JPS6250251B2 - - Google Patents

Info

Publication number
JPS6250251B2
JPS6250251B2 JP4095183A JP4095183A JPS6250251B2 JP S6250251 B2 JPS6250251 B2 JP S6250251B2 JP 4095183 A JP4095183 A JP 4095183A JP 4095183 A JP4095183 A JP 4095183A JP S6250251 B2 JPS6250251 B2 JP S6250251B2
Authority
JP
Japan
Prior art keywords
machining
nozzle
machining fluid
workpiece
wire electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4095183A
Other languages
Japanese (ja)
Other versions
JPS59166426A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP4095183A priority Critical patent/JPS59166426A/en
Priority to IT8447835A priority patent/IT1199089B/en
Priority to US06/587,923 priority patent/US4575603A/en
Priority to GB08406388A priority patent/GB2138341B/en
Priority to DE19843408985 priority patent/DE3408985C2/en
Priority to FR8403771A priority patent/FR2545396B1/fr
Publication of JPS59166426A publication Critical patent/JPS59166426A/en
Publication of JPS6250251B2 publication Critical patent/JPS6250251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/101Supply of working media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、ワイヤ電極を挿通する一対の加工液
噴射ノズルを相対向させ、両ノズル間に介在させ
る被加工物とワイヤ電極との間に間欠的な電圧パ
ルスを印加し、かつ両ノズルから加工部に向けて
加圧された加工液を噴出するワイヤカツト放電加
工用ノズル装置に係り、特に高速カツトに適した
噴流ガイド手段を有するものに関する。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a pair of machining fluid injection nozzles through which a wire electrode is inserted are opposed to each other, and intermittent voltage pulses are applied between the wire electrode and a workpiece interposed between both nozzles. The present invention also relates to a nozzle device for wire cut electric discharge machining which spouts pressurized machining fluid toward a machining section from both nozzles, and particularly to one having a jet guide means suitable for high-speed cutting.

ワイヤカツト放電加工において、高速加工を行
うには、加工部分の加工液圧、又は流速さらには
流量を高くし、加工部における泡の発生や外部か
らの空気気泡の巻込み流入を少なくすると共に、
加工部分における液流を多くして、気中放電の発
生の防止、加工屑の高速排除と共にワイヤ電極の
断線事故防止のためその温度を低く保つことが必
要である。本発明は、高速加工を可能とするため
に、加工溝を経て加工部から外部へ漏れる加工液
の量を少なくし、もつて加工部の加工液流量、圧
力を増大させたワイヤカツト放電加工用ノズル装
置を提供することを目的とする。
In wire cut electric discharge machining, in order to perform high-speed machining, it is necessary to increase the machining fluid pressure, flow rate, and flow rate in the machining part to reduce the generation of bubbles in the machining part and the entrainment of air bubbles from the outside.
It is necessary to increase the flow of liquid in the machined part and keep the temperature low in order to prevent the occurrence of air discharge, to remove machined debris at high speed, and to prevent wire electrode breakage accidents. The present invention is a wire cut electric discharge machining nozzle that reduces the amount of machining fluid that leaks from the machining section to the outside through the machining groove, thereby increasing the machining fluid flow rate and pressure in the machining section, in order to enable high-speed machining. The purpose is to provide equipment.

この目的を達成するため、本発明においては、
前記一対の加工液噴射ノズルを、その加工液噴射
圧力、流速、又は流量等(以後「加工液噴射圧力
等」と言う。)を互に異ならせて構成配置したも
のに於て、前記加工液噴射圧力等が他方に対し
て、低く設定された側の一方の加工液噴射ノズル
の周囲に、磁性材でなる被加工物に吸着する磁石
を埋め込んだ可撓性材料でなり、かつ該ノズル近
傍に前記加工液噴射圧力等が前記一方の加工液噴
射ノズルのそれに対して高く設定された他方の加
工液噴射ノズルから加工部加工間隙及び加工済加
工溝を介して被加工物上面迄上昇して来た加工液
を通過させる加工液通過部を有するパツドを設け
たことを特徴とする。尚、前記一方及び他方の加
工液噴射ノズルとは一対の位置決めガイド間の加
工部ワイヤ電極の軸が水平線とほゞ一致する状態
でワイヤ電極が更新走行する形式のワイヤカツト
放電加工装置に於ては、被加工物の左右両側の何
れのノズルが一方及び他方の何れに該当しても良
いが、前記一対の位置決めガイド間の加工部ワイ
ヤ電極の軸が鉛直線とほゞ一致する状態でワイヤ
電極が更新走行する形式のワイヤカツト放電加工
装置に於ては、通常被加工物の下部側に設けられ
る加工液噴射ノズルが、上記他方の、即ち加工液
噴射圧力等が一方(被加工物上部側ノズル)に対
して高く設定された加工液噴射ノズルに該当す
る。
In order to achieve this objective, in the present invention,
In the case where the pair of machining fluid injection nozzles are configured and arranged so that the machining fluid jetting pressure, flow rate, flow rate, etc. (hereinafter referred to as "machining fluid jetting pressure, etc.") are different from each other, the machining fluid is It is made of a flexible material in which a magnet made of a magnetic material that attracts the workpiece is embedded around one machining liquid injection nozzle on the side where the injection pressure etc. are set lower than the other, and in the vicinity of the nozzle. The machining fluid injection pressure, etc. rises from the other machining fluid injection nozzle, which is set higher than that of the one machining fluid injection nozzle, to the upper surface of the workpiece through the machining part machining gap and the machined machining groove. It is characterized by providing a pad having a machining fluid passage section through which the incoming machining fluid passes. Note that the one and the other machining fluid injection nozzles are used in a wire cut electric discharge machining device in which the wire electrode is updated while the axis of the machining part wire electrode between a pair of positioning guides substantially coincides with the horizontal line. , either nozzle on the left or right side of the workpiece may correspond to one or the other, but the wire electrode is connected in a state in which the axis of the wire electrode of the processing section between the pair of positioning guides substantially coincides with the vertical line. In a wire-cut electrical discharge machining device in which the machine moves for renewal, the machining fluid injection nozzle normally installed on the lower side of the workpiece is connected to the other side, that is, the machining fluid injection pressure is applied to one side (the nozzle on the upper side of the workpiece ) corresponds to a machining fluid injection nozzle that is set high.

