 8 is one end on the bed 1; A column set up on the side of the department,
9 and 10 are upper and lower arms that are vertically spaced apart and extend parallel to each other in the horizontal direction from the column 8 so that their tips correspond to the processing table 6; A processing head 12 and 13 is provided so as to be movable up and down relative to the upper arm 9, and wire electrode guides 14 are provided vertically opposite to each other in the processing head 11 of the upper arm 9 and the lower arm 10. A storage drum for the wire electrode 15, 16 a winding drum for the wire electrode,
Reference numeral 17 denotes a pull-out device equipped with a cab stan and a pinch roller for pulling out and running the wire electrode 15;
Reference numeral 8 denotes a tension applying device consisting of a brake drum and a pinch roller that applies a brake to the drawing out of the wire electrode 15 and applies tension; 19 and 20 refer to guides 12 and 20 provided on the processing head 11 and the lower arm 10; 13, as shown in the figure, the same or different diameters are provided on the processing head 11 and the lower arm 10 so as to enclose the guides 12 and 13, respectively, and to penetrate coaxially with the wire electrode 15. The machining fluid injection nozzles 21 and 22 are supplied with the same or different predetermined flow rates from a machining fluid supply device (not shown) to the nozzles 19 and 20, respectively.
Processing fluid pipe supplying pressure processing fluid, arrow 23
is the machining feed direction of the workpiece 7 with respect to the wire electrode 15, 7A is one cut surface of the machining groove of the workpiece 7 corresponding to the machining feed direction 23, and 7B is the contour of the machining surface in the machining feed direction 23. This is what is shown.

前記加工液噴射ノズル19及び20の各長尺状
噴出開口部19A及び20Aは第2図に正面図と
して示すように円形で、ワイヤ電極15と同軸状
であり、加工液はワイヤ電極15を同軸状に包皮
した状態でワイヤ電極15の線にそつて被加工体
7との加工間隙及び該加工間隙の通常反対側にあ
る既に加工済の加工溝内に注入される。
The elongated ejection openings 19A and 20A of the machining liquid injection nozzles 19 and 20 are circular, as shown in the front view in FIG. It is injected along the line of the wire electrode 15 into the machining gap with the workpiece 7 and into the already machined groove which is usually on the opposite side of the machining gap.

なお、加工液噴射ノズル19及び20は一方又
は両方が設けられ、両方設けられる場合の各加工
液噴射圧は同一又は異なる(通常ノズル20側が
高圧)場合等種々な場合がある。
Note that there are various cases in which one or both of the machining liquid injection nozzles 19 and 20 are provided, and when both are provided, the respective machining liquid injection pressures may be the same or different (usually the nozzle 20 side is high pressure).

しかして、ワイヤ電極15に付与される張力、
放電加工電圧パルス条件に対応して設定される加
工送り速度等によつても変化するが、格別な目的
等により加工送り速度を加工速度より充分遅い値
等に設定していない以上被加工体7の板厚が数10
mmよりも厚くなつてくると、第1図及び第3図に
示したように、被加工体7の加工面又は加工間隙
面の断面輪郭線7Bは加工送りの向きに図示の如
く円弧凸状となつており、之に対するワイヤ電極
15の部分も放電圧力等の加工間隙圧力により同
様に彎曲した状態で更新送り移動している。
Therefore, the tension applied to the wire electrode 15,
It also changes depending on the machining feed rate set in accordance with the electric discharge machining voltage pulse conditions, but if the machining feed rate is not set to a value sufficiently slower than the machining speed due to a special purpose etc., the workpiece 7 The plate thickness is several 10
When the thickness becomes thicker than mm, as shown in FIGS. 1 and 3, the cross-sectional contour line 7B of the machining surface or machining gap surface of the workpiece 7 has a convex circular arc shape in the direction of machining feed. The portion of the wire electrode 15 corresponding to this is also renewedly moved in a curved state due to machining gap pressure such as discharge pressure.