以下本発明の詳細を図面に示す実施例により説
明する。第1図ないし第3図は本発明の一実施例
であり、第1図において、1はワイヤ電極、2,
3は該ワイヤ電極1のガイドローラ4,5を取付
けた上アームおよび下アームであり、これらは図
示しない装置本体に取付けられる。6,7は手動
ハンドルまたはモータ8,9によつて上下位置調
節可能にアーム2,3に取付けられた支持部材、
10は該支持部材6に取付けられ、耐摩性で通常
は絶縁性の押付ピン10′により押圧変位したワ
イヤ電極1と接触することによりワイヤ電極1に
電圧を印加する上部通電装置としての通電ピン、
11は下部ガイドローラを兼用する下部通電装置
としての通電ローラであつて、ワイヤカツト放電
加工に供されたワイヤ電極1と接触して通電する
ものであるため、上部の清浄ワイヤ電極1に対す
る固定通電ピン10に対して回転ローラとしたも
のであつて、接触面積を大きくするためにピン1
0に対して充分径が大きく、また通電ローラ11
に対するワイヤカツト放電加工電源からの通電
は、ローラ11又は該ローラ11の回転軸に対す
るブラツシ通電により行なわれている。12,1
3はそれぞれ支持部材6,7に微小位置調整可能
に、または固定して取付けられた中空円筒状のノ
ズル本体であり、これらのノズル本体12,13
の上下端面にはそれぞれ開口部14,15および
16,17が形成され、これらの開口部14〜1
7はノズル本体12,13のほぼ中心軸線部に形
成されていて、前記ガイドローラ4,5間のワイ
ヤ電極1がほゞ鉛直、かつ直線状で同軸状に挿通
するような位置関係に配置されている。さらにノ
ズル本体12,13の内部には、上下位置決めガ
イド18,19のガイドホルダ20,21が同軸
状にそれぞれ固設してあり、また上方のノズル本
体12の下端開口部15と、下方のノズル本体1
3の上端開口部17には、それぞれノズル22,
23が互いに対向するように同軸状に固設、また
は図示例のように軸方向に移動自在に嵌設されて
いる。前記ガイドホルダ20,21はノズル本体
12,13内加工液が流通する孔20a,21a
を有する中空の筒体であり、先端部にはダイス状
位置決めガイド18,19が取付けられ、これら
のガイド18,19によつてノズル22,23間
に介在させる被加工物24の上部及び下部におけ
るワイヤ電極1の加工部27の位置決めを行なつ
ている。また、この例のノズル22,23は、所
望の軸方向長さ内径および軸方向内径絞りを有す
る中空円筒状体であり、ノズル本体12,13内
のフランジ部22a,23aの外径はノズル本体
12,13の先端部の内径とほぼ等しく形成さ
れ、これのフランジ22a,23aによつてノズ
ル本体12,13からの脱落を防いでいる。
The details of the present invention will be explained below with reference to embodiments shown in the drawings. 1 to 3 show an embodiment of the present invention. In FIG. 1, 1 is a wire electrode, 2,
Reference numeral 3 denotes an upper arm and a lower arm to which guide rollers 4 and 5 of the wire electrode 1 are attached, and these are attached to the main body of the apparatus (not shown). Support members 6 and 7 are attached to the arms 2 and 3 so that their vertical positions can be adjusted by manual handles or motors 8 and 9;
10 is an energizing pin as an upper energizing device that is attached to the support member 6 and applies a voltage to the wire electrode 1 by contacting the wire electrode 1 pressed and displaced by a wear-resistant and usually insulating pressing pin 10';
Reference numeral 11 denotes a current-carrying roller as a lower current-carrying device that also serves as a lower guide roller, and since it is energized by contacting with the wire electrode 1 subjected to wire cut electrical discharge machining, it is a fixed current-carrying pin for the upper clean wire electrode 1. 10 is a rotating roller, and pin 1 is used to increase the contact area.
The diameter is sufficiently large compared to 0, and the energized roller 11
Electricity is supplied from the wire cut electrical discharge machining power source to the roller 11 or the rotating shaft of the roller 11 by brush electricity. 12,1
Reference numeral 3 designates hollow cylindrical nozzle bodies that are attached to support members 6 and 7 in a finely adjustable or fixed manner, and these nozzle bodies 12 and 13
Openings 14, 15 and 16, 17 are formed in the upper and lower end surfaces of the
7 is formed approximately at the center axis of the nozzle bodies 12 and 13, and is arranged in such a positional relationship that the wire electrode 1 is inserted substantially vertically, linearly, and coaxially between the guide rollers 4 and 5. ing. Furthermore, guide holders 20 and 21 of the upper and lower positioning guides 18 and 19 are coaxially fixed inside the nozzle bodies 12 and 13, respectively, and the lower end opening 15 of the upper nozzle body 12 and the lower nozzle Main body 1
The upper end opening 17 of 3 has nozzles 22 and 3, respectively.
23 are coaxially fixed so as to face each other, or are fitted so as to be movable in the axial direction as shown in the illustrated example. The guide holders 20 and 21 have holes 20a and 21a through which the processing fluid flows within the nozzle bodies 12 and 13.
It is a hollow cylindrical body having a cylindrical body, and dice-shaped positioning guides 18 and 19 are attached to the tip. The processed portion 27 of the wire electrode 1 is being positioned. Further, the nozzles 22 and 23 in this example are hollow cylindrical bodies having a desired axial length, inner diameter, and axial inner diameter restriction, and the outer diameters of the flange portions 22a and 23a within the nozzle bodies 12 and 13 are the same as those of the nozzle bodies. The flanges 22a, 23a prevent the nozzle bodies from falling off from the nozzle bodies 12, 13.