そしてこのような加工部の状態により、ノズル
19及び20の各長尺状噴出開口部19A及び2
0Aからワイヤ電極15にそつて同軸状に噴出さ
れた加工液も前記の加工間隙の輪郭7Bの影響を
受けて加工液溝内で、矢印19B,20Bのよう
に加工間隙と反対側の既に加工済みの加工溝方向
を指向する噴流となり、このため図示の場合は被
加工体7の板厚の約1/2前後の部分、また通常は
上部ノズル19と下部ノズル20との各噴流が被
加工体7の加工間隙及び加工溝内で、衝突して平
衡する部分の前後に於て加工液の流れに滞りを生
ずることもあるが、キヤビテーシヨン作用を生
じ、加工液の供給、更新が充分でない、何れにし
ても前記のキヤビテーシヨン作用等が生ずる部分
の前後(ワイヤ電極15の軸方向)部分に於ける
加工作用が円滑でなく阻害され、また気中放電等
の発生によるワイヤ電極の断線事故も生ずるよう
になる。又、加工送り方向の加工面の輪郭形状が
円弧凸状となることにより、特に角部や曲率半径
の小さい曲線部分の加工精度が悪化することにな
る。そして、このような現象の発生及び作用は前
述したような従来型の加工液噴射ノズルによつて
は防止できなかつた。
Depending on the condition of the processed parts, the elongated ejection openings 19A and 2 of the nozzles 19 and 20
The machining fluid spouted coaxially from 0A along the wire electrode 15 is also influenced by the contour 7B of the machining gap, and within the machining fluid groove, as shown by arrows 19B and 20B, the machining fluid has already been machined on the opposite side of the machining gap. Therefore, in the case shown in the figure, the jet flow is directed towards the direction of the machined groove, and therefore, in the case shown in the figure, the jet flow from the upper nozzle 19 and the lower nozzle 20 is approximately 1/2 of the thickness of the workpiece 7, and normally the jet flow from the upper nozzle 19 and the lower nozzle 20 is In the machining gap and the machining groove of the body 7, stagnation may occur in the flow of the machining fluid before and after the collision and equilibrium portion, but cavitation occurs, and the machining fluid is not sufficiently supplied or refreshed. In any case, the machining action at the front and back portions (in the axial direction of the wire electrode 15) of the portion where the cavitation action etc. occurs is not smooth and is obstructed, and accidents such as disconnection of the wire electrode may also occur due to the occurrence of aerial discharge, etc. It becomes like this. Furthermore, since the profile of the machined surface in the processing feed direction becomes an arcuate convex shape, the processing accuracy deteriorates particularly at corners and curved portions with a small radius of curvature. The occurrence and effects of such phenomena could not be prevented by the conventional machining liquid spray nozzle as described above.

第4図A,B,C,D及びEは、前記加工液噴
射ノズル19及び20の本発明に従う各長尺状噴
出開口部19A、及び20Aの異なる実施例を示
すもので、A図は長尺状噴出開口部19A(20
A)をスリツト状又は長尺楕円状に構成した場
合、B図は噴出開口19A(20A)を、前記A
図のものに於てワイヤ電極15と被加工体7間の
相対的加工送り方向23Aに対して噴出開口の開
口面積をワイヤ電極15廻りの同軸状円形噴射口
19a(20a)部分から漸減させて連続する絞
り部噴射口19b(20b)の廻りの同軸状円形
噴出口19a(20a)に連続させて狭いスリツ
ト状噴射口19c(20c)を有せしめて構成し
た場合、D図は前記同軸状円形噴射口19a(2
0a)に一体に順次に開口径の小さくなるノズル
噴射口19d(20d)を前記の方向に並べて配
置した場合、及びE図は前記D図のノズル噴射口
19d(20d)が、前記同軸状円形噴射口19
a(20a)のノズルと別個に夫々独立したノズ
ルの噴射口19e(20e)として形成された場
合の構成を示したものである。
4A, B, C, D and E show different embodiments of the elongated ejection openings 19A and 20A of the machining liquid injection nozzles 19 and 20 according to the present invention; FIG. Square spout opening 19A (20
When A) is configured in the form of a slit or an elongated ellipse, Figure B shows the ejection opening 19A (20A)
In the figure, the opening area of the jet opening is gradually decreased from the coaxial circular jet opening 19a (20a) around the wire electrode 15 with respect to the relative machining feed direction 23A between the wire electrode 15 and the workpiece 7. In the case where a narrow slit-shaped injection port 19c (20c) is provided continuously to a coaxial circular injection port 19a (20a) around a continuous throttle injection port 19b (20b), Fig. D shows the coaxial circular injection port 19b (20b). Injection port 19a (2
When the nozzle injection ports 19d (20d) whose opening diameters become smaller in sequence are arranged in the above-mentioned direction integrally in 0a), and in Fig. E, the nozzle injection ports 19d (20d) in Fig. D are arranged in the coaxial circular shape. Injection port 19
This figure shows a configuration in which the nozzles 19e (20e) are formed as independent nozzle injection ports 19e (20e) separately from the nozzles 19a (20a).

このような長尺状噴出開口部19A(20A)
を有する加工液噴射ノズル19及び20によれ
ば、その長尺状噴出開口部19A(20A)の長
尺方向の軸を加工送り方向23Aと一致せしめ、
かつワイヤ電極15の貫通部を前記長尺方向の一
端部側に位置させると共に該一端部側を加工送り
の先端側に位置させること、即ち、ワイヤ電極1
5が前記長尺状噴出開口部19A(20A)の加
工送り進行方向の常に前縁側端部に位置するよう
にすることによりワイヤ電極15廻りの噴射口1
9a(20a)よりも絞られた狭い又は小径の噴
射口となつている噴射口19b(20b),19C
(20C),19d(20d),及び19e(20e)
は被加工体7の既加工済加工溝部分に相対向して
おり、上記全噴射口に対する加工液の供給源が同
一乃至は供給加工液を適宜分岐して各噴射口に供
給されているとすると、噴射口19a(20a)
に対して絞られた状態にある噴射口19b(20
b),19C(20C),19d(20d),19e
(20e)、特に噴射口19d(20d)及び19
e(20e)、に於ては噴射流速が高く、また噴射
口19b(20b),19C(20C)に於ても絞
り幅により前記加工済の加工溝への噴射流入を円
滑にエネルギを失うこと少なく強くすることがで
き、また前記A,B及びC図の構成の場合にもワ
イヤ電極15廻りの噴射口19a(20a)とそ
れ以外の部分の噴射口19b(20b),19C
(20C)とを適宜隔壁等を設けて噴射口19b
(20b),19C(20C)側の流速又は圧力を
大きく、また好ましくは適宜細くスリツト状等に
絞り構成することができ、そして何れにしても之
等噴射口19b(20b),19C(20C),19
d(20d),19e(20e)等からの加工液噴
射流19X(20X)が第5図に示すように既加
工済の加工溝7Aにより多く、有効に噴射流入す
ると、ワイヤ電極15廻りの加工液噴射流19a
(20a)が、既加工済の加工溝7A側へ逃げに
くく、ワイヤ電極15は加工面に押しつけられる
ような状態となつて、張力を付与された方向の直
線を保つか、直線状となる力を付与され、加工送
り方向の加工面の輪郭形状が円弧凸状となる現象
が解消あるいは低減して該加工面の輪郭形状が直
線状となり、この結果、特に角部や曲率半径の小
さい曲線部分の加工精度の悪化を防止することが
できる。
Such a long ejection opening 19A (20A)
According to the machining liquid injection nozzles 19 and 20 having the following, the longitudinal axis of the elongated ejection opening 19A (20A) is made to coincide with the machining feed direction 23A,
In addition, the penetrating portion of the wire electrode 15 is located on one end side in the longitudinal direction, and the one end side is located on the tip side of the processing feed, that is, the wire electrode 1
5 is always located at the front edge side end of the elongated ejection opening 19A (20A) in the processing feed direction, so that the ejection port 1 around the wire electrode 15
Nozzle ports 19b (20b) and 19C that are narrower or have a smaller diameter than 9a (20a)
(20C), 19d (20d), and 19e (20e)
is opposed to the already machined groove portion of the workpiece 7, and the machining fluid supply source for all the injection ports is the same or the supplied processing fluid is appropriately branched and supplied to each injection port. Then, the injection port 19a (20a)
The injection port 19b (20
b), 19C (20C), 19d (20d), 19e
(20e), especially injection ports 19d (20d) and 19
e (20e), the injection flow velocity is high, and the injection openings 19b (20b) and 19C (20C) also have aperture widths that allow the injection to smoothly flow into the machined groove and lose energy. Also, in the case of the configurations shown in figures A, B, and C, the injection ports 19a (20a) around the wire electrode 15 and the injection ports 19b (20b), 19C in other parts can be made stronger.
(20C) and the injection port 19b by providing a partition wall etc. as appropriate.
(20b), 19C (20C) side can be increased, and preferably, the flow rate or pressure on the side of injection port 19b (20b), 19C (20C) can be configured to be appropriately narrowed into a slit shape. ,19
When the machining fluid jet flow 19X (20X) from d (20d), 19e (20e), etc. flows into the already machined machining groove 7A effectively as shown in FIG. 5, the machining around the wire electrode 15 is completed. Liquid jet flow 19a
(20a) is difficult to escape to the already machined groove 7A side, and the wire electrode 15 is pressed against the machined surface, and the wire electrode 15 either maintains a straight line in the direction in which tension is applied or is forced to become straight. As a result, the phenomenon in which the contour shape of the machined surface in the machining feed direction becomes circularly convex is eliminated or reduced, and the contour shape of the machined surface becomes linear. Deterioration of processing accuracy can be prevented.