ノズル本体12,13には、加工液の加工供給
ホース25,26がそれぞれ取付けられ、ここか
ら加工液がノズル本体12,13内に所定の圧力
及び流量で供給され、内部の位置決めガイド1
8,19を冷却し、上下のノズル22,23から
被加工物24の加工部27へそれぞれ上方、下方
から噴出されると共に、各ノズル本体12,13
の上端、下端の開口部14,16から噴出して通
電ピン10及び通電ローラ11とワイヤ電極1と
の間にも加工液を供給してワイヤ電極1と通電ピ
ン10及び通電ローラ11を冷却するようになつ
ている。なお、通電ローラ11に対する冷却は、
ノズル22,23から加工部27に噴射した加工
液の流下によりほゞ充分に行なわれる場合には、
ノズル本体13の下端開口16は、ワイヤ電極1
を項度挿通する程度の充分小さなものとするか、
或いはさらにシールしたりすることもある。即ち
後述するように図示実施例の構成のような場合、
下部ノズル23、即ち下部ノズル本体13側の加
工液の供給圧力等が上部のそれよりも高く設定さ
れ、かつその圧力等を保つ必要があることからも
開口16は充分小さく又はシールされたりするの
である。而して下方のノズル本体13につながる
加圧供給ホース26から供給される加工液の圧力
P1は、上方のノズル本体12につながる加圧供給
ホース25から供給される加工液の圧力P2よりも
高く(例えばP1=5〜20Kg/cm2、P2=1〜10Kg/
cm2)設定され、従つてノズル22及び23の開口
径がほゞ同一ならば、加工液の噴流量及び流速も
下方が大きく、重力に抗して下方からの加工液噴
流が上昇するようになつている。この図示実施例
の場合ノズル22及び23は共にノズル本体12
及び13に対してワイヤ電極1の軸方向に可動
で、上側ノズル22は必要に応じて設けられるス
プリング22Aに抗してノズル22先端を被加工
物24表面に押し付けるか、微小間隙Gを保つよ
うに加工液がノズル本体12内に所定の圧力等で
供給されてノズル22をピストン的に突出せし
め、他方下側ノズル23はノズル本体13内に供
給され、ノズル23から噴出する加工液の噴射圧
力等により、該ノズル23の先端が被加工物24
の下面に完全に加圧当接する状態とし、ノズル2
3の噴出加工液をノズル23の先端と被加工物2
4の下面との当接部分から出来るだけ周囲に漏洩
噴出しないように、或いはまた前記当接部分から
噴出加工液中に空気を吸い込まないように為され
るものである。而して、ノズル23或いはさらに
ノズル22の被加工物24への加圧当接により加
工送りのための相対移動を阻害しないようにノズ
ル22及び23は通常合成樹脂又は合成樹脂を被
覆したもの、さらには好ましくは電気絶縁性で低
摩擦性の合成樹脂等が用いられ、またさらにノズ
ル23の噴射開口にシールのための可撓弾性体の
Oリングが設けられたりするものである。
Machining fluid machining supply hoses 25 and 26 are attached to the nozzle bodies 12 and 13, respectively, from which machining fluid is supplied into the nozzle bodies 12 and 13 at a predetermined pressure and flow rate, and the internal positioning guide 1
8, 19 are cooled and ejected from the upper and lower nozzles 22, 23 to the processing portion 27 of the workpiece 24 from above and below, respectively, and each nozzle body 12, 13
The machining fluid is jetted out from the openings 14 and 16 at the upper and lower ends and is also supplied between the energizing pin 10 and the energizing roller 11 and the wire electrode 1 to cool the wire electrode 1, the energizing pin 10, and the energizing roller 11. It's becoming like that. Note that the cooling for the energizing roller 11 is as follows:
If the machining liquid is sufficiently flown down from the nozzles 22 and 23 to the machining section 27,
The lower end opening 16 of the nozzle body 13 is connected to the wire electrode 1
be small enough to be inserted through it, or
Or it may be further sealed. That is, as will be described later, in the case of the configuration of the illustrated embodiment,
Since the supply pressure of the machining fluid at the lower nozzle 23, that is, the lower nozzle body 13 side, is set higher than that at the upper part, and it is necessary to maintain this pressure, the opening 16 is made sufficiently small or sealed. be. Therefore, the pressure of the machining fluid supplied from the pressurized supply hose 26 connected to the lower nozzle body 13
P 1 is higher than the pressure P 2 of the machining fluid supplied from the pressurized supply hose 25 connected to the upper nozzle body 12 (for example, P 1 = 5 to 20 Kg/cm 2 , P 2 = 1 to 10 Kg/cm 2 ).
cm 2 ), and therefore, if the opening diameters of the nozzles 22 and 23 are approximately the same, the jet amount and flow velocity of the machining fluid will also be larger at the bottom, so that the jet of machining fluid from below will rise against gravity. It's summery. In this illustrated embodiment, the nozzles 22 and 23 are both connected to the nozzle body 12.
and 13, the upper nozzle 22 is movable in the axial direction of the wire electrode 1, and the upper nozzle 22 presses the tip of the nozzle 22 against the surface of the workpiece 24 against a spring 22A provided as necessary, or maintains a minute gap G. The machining fluid is supplied into the nozzle body 12 at a predetermined pressure or the like to cause the nozzle 22 to protrude like a piston, while the lower nozzle 23 is supplied into the nozzle body 13 to maintain the injection pressure of the machining fluid jetted out from the nozzle 23. etc., the tip of the nozzle 23 is connected to the workpiece 24.
Nozzle 2 is placed in a state where it is in complete pressure contact with the lower surface of nozzle 2.
3. Spray the machining fluid onto the tip of the nozzle 23 and the workpiece 2.
This is done so as to prevent leakage and spouting from the contact portion with the lower surface of the fluid to the surroundings as much as possible, or to prevent air from being sucked into the jetted machining fluid from the contact portion. Therefore, the nozzles 22 and 23 are usually made of synthetic resin or are coated with synthetic resin so that the relative movement for processing feed is not inhibited by pressure contact of the nozzle 23 or the nozzle 22 with the workpiece 24. More preferably, electrically insulating and low-friction synthetic resin or the like is used, and an O-ring made of a flexible elastic body is provided at the injection opening of the nozzle 23 for sealing.

また、被加工物24は、加工テーブル31に固
定され、加工テーブル31はモータ32,33に
よつてワイヤ電極1の軸と直角な平面上を数値制
御装置による制御の下に所定の輪郭形状等に沿つ
て自在に移動できるようになつている。また、ワ
イヤ電極1は、図示しない装置本体のカラム等に
設けた貯蔵リールからブレーキローラ等を介して
繰り出され、上方のアーム2のガイドローラ4を
介して下方へ延び、下方のアーム3のガイドロー
ラ5を介して図示しない巻取りローラを経てカラ
ム本体等の巻取りリールまたは回収容器に巻取り
または回収されるようになつている。そして、被
加工物24とワイヤ電極1との間に間欠的な電圧
パルスを印加し放電加工を行うものである。
Further, the workpiece 24 is fixed to a processing table 31, and the processing table 31 is moved by motors 32 and 33 on a plane perpendicular to the axis of the wire electrode 1 to a predetermined contour shape etc. under the control of a numerical controller. It is now possible to move freely along the Further, the wire electrode 1 is unwound from a storage reel provided in a column or the like of the apparatus main body (not shown) via a brake roller, etc., extends downward via a guide roller 4 of an upper arm 2, and is guided by a lower arm 3. The material is wound up or collected via the roller 5 and a take-up roller (not shown) onto a take-up reel such as a column body or a collection container. Then, intermittent voltage pulses are applied between the workpiece 24 and the wire electrode 1 to perform electrical discharge machining.

しかして本発明においては、加工液噴射圧力等
が他方に対して低く設定されている一方のノズル
となる上ノズル22の周囲に、図示実施例ではワ
イヤ電極1の引き込み側で、前記一方のノズルに
対し加工液噴射圧力等が高く設定されている他方
のノズルとなる下ノズル23からのワイヤ電極1
に沿う同軸状の加工液噴流が点線39で示すよう
に被加工物24に形成された加工溝30から加工
部27より離れた所に流れて外部に漏れることを
防ぎ、加工部27に充分な圧力で、所定の流速及
び流量の加工液が流れるように、磁性材からな
り、被加工物24に吸着する片状、条片状、短い
棒又は角柱状、板状、粒子状、または粉末状、或
いは之等の混合体の磁石34(例えば第3図参
照)を埋め込むか混合したゴムや軟質合成樹脂等
の可撓性材料35でなる通常上ノズル22の外径
よりも充分大径の大凡円板をしたパツド36を設
ける。該パツド36は、第2図にも示すように円
形をなし、中心の筒状取付部36aをノズル22
の下部に嵌合し、締付バンド37およびその両端
のつば37aの穴に挿通してナツト(図示せず)
に螺合したボルト38によりノズル22に締付け
固定するようになつており、ノズル22の近傍に
は加工液通過部となる複数個の穴36bを円周方
向に分割して形成配設してなる。
Therefore, in the present invention, in the illustrated embodiment, on the drawing side of the wire electrode 1, the one nozzle is The wire electrode 1 from the lower nozzle 23, which is the other nozzle, has a higher machining fluid injection pressure, etc.
This prevents the coaxial jet of machining fluid along the dotted line 39 from flowing from the machining groove 30 formed in the workpiece 24 to a location away from the machining section 27 and leaking to the outside, thereby providing sufficient water to the machining section 27. A piece, strip, short rod, prism, plate, particle, or powder made of a magnetic material and adsorbed to the workpiece 24 so that the machining fluid flows at a predetermined flow rate and flow rate under pressure. , or a flexible material 35 such as rubber or soft synthetic resin in which a magnet 34 (for example, see FIG. 3) of a mixture of the above and the like is embedded or mixed. A pad 36 in the form of a disc is provided. The pad 36 has a circular shape as shown in FIG.
and insert it into the holes in the tightening band 37 and the flanges 37a at both ends of the tightening band 37 and tighten the nut (not shown).
It is designed to be tightened and fixed to the nozzle 22 by a bolt 38 screwed into the nozzle 22, and a plurality of holes 36b are formed and arranged in the circumferential direction in the vicinity of the nozzle 22 to serve as a machining fluid passage section. .