そして長尺状噴出開口部19A(20A)を備
えたノズルによるこのような作動は、ノズル19
及び20の何れか一方のみが設けられた場合、及
び両ノズル19及び20が設けられて両ノズルの
加工液噴射圧力が異なる場合、例えば下部ノズル
20の噴射加工液が、加工間隙を含むワイヤ電極
15廻り及び加工済加工溝7Aに於て被加工体7
の上面近くまで吹き上げ、上部ノズル19は上記
吹き上げが被加工体7上面に達するのを押さえる
程度の噴射を行なつている場合も実質上同様であ
つて、ガイド12,13間、特に被加工体7との
対向加工部に於けるワイヤ電極15の直線性が向
上し、容易に加工精度を増し、ワイヤ電極15の
断線事故も少なく押さえることができる。
Such operation by the nozzle equipped with the elongated ejection opening 19A (20A) is performed by the nozzle 19.
and 20 are provided, or when both nozzles 19 and 20 are provided and the machining liquid injection pressures of both nozzles are different, for example, the injection machining liquid from the lower nozzle 20 is applied to the wire electrode including the machining gap. 15 and in the processed groove 7A, the workpiece 7
The situation is substantially the same even when the air is blown up close to the upper surface of the workpiece 7 and the upper nozzle 19 is injecting enough to prevent the airflow from reaching the upper surface of the workpiece 7. The linearity of the wire electrode 15 in the processing portion opposite to the wire electrode 7 is improved, the processing accuracy is easily increased, and disconnection accidents of the wire electrode 15 can be suppressed to a minimum.

第6図は、例えば、第4図Cの如き構成の加工
液噴射ノズル19をワイヤ電極15の加工部張設
軸の廻りに制御回動自在に設けることにより、長
尺状噴出開口部の移動を、ノズル19自体を回転
させることによつて行うようにした本発明実施例
の部分の説明断面図で、下部ノズル20は省略し
てある。図に於て24はノズル19をヘツド11
にワイヤ電極15軸の廻りに回動自在に取付保持
するホルダ、12Aは上部電極ガイドで、この場
合ダイスガイドであつて前記ノズル19にダイス
案内孔軸芯をノズル19の回動軸と一致させて取
付けてあるが、ガイド12Aはヘツド11等の固
定部に設けても良い。19Lはノズルの前述加工
液噴出口19a,19Cにつながる加工液溜ポケ
ツトで、加工液供給孔19M及びフレキシブルパ
イプ25を介し所定の加工液が所定の液圧及び流
量で供給される。19Nはノズル19外周に設け
られた回動用歯車部、26は回転軸27によりヘ
ツド11に取りつけられ、前記歯車部19Nにか
み合う平歯車、28は前記軸27に取りつけられ
たプーリ、29は回動用サーボモータ、30はそ
の回転軸に取り付けられたプーリ、31はプーリ
30を前記プーリ28と結合するベルト、32は
ロータリーエンコーダで、32Aはコード板、3
2Bはコード読み取りヘツド、33は読み取り信
号を数値制御装置34に帰還して回転作動を制御
するフイードバツク回路、35は前記数値制御装
置34から前記加工テーブルモータ3及び4に供
給される各軸(X,Y)方向の所定輪郭形状の送
り指令信号出力を検出して加工送りの進行方向2
3(23A)を演算検知してノズル19をモータ
29により回動させて、ノズル19の噴出開口形
状の長尺軸方向と、前記加工送りの進行方向23
(23A)とを一致せしめる演算検知装置で、3
6はモータ29のサーボ増幅器である。
FIG. 6 shows, for example, that a machining liquid jet nozzle 19 having a configuration as shown in FIG. This is an explanatory cross-sectional view of a portion of an embodiment of the present invention in which the operation is performed by rotating the nozzle 19 itself, and the lower nozzle 20 is omitted. In the figure, 24 connects the nozzle 19 to the head 11.
12A is an upper electrode guide, which in this case is a die guide, and the axis of the die guide hole in the nozzle 19 is aligned with the rotation axis of the nozzle 19. Although the guide 12A is attached to a fixed portion such as the head 11, the guide 12A may be attached to a fixed portion such as the head 11. 19L is a machining liquid reservoir pocket connected to the machining liquid spout ports 19a and 19C of the nozzle, and a predetermined machining liquid is supplied through the machining liquid supply hole 19M and the flexible pipe 25 at a predetermined liquid pressure and flow rate. 19N is a rotating gear provided on the outer periphery of the nozzle 19, 26 is a spur gear attached to the head 11 by a rotating shaft 27 and meshes with the gear 19N, 28 is a pulley attached to the shaft 27, and 29 is a rotating gear. A servo motor, 30 is a pulley attached to its rotating shaft, 31 is a belt connecting the pulley 30 to the pulley 28, 32 is a rotary encoder, 32A is a code plate, 3
2B is a code reading head; 33 is a feedback circuit that returns the read signal to the numerical control device 34 to control rotational operation; and 35 is the axis (X) supplied from the numerical control device 34 to the processing table motors 3 and 4. , Y) direction and detects the feed command signal output of a predetermined contour shape in the machining feed direction 2.
3 (23A), the nozzle 19 is rotated by the motor 29, and the ejection opening shape of the nozzle 19 is rotated in the long axis direction and the progress direction 23 of the machining feed.
(23A) is an arithmetic detection device that matches 3
6 is a servo amplifier for the motor 29.

第7図は長尺状噴出開口部を移動させる他の実
施例で、ワイヤ電極15廻りのノズル噴射口19
a(20a)の廻りに各45度の角度で放散同形の
放射状に、前記第4図D又はEの噴射口19d
(20d),又は19e(20e)を計8個、通常
一体に固定して設け、即ち前述第6図の実施例の
ようにノズル19自体を回動させるものではな
く、上記8個設けたノズル19o-1,19o-2
…,19o-8を各オン、オフ電磁バルブ37-1
37-2……37-8により切換えて第6図のノズル
19を回動させた場合と実質上同一の長尺状噴出
開口部の移動を行わせるように構成したものであ
る。35Aは前記演算検知装置35の演算結果に
基づいてバルブ37-1,37-2,……37-8をオ
ン・オフ切換える切換制御装置、37は噴射口1
9a(20a)のノズルへの加工液供給を制御す
るバルブ、Pは加工液供給ポンプである。この第
7図の実施例によれば、長尺状噴出開口部の移動
は、角度45度ずつとなるが、必要ならば、ノズル
19oを19o-oの如く、さらに多数等分割して設
けて、前記角度を30度、22.5度或いはさらに15度
とすることができるだけでなく、全体をワイヤ電
極15軸の廻りの360度以下の所定の角度範囲内
を、例えば360度を720、1080、或いはさらに2000
分割するように多数に分割した制御移動が可能に
構成して、より微細適応切換え制御を行なうよう
に構成することができる。
FIG. 7 shows another embodiment in which the elongated ejection orifice is moved, and the nozzle ejection orifice 19 around the wire electrode 15 is moved.
The injection ports 19d of D or E in FIG.
(20d) or 19e (20e) in total, usually fixed in one piece, that is, the nozzle 19 itself is not rotated as in the embodiment shown in FIG. 6, but the eight nozzles are provided. 19 o-1 , 19 o-2 ...
..., 19 o-8 each on and off solenoid valve 37 -1 ,
37-2 ... 37-8 to move the elongated ejection opening substantially in the same manner as when the nozzle 19 in FIG. 6 is rotated. 35A is a switching control device that switches the valves 37-1 , 37-2 , ... 37-8 on and off based on the calculation result of the calculation detection device 35; 37 is the injection port 1;
A valve 9a (20a) controls the supply of machining liquid to the nozzle, and P is a machining liquid supply pump. According to the embodiment shown in FIG. 7, the elongated ejection opening moves in increments of 45 degrees, but if necessary, the nozzle 19o can be divided into a larger number of equal parts, such as 19oo . Not only can the angle be 30 degrees, 22.5 degrees, or even 15 degrees, but the entire angle can be within a predetermined angle range of 360 degrees or less around the axis of the wire electrode 15, for example, 360 degrees can be 720 degrees, 1080 degrees, or 2000 more
It is possible to perform control movement divided into a large number of parts, so as to perform more finely adaptive switching control.