このようなパツド36を設ければ、該パツド3
6を含みかつ可撓性を有するために被加工物24
の上面に吸着してパツド36の外径の範囲にわた
つて加工溝30の上面部を塞ぐため、点線39に
示すように加工溝30中の加工部27から離れた
所を通つて漏れていた加工液がパツド36に阻ま
れ、実線40に示すように穴36bから流出され
るようになる。
If such a pad 36 is provided, the pad 3
6 and has flexibility, the workpiece 24
Because it adsorbs to the upper surface and closes the upper surface of the machined groove 30 over the range of the outer diameter of the pad 36, it leaks through the part of the machined groove 30 away from the machined part 27, as shown by the dotted line 39. The machining fluid is blocked by the pad 36 and flows out from the hole 36b as shown by the solid line 40.

即ち、加工液噴射圧力等が高い下ノズル23か
らの加工液噴流で被加工物24上面に迄達した加
工液には、当然加工溝30側に流出するものが少
なくないものゝ、パツド36面に押さえられて穴
36bから上部へ噴出するように流出する加工液
の流れも形成され、これがため加工部27近傍の
加工液噴射圧力等を高めることができるものであ
る。このような加工液の流れを作ることにより、
ワイヤ電極1のまわりの加工部27の加工液の液
圧を高くし、かつ流速、流量を大きくすることが
できるため、、加工部27およびワイヤ電極1の
温度が下がり、同一材質及び同一径のワイヤ電極
1で従来よりも平均加工電流を増すことができ高
速で加工が行えるようになり、かつ泡の発生や空
気の吸込みによるワイヤ電極の切断のような事故
発生のおそれも少なくなる。
That is, in the machining fluid that reaches the upper surface of the workpiece 24 due to the machining fluid jet from the lower nozzle 23 where the machining fluid injection pressure is high, there is naturally a considerable amount of machining fluid that flows out to the machining groove 30 side. A flow of the machining fluid flowing out from the hole 36b is also formed as if being pressed by the hole 36b, so that the machining fluid injection pressure in the vicinity of the machining portion 27 can be increased. By creating this flow of processing fluid,
Since the pressure of the machining fluid in the machining section 27 around the wire electrode 1 can be increased and the flow rate and flow rate can be increased, the temperature of the machining section 27 and the wire electrode 1 can be lowered, and With the wire electrode 1, the average machining current can be increased compared to the conventional method, and machining can be performed at high speed, and there is less risk of accidents such as the generation of bubbles or the wire electrode being cut due to the suction of air.

第4図はある電極、被加工物条件における加工
液流量とワイヤ電極温度との関係を示す図であ
り、この図から分るように、加工液流量を増加さ
せると共にワイヤ電極1と有効に接触させればワ
イヤ電極の温度を大幅に変えることができ、この
ことから、加工部27における加工液流量を増や
すことによつてワイヤ電極温度を低下させうるこ
とが理解できる。また、第5図は加工液の液圧
(ノズル本体13内圧力で噴射圧力、なおノズル
本体13内の加工液圧力は、前記本体12内の
1.5〜5倍に設定される。)と加工部における泡の
発生量との関係を平均加工電流を10A,15
A,18Aと変えた場合について示すもので、液
圧を上げることにより泡の発生が抑えられ、この
ことから、本発明のように加工部における加工液
の圧力の上昇を図ることにより、泡の発生量を少
なくして加工速度を上げると共に、ワイヤ電極切
断の可能性を小とすることができることが理解さ
れる。
Figure 4 is a diagram showing the relationship between machining fluid flow rate and wire electrode temperature under certain electrode and workpiece conditions.As can be seen from this figure, as the machining fluid flow rate increases, effective contact with wire electrode 1 is made. If the temperature of the wire electrode is increased, the temperature of the wire electrode can be changed significantly, and it can be understood from this that the temperature of the wire electrode can be lowered by increasing the flow rate of the machining fluid in the machining section 27. In addition, FIG. 5 shows the hydraulic pressure of the machining fluid (the injection pressure is the pressure inside the nozzle body 13, and the machining fluid pressure inside the nozzle body 13 is the pressure inside the main body 12).
It is set to 1.5 to 5 times. ) and the amount of bubbles generated in the machining part.
This shows the case where A and 18A are changed.Increasing the fluid pressure suppresses the generation of bubbles.Therefore, by increasing the pressure of the machining fluid in the machining part as in the present invention, the generation of bubbles can be suppressed. It is understood that it is possible to increase the machining speed by reducing the amount generated and to reduce the possibility of wire electrode breakage.

第6図および第7図は本発明の他の実施例であ
り、本実施例は、パツド36′として全周にわた
つて液通過部を設けず、平板部のある一定の範囲
にわたつて切除部36b′を設けると共に、ノズル
本体を前記加圧送給ホース25を接続した上半部
12aとガイドホルダ20およびノズル22を取
付けた下半部12bとに分け、両者を回動可能に
結合したものである。すなわち、上半部12aの
下部はコ字形断面をなすように形成し、該コ字形
部42に断面L字形のリング状をなす結合部材4
3をシール部材50を介して嵌合し、結合部材4
3の下部を下半部12bの上部に形成したL字形
部51にビス52等によつて結合することによ
り、上半部12aと下半部12bとを相互に回動
可能に結合し、上半部12aには出力歯車54を
有するモータ53を取付け、結合部材43に嵌着
した外歯歯車55を該モータ53の出力歯車54
に噛合させ、モータ53を正送に回転駆動するこ
とにより、下半部12bが上半部12aに対して
回動し、これによつてパツド36′の切除部36
b′の向きが変えられるようにしたものである。ノ
ズル22のつば22aには溝60が形成され、該
溝60がノズルホルダの下半部12bの内壁に縦
向きに設けたキー61に摺動自在に嵌合されるこ
とにより、ノズル22は下半部12bに対して回
り止めされている。なお、ノズルホルダ20は上
半部12a側に設けられても良い。
FIGS. 6 and 7 show other embodiments of the present invention. In this embodiment, a pad 36' does not have a liquid passage part over the entire circumference, but a certain range of the flat plate part is cut away. The nozzle body is divided into an upper half 12a to which the pressurized feed hose 25 is connected and a lower half 12b to which the guide holder 20 and nozzle 22 are attached, and the two are rotatably connected. It is. That is, the lower part of the upper half portion 12a is formed to have a U-shaped cross section, and the connecting member 4 having a ring shape and an L-shaped cross section is attached to the U-shaped portion 42.
3 through the seal member 50, and the connecting member 4
By connecting the lower part of 3 to the L-shaped part 51 formed on the upper part of the lower half part 12b with a screw 52 or the like, the upper half part 12a and the lower half part 12b are mutually rotatably connected. A motor 53 having an output gear 54 is attached to the half part 12a, and an external gear 55 fitted to the coupling member 43 is attached to the output gear 54 of the motor 53.
By engaging the motor 53 and rotating the motor 53 in the forward direction, the lower half 12b rotates with respect to the upper half 12a, whereby the cutout 36 of the pad 36' is rotated.
The direction of b' can be changed. A groove 60 is formed in the collar 22a of the nozzle 22, and the groove 60 is slidably fitted into a key 61 vertically provided on the inner wall of the lower half 12b of the nozzle holder, so that the nozzle 22 can be moved downward. It is prevented from rotating relative to the half portion 12b. Note that the nozzle holder 20 may be provided on the upper half portion 12a side.