また、前述第6図の実施例では、ノズル19の
回転制御を数値制御装置34より出力する輪郭加
工送り制御信号を検出して行なうように構成する
場合について説明を加えたが、上記数値制御装置
34に於ける記録テープ記録信号やMDI入力記
憶信号の読み出し信号によつて制御するように構
成するとか、モータ3及び4の入力信号やモータ
3及び4の作動結果の数値制御装置34へのフイ
ードバツク信号X′,Y′等より検知して制御する
ように構成することもできる。
Further, in the embodiment shown in FIG. 6, a case has been described in which the rotation control of the nozzle 19 is performed by detecting the contour machining feed control signal outputted from the numerical control device 34, but the numerical control device 34 The control may be configured to be controlled by the recording tape recording signal at 34 or the reading signal of the MDI input storage signal, or the feedback of the input signals of the motors 3 and 4 and the operation results of the motors 3 and 4 to the numerical control device 34. It can also be configured to detect and control based on signals X', Y', etc.

以上の如き本発明の実施に於て、ワイヤ電極1
5廻り、或いはさらに加工済加工溝部への加工液
噴射に周りの空気を気泡状等として巻き込み、混
入噴射する可能性がある場合には各ノズル噴射開
口の口径、形成、配置等を調整することによつて
その防止を計ることが好ましく、従つて必要なら
ば本発明の長尺状噴出開口部を大開口径の加工液
噴射ノズル開口内に形成位置させるとか、加工液
中に浸漬した加工に於て適用するとか、各種の変
更実施が可能である。
In carrying out the present invention as described above, the wire electrode 1
If there is a possibility that the surrounding air may be drawn in as bubbles and mixed in with the injection of machining liquid into the machining groove, or even into the processed groove, adjust the aperture, formation, arrangement, etc. of each nozzle injection opening. Therefore, if necessary, it is preferable to prevent this by forming and positioning the elongated ejection opening of the present invention in a machining liquid injection nozzle opening with a large opening diameter, or by immersing the ejection opening in the machining liquid. It is possible to apply it or make various changes.

以上のように本発明の加工液噴出ノズルによれ
ば、加工間隙に充分な加工液が供給されるため、
ワイヤカツト放電加工の加工精度を向上させるだ
けでなく、加工速度も向上させ、ワイヤ電極の断
線事故も少なくなる等の秀れた効果が期待できる
ものであり、又、加工送り方向の加工面の輪郭形
状が円弧凸状となるのを防止することができるた
め、特に角部や曲線部分の加工精度を向上させ得
る秀れた効果を奏するものである。
As described above, according to the machining fluid jetting nozzle of the present invention, sufficient machining fluid is supplied to the machining gap.
It not only improves the machining accuracy of wire cut electric discharge machining, but also improves the machining speed and reduces wire electrode breakage accidents. Since it is possible to prevent the shape from becoming an arcuate convex shape, it has an excellent effect of improving the machining accuracy particularly at corners and curved parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来型ワイヤカツト放電加工機の機
械部分の概略構成を示す正面図、第2図は同加工
液噴射ノズルの正面図、第3図は加工部の加工送
り方向の側断面説明図、第4図A,B,C,D及
びEは本発明加工液噴射ノズルの噴射開口の異な
る実施例の正面図、第5図は同加工液噴射ノズル
使用の際の加工部の加工送り方向側断面説明図、
第6図は本発明実施例の加工液噴射ノズルを備え
た装置の部分の拡大説明用断面構成図、第7図は
ノズル噴射開口及びノズル回転制御の他の実施例
説明図である。 15はワイヤ電極、19,20は加工液噴射ノ
ズル、23,23Aは加工送り方向。
Fig. 1 is a front view showing the schematic configuration of the mechanical part of a conventional wire-cut electric discharge machine, Fig. 2 is a front view of the same machining fluid injection nozzle, and Fig. 3 is a side cross-sectional explanatory view of the machining section in the machining feed direction. , Fig. 4 A, B, C, D, and E are front views of different embodiments of the injection opening of the processing liquid injection nozzle of the present invention, and Fig. 5 shows the machining feed direction of the processing part when the same processing liquid injection nozzle is used. Side cross-sectional diagram,
FIG. 6 is an enlarged cross-sectional configuration diagram for explaining a portion of a device equipped with a machining liquid spray nozzle according to an embodiment of the present invention, and FIG. 7 is a diagram for explaining another embodiment of the nozzle spray opening and nozzle rotation control. 15 is a wire electrode, 19 and 20 are machining fluid injection nozzles, and 23 and 23A are machining feed directions.