この構成において、数値制御装置によつて現地
点の加工部の溝の向きに切除部36b′が位置する
ようにモータ53を駆動することにより、下ノズ
ル23から加工間隙又はその近傍加工部と加工溝
30を経て上部に向かう噴流は、第7図の矢印5
6に示すように加工方向の前方に向かい、ノズル
22の先端の周辺部を経て矢印57で示すように
切除部36b′から排出されるので、下ノズル23
からの噴流58は加工部27に押し込まれ、加工
部27における加工液流量、圧力を前記実施例以
上に増大させることができる。
In this configuration, by driving the motor 53 by the numerical control device so that the cutting part 36b' is positioned in the direction of the groove of the machined part at the current point, the lower nozzle 23 is connected to the machined part in the machining gap or the vicinity thereof. The jet flowing upward through the groove 30 is directed by arrow 5 in FIG.
6, the lower nozzle 23
The jet stream 58 is pushed into the machining section 27, and the flow rate and pressure of the machining fluid in the machining section 27 can be increased more than in the embodiments described above.

第8図および第9図は本発明の他の実施例であ
り、本実施例は、下ノズルの構造が第1図の実施
例と異なつており、先ず、上ノズル部は、加工液
噴射ノズル22′がノズル本体12と一体の固定
ノズルであるから、ノズル本体12、従つてノズ
ル22′の先端の位置を支持部材6の調整によ
り、ノズル22′先端が被加工物24上面に微小
間隔を置いて位置するか、軽く当接するように位
置決めされる。また本実施例の下ノズル23′
は、ワイヤ電極1と同軸の、通常最も加工液噴射
圧力等が高いメイン噴流58を発生させるメイン
ノズル44と、メイン噴流58が、上ノズル2
2′による噴流加工液、加工部27の被加工物2
4切断面及び当該部分のワイヤ電極1が加工の進
方向の既加工済溝側に突弧状、又は弓状になつた
状態で加工が進行していることによる形状効果、
及び鉛直方向の上昇流であることから重力によつ
て曲がることを防ぐアシスト噴流59をメイン噴
流58の周りに、即ち同軸状に包皮した同軸噴流
として発生させるサブノズル45からなる。ま
た、この実施例では、メインノズル44による加
工液噴射圧力等の高い状態での加工液噴流を容易
に可能とするように、下ノズル本体13′の開口
16をガイド19の筒状ガイドホルダ21′によ
つて塞いだ状態、即ちガイドホルダ21′の外周
に穴21aは無く、ワイヤ電極1のガイド19の
ダイスとの微小隙間から微小量の加工液が、ホル
ダ21′内から通電ローラ11側へ漏れる外は、
下ノズル本体13′内に供給された加圧加工液は
全てメインノズル44から加工部27へとワイヤ
電極1に同軸状に沿つて噴射させられる。サブノ
ズル45は下ノズル本体13′に対して前記ノズ
ル23と同様に、可動のメインノズル44に、先
端開口をほゞ同一、又は加工目的等に応じて一方
が他方に対して僅かに引込んだ状態に固設され、
周囲にサブノズル内部へ加工液を供給する加圧供
給ホース46を好ましくは複数個放散同形に接続
してある。
FIGS. 8 and 9 show other embodiments of the present invention. In this embodiment, the structure of the lower nozzle is different from the embodiment shown in FIG. Since 22' is a fixed nozzle that is integrated with the nozzle body 12, by adjusting the position of the nozzle body 12, and therefore the tip of the nozzle 22', using the support member 6, the tip of the nozzle 22' can be placed at a minute distance from the upper surface of the workpiece 24. It is positioned so that it is placed or lightly abutting it. In addition, the lower nozzle 23' of this embodiment
The main nozzle 44 is coaxial with the wire electrode 1 and generates a main jet 58 which normally has the highest machining fluid injection pressure, etc., and the main jet 58 is connected to the upper nozzle 2.
Jet machining liquid by 2', workpiece 2 in machining section 27
4. Shape effect due to machining progressing with the cut surface and the wire electrode 1 of the relevant part becoming arcuate or arch-shaped toward the already machined groove side in the direction of machining progress;
and a sub-nozzle 45 that generates an assist jet 59 around the main jet 58, which prevents it from bending due to gravity because it is an upward flow in the vertical direction, that is, as a coaxial jet wrapped around the main jet 58. Furthermore, in this embodiment, the opening 16 of the lower nozzle body 13' is connected to the cylindrical guide holder 21 of the guide 19 so that the main nozzle 44 can easily jet the machining fluid under high machining fluid jet pressure. ', that is, there is no hole 21a on the outer periphery of the guide holder 21', and a minute amount of machining fluid flows from the inside of the holder 21' to the energizing roller 11 side through the minute gap between the guide 19 of the wire electrode 1 and the die. Outside of leaking into
All of the pressurized machining fluid supplied into the lower nozzle body 13' is injected from the main nozzle 44 to the machining section 27 coaxially with the wire electrode 1. The sub-nozzle 45 has a movable main nozzle 44 similar to the nozzle 23 with respect to the lower nozzle body 13', and has a tip opening that is substantially the same, or one of which is slightly recessed relative to the other depending on the processing purpose. fixed in the state,
Preferably, a plurality of pressurized supply hoses 46 for supplying machining fluid to the inside of the sub-nozzle are connected around the sub-nozzle in the same shape.

この構成において、下ノズル本体13′からメ
インノズル44内へ加圧供給ホース26から供給
する加工液の圧力を例えば10〜20Kg/cm2、サブノ
ズル45内へ加圧供給ホース46から供給する加
工液の圧力を例えば5〜9Kg/cm2、また上ノズル
本体12から上ノズル22′内へ加圧供給ホース
25から供給する加工液の圧力を例えば3〜10
Kg/cm2に設定して加工を行い、メインノズル44
からのメイン噴流58をサブノズル45からのア
シスト噴流59によつて支えることにより、メイ
ン噴流58の倒れ(曲がり)が防止され、加工部
27における加工液の圧力、流量共に増加し、前
記実施例以上に加工速度を上げることができる。
この場合、下ノズル23′はメインノズル44に
必要に応じて設けたフランジ部44a等の作用に
より、下ノズル本体13′から突出して、メイン
ノズル44及びサブノズル45の各先端を被加工
物24の下面に押し付けるようにして加工液を噴
射するが、前記各ノズル先端と被加工物24下面
との近接又は接触状態は、例えばメインノズル4
4の液圧を高めて行くと或る液圧値でノズル先端
と被加工物下面とが密着するものゝ、さらに液圧
を高くして行くと或る液圧値で、ノズル先端と被
加工物下面との間に微小隙間が形成されるように
なる等、ノズル22′,44、及び45の加工液
噴射圧力の設定相互関係や、被加工物24の板
厚、加工溝を変化させる加工条件、及び加工の途
中に於ける加工輪郭形状(ノズル22′,44、
及び45の開口面に相対向する加工溝の合計の面
積)の変化等によつても、微小離隔した状態か
ら、少し強く加圧当接した状態迄種々変化する
が、前述実施例の構成配置で、前記各ノズル2
2′,44、及び45に於ける加工液噴射圧力等
の高低の値を前述の如き関係に設定しておくこと
により、加工平均電流を増大させてワイヤ電極1
の断線事故なく高速加工を安定に継続させること
ができる。なお、第10図に示すように、サブノ
ズル45に接続する加圧供給ホース46によるノ
ズル45内加工液噴射流入の向きを、サブノズル
45の中心から外れた方向として施回流を生じさ
せることにより、アシスト噴流59がむらなく噴
出され、圧力の偏よりが防がれる。
In this configuration, the pressure of the machining fluid supplied from the pressurized supply hose 26 from the lower nozzle body 13' into the main nozzle 44 is set to, for example, 10 to 20 Kg/cm 2 , and the machining fluid supplied from the pressurized supply hose 46 into the sub nozzle 45. The pressure of the machining fluid supplied from the pressurized supply hose 25 from the upper nozzle main body 12 into the upper nozzle 22' is set to, for example, 3 to 10 kg/cm 2 .
Kg/cm 2 is set to perform processing, and the main nozzle 44
By supporting the main jet 58 from the sub-nozzle 45 by the assist jet 59 from the sub-nozzle 45, the main jet 58 is prevented from collapsing (bending), and both the pressure and flow rate of the machining fluid in the machining section 27 are increased, which is better than the embodiment described above. machining speed can be increased.
In this case, the lower nozzle 23' protrudes from the lower nozzle body 13' due to the action of the flange portion 44a provided as necessary on the main nozzle 44, and the tips of the main nozzle 44 and the sub nozzle 45 are attached to the workpiece 24. The machining fluid is injected by pressing it against the lower surface, and the state of proximity or contact between the tip of each nozzle and the lower surface of the workpiece 24 is determined by the main nozzle 4, for example.
If you increase the fluid pressure in step 4, the nozzle tip and the bottom surface of the workpiece will come into close contact at a certain fluid pressure value, and if you further increase the fluid pressure, the nozzle tip and the workpiece will come into close contact at a certain fluid pressure value. Machining that changes the relationship between the machining fluid injection pressure settings of the nozzles 22', 44, and 45, the plate thickness of the workpiece 24, and the machining groove, such as a minute gap being formed between the workpiece and the lower surface of the workpiece. conditions, and the machining contour shape (nozzles 22', 44,
45 and the total area of the machined grooves facing the opening surface of 45), the structure and arrangement of the above-mentioned embodiments may vary from a slightly separated state to a slightly strongly pressurized state. Then, each nozzle 2
By setting the high and low values of machining fluid injection pressure, etc. at 2', 44, and 45 in the above-mentioned relationship, the machining average current is increased and the wire electrode 1
High-speed machining can be continued stably without disconnection accidents. As shown in FIG. 10, the direction in which the pressurized supply hose 46 connected to the sub-nozzle 45 injects the machining liquid into the nozzle 45 is directed away from the center of the sub-nozzle 45 to generate a circulating flow. The jet stream 59 is ejected evenly, and uneven pressure is prevented.

上記実施例はいずれも、加工液噴射ノズルと上
下に鉛直対向して設けられた例について説明した
が、両ノズルが水平方向に対向するように配設さ
れる場合も本発明が適用できることは、前述の如
く明らかである。また、加工液噴射圧力等が低い
側の加工液噴射ノズルの側に設けるパツドの構造
としては、実施例のような1枚の部材によつてな
るものではなく、上部の支持部材でゴム板等でな
る下部材を支持する構成してもよく、その構造も
変更しうることは言うまでもない。また、その他
の変更例としては、前記パツドを他方のノズル側
にも同時に取り付けて加工するようにすることも
できるものである。
In all of the above embodiments, an example was described in which the nozzle is vertically opposed to the machining fluid injection nozzle, but the present invention can also be applied to a case where both nozzles are arranged horizontally to face each other. This is obvious as mentioned above. In addition, the structure of the pad provided on the side of the machining fluid injection nozzle on the side where the machining fluid injection pressure is low is not made of a single member as in the embodiment, but is made of an upper support member such as a rubber plate, etc. It goes without saying that the lower member may be configured to support the lower member, and the structure thereof may also be changed. Further, as another modification, the pad may be attached to the other nozzle side at the same time for processing.

以上述べたように、本発明の特徴とするところ
は、前記一対の加工液噴射ノズルを、その加工液
噴射圧力、流速、又は流量等(以後「加工液噴射
圧力等」と言う。)を互に異ならせて構成配置し
たものに於て、前記加工液噴射圧力等が他方に対
して低く設定された側の一方の加工液噴射ノズル
の周囲に、磁性材でなる被加工物に吸着し、加工
液噴射圧力等が前記一方の加工液噴射ノズルのそ
れに対して高く設定された他方の加工液噴射ノズ
ルから加工部加工間隙及び加工済加工溝を介して
被加工物上面迄上昇して来た加工液噴流が被加工
物に加工した溝より漏れることを防ぎ、かつ該一
方の加工液噴射ノズル付近から流出させる磁石を
埋設した可撓性材料でなるパツドを設けたので、
加工部における加工液流量、圧力等が増大すると
共に、泡の発生が抑えられるので、ワイヤカツト
放電加工の加工速度を上げることが可能になると
共に、ワイヤ切断事故の発生を防止することがで
きる。
As described above, the feature of the present invention is that the pair of machining fluid injection nozzles are controlled so that their machining fluid injection pressure, flow rate, flow rate, etc. (hereinafter referred to as "machining fluid injection pressure, etc.") are mutually controlled. In the case where the machining fluid injection pressure, etc. is set to be lower than that of the other machining fluid injection nozzle, the machining fluid is attracted to the workpiece made of a magnetic material, and The machining fluid injection pressure, etc. has risen from the other machining fluid jet nozzle, which is set higher than that of the one machining fluid jet nozzle, to the upper surface of the workpiece through the machining part machining gap and the machined machining groove. A pad made of a flexible material with embedded magnets that prevents the machining fluid jet from leaking from the groove machined in the workpiece and allows it to flow out from the vicinity of one of the machining fluid injection nozzles is provided.
Since the machining fluid flow rate, pressure, etc. in the machining section are increased and the generation of bubbles is suppressed, it is possible to increase the machining speed of wire cut electric discharge machining, and it is also possible to prevent wire cutting accidents from occurring.

また、圧力等の高い側の加工液噴射ノズルを、
ワイヤ電極と同軸のメインノズルと、該メインノ
ズルによりさらに同軸状に包皮して環状加工液噴
射口を形成するサブノズルとにより構成したの
で、メインノズルからのメイン噴流がサブノズル
からのアシスト噴流によつて支えられることによ
り、メイン噴流の倒れが防止され、加工部におけ
る加工液の圧力、流量が共に増加し、加工速度を
さらに上げることができる。
In addition, the machining fluid injection nozzle on the side with higher pressure, etc.
It is composed of a main nozzle that is coaxial with the wire electrode, and a sub-nozzle that is further coaxially enveloped by the main nozzle to form an annular machining fluid injection port. By being supported, the main jet is prevented from collapsing, and the pressure and flow rate of the machining fluid in the machining section are both increased, making it possible to further increase the machining speed.