Claims (1)

【特許請求の範囲】 1 一対の間隔を置いて配置したガイド間にワイ
ヤ電極を軸方向に更新送り移動せしめつつ前記ワ
イヤ電極の軸方向と直角方向から被加工体を微小
間隙を介して相対向せしめ、該間隙にワイヤ電極
と同軸状に配置した加工液噴出ノズルから加工液
を噴出供給せしめつつ前記ワイヤ電極と被加工体
間に間欠的な電圧パルスを印加して放電を繰り返
し発生させると共に、前記ワイヤ電極と被加工体
間に前記直角方向の平面上に於ける相対的な加工
送りを与えて加工を行うワイヤカツト放電加工に
於いて、前記ワイヤ電極の軸方向と直角方向の平
面上に開口する一軸方向に長尺状の噴出開口部を
有し、前記平面上に於ける該長尺状噴出開口部の
位置が移動可能に構成されるノズルと、前記加工
送りの進行方向を検知する検知装置と、前記長尺
状噴出開口部の長尺方向が加工送り進行方向と常
に略一致するように、且つワイヤ電極が前記長尺
状噴出開口部の加工送り進行方向の常に前縁側端
部に位置するように前記検知装置の出力信号によ
り前記長尺状噴出開口部を移動制御する制御装置
を備えてなることを特徴とするワイヤカツト放電
加工用加工液噴出ノズル装置。 2 前記長尺状噴出開口部が、楕円ないしスリツ
ト状の開口により形成され、長尺状噴出開口部の
前記移動が、前記ノズル自体の回転運動により行
われるものである特許請求の範囲第1項記載のワ
イヤカツト放電加工用加工液噴出ノズル装置。 3 前記長尺状噴出開口部が、一軸方向に一体に
並設される複数の円形開口により形成され、長尺
状噴出開口部の前記移動が、前記ノズル自体の回
転運動により行われるものである特許請求の範囲
第1項記載のワイヤカツト放電加工用加工液噴出
ノズル装置。 4 前記長尺状噴出開口部が、一軸方向に一体に
並設される複数の円形開口により形成され、前記
ノズルが、複数の該長尺状噴出開口部を、端部の
円形開口を各長尺状噴出開口部共用として、放散
同形放射状に配置してなるものであつて、長尺状
噴出開口部の前記移動が、複数の長尺状噴出開口
部に夫々接続して設けたオン、オフバルブの切り
換えにより行われるものである特許請求の範囲第
1項記載のワイヤカツト放電加工用加工液噴出ノ
ズル装置。
[Scope of Claims] 1. While a wire electrode is renewedly moved in the axial direction between a pair of guides arranged at a distance, the workpiece is opposed to each other through a minute gap from a direction perpendicular to the axial direction of the wire electrode. and applying intermittent voltage pulses between the wire electrode and the workpiece while jetting and supplying machining fluid from a machining fluid jet nozzle disposed coaxially with the wire electrode into the gap, and repeatedly generating electric discharge; In wire cut electrical discharge machining in which machining is performed by applying a relative machining feed between the wire electrode and the workpiece on a plane perpendicular to the direction, an opening is formed on a plane perpendicular to the axial direction of the wire electrode. a nozzle having an elongated ejection opening in a uniaxial direction and configured such that the position of the elongated ejection opening on the plane is movable; and a sensor for detecting the advancing direction of the machining feed. The device is configured such that the longitudinal direction of the elongated ejection opening always substantially coincides with the processing feed advancing direction, and the wire electrode is always located at the leading edge side end of the elongated ejection opening in the processing feed advancing direction. A machining fluid spouting nozzle device for wire cut electric discharge machining, comprising a control device that controls movement of the elongated spouting opening according to an output signal of the detection device so that the elongated spouting opening is positioned. 2. Claim 1, wherein the elongated ejection opening is formed by an elliptical or slit-shaped opening, and the movement of the elongated ejection opening is performed by rotational movement of the nozzle itself. The machining fluid jetting nozzle device for wire cut electric discharge machining described above. 3. The elongated ejection opening is formed by a plurality of circular openings arranged in parallel in one axial direction, and the movement of the elongated ejection opening is performed by rotational movement of the nozzle itself. A machining fluid jetting nozzle device for wire cut electric discharge machining according to claim 1. 4. The elongated ejection opening is formed by a plurality of circular openings that are arranged in parallel in a uniaxial direction, and the nozzle connects the plurality of elongated ejection openings to each end of the circular opening. The elongated ejection openings are commonly used and are arranged radially in the same shape. A machining fluid spouting nozzle device for wire cut electrical discharge machining according to claim 1, which is performed by switching.
JP57082469A 1982-05-18 1982-05-18 Machining solution jet nozzle for wire-cut electro- discharge machining Granted JPS58202729A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57082469A JPS58202729A (en) 1982-05-18 1982-05-18 Machining solution jet nozzle for wire-cut electro- discharge machining
US06/495,498 US4507532A (en) 1982-05-18 1983-05-17 Wire-cut electric discharge machine
GB08313762A GB2121714B (en) 1982-05-18 1983-05-18 Wire electrode electrical spark erosion machine
DE19833318090 DE3318090A1 (en) 1982-05-18 1983-05-18 WIRE CUTTING ELECTRIC DISCHARGE DEVICE
IT48313/83A IT1167141B (en) 1982-05-18 1983-05-18 ELECTRIC DISCHARGE MACHINE FOR METAL WIRE TALGIO
KR1019830002173A KR890000124B1 (en) 1982-05-18 1983-05-18 Wire-cut electric discharge machine
FR8308262A FR2527117B1 (en) 1982-05-18 1983-05-18 WORKING FLUID SUPPLY NOZZLE FOR A CUTTING WIRE ELECTRO-EROSION MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082469A JPS58202729A (en) 1982-05-18 1982-05-18 Machining solution jet nozzle for wire-cut electro- discharge machining