また、前記磁性パツドが一部に切欠き部を有
し、該切欠き部が前記加工送り方向の先端側にあ
るように前記一方の加工液噴射ノズルの側に於て
ワイヤ電極の軸の廻りに制御回動可能に取り付け
たので、前記切欠き部を加工方向前方に向けて加
工を行うことにより、前記圧力等の高い側の加工
液噴射ノズルから低い側の加工液噴射ノズルへ向
かう噴流を加工方向の前方に向かわせることがで
き、加工液噴流が加工部に押し込まれ、加工部に
おける圧力、流量が共に増加し、加工速度をさら
に上げることができる。
Further, the magnetic pad has a notch in a part, and the magnetic pad is arranged around the axis of the wire electrode on the side of the one machining fluid injection nozzle so that the notch is on the tip side in the machining feed direction. Since the notch is mounted so that it can be rotated in a controlled manner, by performing machining with the notch facing forward in the machining direction, the jet flow is directed from the machining fluid injection nozzle on the side where the pressure is high to the machining fluid injection nozzle on the side where the pressure is low. The machining fluid jet can be directed forward in the machining direction, and the machining fluid jet is forced into the machining section, increasing both the pressure and flow rate in the machining section, thereby further increasing the machining speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のノズル装置の一実施例を示す
縦断面図、第2図は第1図の上ノズル部の斜視
図、第3図は第1図のパツドの断面図、第4図は
加工液流量と電極温度との関係図、第5図は加工
液の液圧と泡発生量との関係図、第6図は本発明
の他の実施例を示す上ノズル部の一部切開斜視
図、第7図はその作用を説明するノズル・ワーク
の断面図、第8図は本発明の他の実施例を示す縦
断面図、第9図はその下ノズルの平面図、第10
図は第9図の変形例図である。 1…ワイヤ電極、22…上ノズル、23,2
3′…下ノズル、24…被加工物、27…加工
部、30…加工溝、36,36′…パツド、36
b…穴、36b′…切除部、44…メインノズル、
45…サブノズル。
FIG. 1 is a longitudinal sectional view showing one embodiment of the nozzle device of the present invention, FIG. 2 is a perspective view of the upper nozzle part of FIG. 1, FIG. 3 is a sectional view of the pad of FIG. 1, and FIG. 4 5 is a diagram showing the relationship between the flow rate of the machining fluid and the electrode temperature, FIG. 5 is a diagram showing the relationship between the fluid pressure of the machining fluid and the amount of bubbles generated, and FIG. 6 is a partial cutaway of the upper nozzle showing another embodiment of the present invention. FIG. 7 is a sectional view of the nozzle work explaining its operation; FIG. 8 is a vertical sectional view showing another embodiment of the present invention; FIG. 9 is a plan view of the nozzle below the nozzle;
The figure is a modification of FIG. 9. 1...Wire electrode, 22...Upper nozzle, 23,2
3'... Lower nozzle, 24... Workpiece, 27... Machining section, 30... Machining groove, 36, 36'... Pad, 36
b...hole, 36b'...excision part, 44...main nozzle,
45...Sub nozzle.

Claims (1)

【特許請求の範囲】 1 一対の間隔を置いて配置した位置決めガイド
間にワイヤ電極を軸方向に更新送り移動せしめつ
つ前記ワイヤ電極の軸方向と直角方向から被加工
物を微小間隙を介して相対向せしめ、該間隙に被
加工物の両側にワイヤ電極と同軸状に相対向して
配置した一対の加工液噴射ノズルから加工液を噴
射供給せしめつつ前記ワイヤ電極と被加工物間に
間歇的な電圧パルスを印加し発生する放電により
加工を行い、前記ワイヤ電極と被加工物間に前記
直角方向の平面上に於ける相対的加工送りを与え
るワイヤカツト放電加工に於て、前記一対の加工
液噴射ノズルはその加工液噴射圧力、流速、又は
流量等(以後「加工液噴射圧力等」と言う。)を
互に異ならせて構成してあつて、前記加工液噴射
圧力等が他方に対して低く設定された側の一方の
加工液噴射ノズル先端の周囲に、該一方の加工液
噴射ノズルの外径よりも充分大きな板状であつ
て、被加工物に吸着する磁石を埋め込んだ可撓性
材料から成り、前記一方のノズル先端の周り近傍
に加工液通過用の穴を有する磁性パツドを設けた
ことを特徴とするワイヤカツト放電加工用ノズル
装置。 2 前記一対の位置決めガイド間の加工部ワイヤ
電極の軸が鉛直線とほぼ一致するワイヤカツト放
電加工であつて、前記一方の加工液噴射ノズルが
被加工物の上部側に設けられたものであることを
特徴とする特許請求の範囲第1項記載のワイヤカ
ツト放電加工用ノズル装置。 3 前記一方及び他方の加工液噴射ノズルの一方
又は両方が、加工液の供給噴射に応じてワイヤ電
極軸方向に進退するノズルを備えて成ることを特
徴とする特許請求の範囲第1項又は第2項何れか
に記載のワイヤカツト放電加工用ノズル装置。 4 一対の間隔を置いて配置した位置決めガイド
間にワイヤ電極を軸方向に更新送り移動せしめつ
つ前記ワイヤ電極の軸方向と直角方向から被加工
物を微小間隙を介して相対向せしめ、該間隙に被
加工物の両側にワイヤ電極と同軸状に相対向して
配置した一対の加工液噴射ノズルから加工液を噴
射供給せしめつつ前記ワイヤ電極と被加工物間に
間歇的な電圧パルスを印加し発生する放電により
加工を行い、前記ワイヤ電極と被加工物間に前記
直角方向の平面上に於ける相対的加工送りを与え
るワイヤカツト放電加工に於て、前記一対の加工
液噴射ノズルはその加工液噴射圧力等を互に異な
らせて構成してあつて、前記加工液噴射圧力等が
他方に対して低く設定された側の一方の加工液噴
射ノズル先端の周囲に、該一方の加工液噴射ノズ
ルの外径よりも充分大きな板状であつて、被加工
物に吸着する磁石を埋め込んだ可撓性材料から成
り、前記一方のノズル先端の周り近傍または周り
に加工液通過用の穴または切欠きを有する磁性パ
ツドを設け、前記他方の加工液噴射ノズルが、ワ
イヤ電極と同軸のメインノズルと、該メインノズ
ルをさらに同軸上に包皮して環状加工液噴射口を
形成するサブノズルとから構成されていることを
特徴とするワイヤカツト放電加工用ノズル装置。 5 一対の間隔を置いて配置した位置決めガイド
間にワイヤ電極を軸方向に更新送り移動せしめつ
つ前記ワイヤ電極の軸方向と直角方向から被加工
物を微小間隙を介して相対向せしめ、該間隙に被
加工物の両側にワイヤ電極と同軸状に相対向して
配置した一対の加工液噴射ノズルから加工液を噴
射供給せしめつつ前記ワイヤ電極と被加工物間に
間歇的な電圧パルスを印加し発生する放電により
加工を行い、前記ワイヤ電極と被加工物間に前記
直角方向の平面上に於ける相対的加工送りを与え
るワイヤカツト放電加工に於て、前記一対の加工
液噴射ノズルはその加工液噴射圧力等を互に異な
らせて構成してあつて、前記加工液噴射圧力等が
他方に対して低く設定された側の一方の加工液噴
射ノズル先端の周囲に、該一方の加工液噴射ノズ
ルの外径よりも充分大きな板状であつて、被加工
物に吸着する磁石を埋め込んだ可撓性材料から成
る磁性パツトを設け、該磁性パツドが一部に切欠
き部を有し、該切欠き部が前記加工送り方向の先
端側にあるように前記一方の加工液噴射ノズルの
側に於てワイヤ電極の軸の廻りに制御回動可能に
取り付けられていることを特徴とするワイヤカツ
ト放電加工用ノズル装置。
[Scope of Claims] 1. While a wire electrode is updated and moved in the axial direction between a pair of positioning guides arranged at intervals, a workpiece is moved relative to the workpiece from a direction perpendicular to the axial direction of the wire electrode through a minute gap. The machining fluid is injected into the gap from a pair of machining fluid injection nozzles disposed coaxially with and opposite to the wire electrode on both sides of the workpiece. In wire cut electric discharge machining, machining is performed by electric discharge generated by applying a voltage pulse, and a relative machining feed is provided between the wire electrode and the workpiece on the plane in the orthogonal direction, the pair of machining fluids are sprayed. The nozzles are configured with different machining fluid injection pressures, flow velocities, flow rates, etc. (hereinafter referred to as "machining fluid injection pressures, etc."), and the machining fluid injection pressures, etc. are lower than those of the other nozzles. A flexible material having a plate shape that is sufficiently larger than the outer diameter of the one machining fluid jet nozzle and embedded with a magnet that attracts the workpiece around the tip of one of the machining fluid jet nozzles on the set side. A nozzle device for wire cut electric discharge machining, characterized in that a magnetic pad having a hole for passing machining fluid is provided near the tip of one of the nozzles. 2. Wire cut electrical discharge machining in which the axis of the wire electrode in the machining section between the pair of positioning guides is substantially aligned with a vertical line, and one of the machining fluid injection nozzles is provided on the upper side of the workpiece. A nozzle device for wire cut electric discharge machining according to claim 1, characterized in that: 3. One or both of the one and the other machining fluid injection nozzles comprises a nozzle that moves forward and backward in the wire electrode axial direction in accordance with the supply and jetting of the machining fluid. The wire cut electric discharge machining nozzle device according to any one of Item 2. 4. While the wire electrode is renewedly moved in the axial direction between a pair of positioning guides arranged at intervals, the workpiece is faced to each other through a minute gap from a direction perpendicular to the axial direction of the wire electrode, and the workpiece is placed in the gap. The process is generated by applying intermittent voltage pulses between the wire electrode and the workpiece while injecting and supplying the machining liquid from a pair of machining liquid injection nozzles arranged coaxially with the wire electrode and facing each other on both sides of the workpiece. In wire cut electrical discharge machining, which performs machining by electric discharge and provides relative machining feed between the wire electrode and the workpiece on the plane in the perpendicular direction, the pair of machining fluid injection nozzles spray the machining fluid. The machining fluid injection nozzles are configured to have different pressures, etc., and are arranged around the tip of one of the machining fluid jet nozzles on the side where the machining fluid jetting pressure, etc. is set lower than the other machining fluid jetting nozzle. It is made of a flexible material having a plate shape sufficiently larger than the outer diameter and embedded with a magnet that attracts the workpiece, and has a hole or notch for passing the machining fluid near or around the tip of one of the nozzles. The other machining liquid injection nozzle is composed of a main nozzle coaxial with the wire electrode, and a sub-nozzle further coaxially surrounding the main nozzle to form an annular machining liquid injection port. A nozzle device for wire cut electric discharge machining characterized by the following. 5 While the wire electrode is renewedly moved in the axial direction between a pair of positioning guides arranged at intervals, the workpiece is made to face each other through a minute gap from a direction perpendicular to the axial direction of the wire electrode, and the workpiece is placed in the gap. Generated by applying intermittent voltage pulses between the wire electrode and the workpiece while injecting and supplying machining fluid from a pair of machining fluid injection nozzles disposed coaxially with the wire electrode and facing each other on both sides of the workpiece. In wire cut electrical discharge machining, which performs machining by electric discharge and provides a relative machining feed between the wire electrode and the workpiece on the plane in the perpendicular direction, the pair of machining fluid injection nozzles spray the machining fluid. The machining fluid injection nozzles are configured to have different pressures, etc., and are arranged around the tip of one of the machining fluid injection nozzles on the side where the machining fluid injection pressure, etc. is set lower than that of the other machining fluid injection nozzle. A magnetic pad made of a flexible material is provided, which has a plate shape sufficiently larger than the outer diameter and has a magnet embedded therein that attracts it to the workpiece, and the magnetic pad has a notch in a part. A wire cut for electric discharge machining, characterized in that the part is mounted on the side of the one machining fluid spray nozzle so as to be controllably rotatable around the axis of the wire electrode so that the part is on the tip side in the machining feed direction. nozzle device.
JP4095183A 1983-03-12 1983-03-12 Nozzle device for wire cutting by electric discharge machining Granted JPS59166426A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4095183A JPS59166426A (en) 1983-03-12 1983-03-12 Nozzle device for wire cutting by electric discharge machining
IT8447835A IT1199089B (en) 1983-03-12 1984-03-09 MOBILE METALLIC WIRE EDM
US06/587,923 US4575603A (en) 1983-03-12 1984-03-09 TW-Electroerosion with controlled flushing flow guidance means
GB08406388A GB2138341B (en) 1983-03-12 1984-03-12 Traveling-wire electroerosion machining
DE19843408985 DE3408985C2 (en) 1983-03-12 1984-03-12 Flushing device for an electrical discharge wire cutting machine
FR8403771A FR2545396B1 (en) 1983-03-12 1984-03-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095183A JPS59166426A (en) 1983-03-12 1983-03-12 Nozzle device for wire cutting by electric discharge machining

Publications (2)

Publication Number Publication Date
JPS59166426A JPS59166426A (en) 1984-09-19
JPS6250251B2 true JPS6250251B2 (en) 1987-10-23

Family

ID=12594803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095183A Granted JPS59166426A (en) 1983-03-12 1983-03-12 Nozzle device for wire cutting by electric discharge machining

Country Status (1)

Country Link
JP (1) JPS59166426A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103724A (en) * 1984-10-24 1986-05-22 Inoue Japax Res Inc Supply device of machining fluid for wire cut electric discharge machining
JPH02212025A (en) * 1989-02-08 1990-08-23 Mitsubishi Electric Corp Wire discharging machining device
JPH0315029U (en) * 1989-06-24 1991-02-15
US9199255B2 (en) * 2012-08-30 2015-12-01 Honeywell International Inc. Variable length flush nozzles for wire electrical discharge machines
CN104439583A (en) * 2013-09-18 2015-03-25 沈昌余 Wire-cut electrical discharge machining tool cooling liquid device

Also Published As

Publication number Publication date
JPS59166426A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
US4704511A (en) Traveling-wire electroerosion machine with swiveling nozzle assembly
JPS6080525A (en) Machining liquid feeding device in wire-cut electric discharge machining
US4459454A (en) Machining-liquid supply system for traveling-wire electroerosion machining
JPS6250251B2 (en)
JPS60186319A (en) Wire-cut electrical discharge machine
JPS6247130B2 (en)
JPH0525610B2 (en)
JPS6186131A (en) Wire-cut electric spark machining
JPS6161717A (en) Nozzle device for wire-cut electric discharge machining
JPS626935B2 (en)
JPS6236587Y2 (en)
JPH0455805B2 (en)
JPH0425090B2 (en)
JPH0455804B2 (en)
JPS6346196Y2 (en)
KR950009190Y1 (en) Lubricant suppling device for grinding machine
GB924075A (en) Improvements in or relating to the ultrasonic cleaning of grinding wheels or other rotating surfaces
JPH0536172B2 (en)
JPS59182030A (en) Wire cut electric discharge machining device
JPH0258045B2 (en)
JPH09109014A (en) Guide roller fitting structure for wire saw
JPH0532170B2 (en)
JPS59232735A (en) Wire-cut electric discharge machining method and machining liquid rectifier used in the machining method
JPH0460767B2 (en)
JPS63260722A (en) Processing liquid supply device of wire electric discharge machine