Publications (2)

Publication Number Publication Date
JPS58202729A JPS58202729A (en) 1983-11-26
JPH0335048B2 true JPH0335048B2 (en) 1991-05-24

Family

ID=13775363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082469A Granted JPS58202729A (en) 1982-05-18 1982-05-18 Machining solution jet nozzle for wire-cut electro- discharge machining

Country Status (2)

Country Link
JP (1) JPS58202729A (en)
KR (1) KR890000124B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704511A (en) * 1985-10-17 1987-11-03 Inoue-Japax Research Incorporated Traveling-wire electroerosion machine with swiveling nozzle assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134134A (en) * 1980-03-13 1981-10-20 Inoue Japax Res Inc Wire-cutting electric conduction machining apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134134A (en) * 1980-03-13 1981-10-20 Inoue Japax Res Inc Wire-cutting electric conduction machining apparatus

Also Published As

Publication number Publication date
KR890000124B1 (en) 1989-03-08
KR840004882A (en) 1984-10-31
JPS58202729A (en) 1983-11-26

Similar Documents

Publication Publication Date Title
US4704511A (en) Traveling-wire electroerosion machine with swiveling nozzle assembly
US4564431A (en) TW-electroerosion machines with double-floating nozzle assemblies
US4629854A (en) TW-electroerosion with means for regulating flushing liquid in cutting slot
US4611107A (en) Precision TW electroerosion with superimposed multiple opening guides
US4479045A (en) Traveling-wire electroerosive cutting method and apparatus
JPH0335048B2 (en)
JPH0126807B2 (en)
WO1999061191A1 (en) Wire electric discharge machine
JPS59166426A (en) Nozzle device for wire cutting by electric discharge machining
JPH0313012B2 (en)
JPS62287931A (en) Wire cut electric spark machine
JP2571053B2 (en) Machining fluid supply device for wire electric discharge machine
JPH0258045B2 (en)
JPS62124822A (en) Wire cut electric spark machine
JPS59152026A (en) Device of feeding machining liquid for wire cut electric discharge machine
JPH0460767B2 (en)
JPS59166424A (en) Nozzle device for wire cutting by electric discharge machining
JPS5843210B2 (en) Wire
JPS59196129A (en) Nozzle apparatus for wire-cut electrical discharge machining
JPH0657370B2 (en) Machining fluid supply nozzle device for wire cut electric discharge machine
JPH06723A (en) Fine hole electric discharge machining device
JPS62203719A (en) Machining fluid jetting nozzle for wire cut
JPS63251123A (en) Processing liquid injecting device for wire cut electric discharge machining equipment
JPS59182030A (en) Wire cut electric discharge machining device
JPS6144532A (en) Wire-cut electric discharge machining