JPH0455790B2 - - Google Patents

Info

Publication number
JPH0455790B2
JPH0455790B2 JP24477488A JP24477488A JPH0455790B2 JP H0455790 B2 JPH0455790 B2 JP H0455790B2 JP 24477488 A JP24477488 A JP 24477488A JP 24477488 A JP24477488 A JP 24477488A JP H0455790 B2 JPH0455790 B2 JP H0455790B2
Authority
JP
Japan
Prior art keywords
flux
slag
welding
weight
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24477488A
Other languages
Japanese (ja)
Other versions
JPH0292497A (en
Inventor
Shigeo Ooyama
Takashi Kato
Yukyoshi Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24477488A priority Critical patent/JPH0292497A/en
Publication of JPH0292497A publication Critical patent/JPH0292497A/en
Publication of JPH0455790B2 publication Critical patent/JPH0455790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、スパイラル鋼菅の高速サブマージア
ーク溶接用フラツクスに関し、ニツケルスラグと
メルトフラツクスの混合型とし、成分組成を特定
することにより、スラグ剥離が良好でかつ優れた
スパイラルビードを高能率で得るサブマージアー
ク溶接用フラツクスに関するものである。 (従来の技術) サブマージアーク溶接法は比較的大電流を用い
ることが可能で、溶接効率が良好であり、パイプ
や船舶、海洋構造物、鉄骨、橋梁等鋼構造物の溶
接分野で広く用いられている。スパイラル鋼菅の
製造もそのひとつであるが、スパイラル鋼菅の製
造においては溶接速度の増加は直接生産性の向上
につながるため、従来よりその高速化の検討が行
われている。 一般に、スパイラル鋼菅では、溶接作業性、ビ
ード形状を考慮して内面溶接は上り傾斜位置、外
面溶接は下り傾斜位置で行われるが、単に上り、
下り傾斜溶接ではなく、アーク発生位置では内面
は上り、外面は下り傾斜、溶接金属およびスラグ
は凝固過程で内面は下り傾斜、外面は上り傾斜と
なつて急傾斜位置まで連なり、重力により次第に
垂れ下がる。このため内面溶接ではコンケーブが
増大して凸型ビードとなり易く、アンダーカツ
ト、オーバーラツプが発生し易い。一方、外面溶
接では凸型ビードとなり易く、アンダーカツトが
発生し易い。 このような欠陥発生状況は溶接速度の増加にと
もない増加し、特に内面溶接において著しくなる
傾向がある。これらの問題点の改善を目的とし
て、従来は主にフラツクス成分、物性値を調整し
てスラグの流れを抑制していた。即ち特開昭58−
176098号公報、特開昭59−104290号公報ではフラ
ツクスの成分を規定した傾斜溶接用メルトフラツ
クスが提案され、特開昭59−47069号公報ではフ
ラツクス成分、物性値を規定し、溶接位置と組み
合わせた溶接方法、特開昭59−66979号公報では
フラツクス成分、粒度構成を規定したボンドフラ
ツクスに溶接条件を組み合わせた溶接方法が提案
されている。 しかしながら、フラツクスの粘性を高めてスラ
グの流れを抑制しようとすると、ビード表面にポ
ツクマークが発生したり高速溶接性が阻害され
る。これらのフラツクスはそれぞれの実施例が示
しているごとく5m/min未満の溶接速度におい
て対応するものであり、5m/min以上の高速溶
接では欠陥発生は避けられない。特開昭59−
66979号公報で提案されたボンドフラツクスでは
その実施例の中で5m/minに近い速度で溶接が
なされているが、フラツクスの回収、再利用が繰
り返し行われるスパイラル鋼菅の溶接では粉化傾
向の大きいボンドフラツクスは溶接作業性の劣化
あるいは偏析等の問題もあり、実際の使用は困難
である。 (発明が解決しようとする課題) 本発明はスパイラル鋼菅の高速サブマージアー
ク溶接に関し、5m/min以上で高速溶接する際
にコーンケーブ、アンダーカツト、ポツクマーク
等の欠陥が生じず、良好なビード形状を得ること
ができるサブマージアーク溶接用フラツクスを提
供することを目的とするものである。 (課題を解決するための手段) 本発明の要旨とするところは、ニツケルスラグ
を30〜80重量%(以下)、メルトフラツクスを20
〜70%含有し、SiO2:40〜60%、MgO:7〜40
%、Al2O3:0.5〜5%、CaO:0.5〜5%、
CaF2:0.5〜5%、MnO:0.5〜30%を主成分と
することを特徴とするスパイラル鋼菅の高速サブ
マージアーク溶接用フラツクスにある。 以下本発明フラツクスの構成並びに作用につい
て説明する。 (作用) 先ず、本発明フラツクスはニツケルスラグとメ
ルトフラツクスとを機械的に混合して製造するも
のである。これはメルトフラツクスのように溶解
可能な組成の月両を選択する必要がなく、比較的
自由なフラツクス設計が可能であり、またボンド
フラツクスのように水ガラス等の固着剤により造
粒されていないため吸湿や繰り返し使用による粉
化の問題が無いことによる。更に、製造工程は全
原料を溶解する必要はなく、安価に製造すること
が可能である。 ここで、本発明におけるニツケルスラグとは、
ニツケルの精錬工程においてニツケル鉱石より溶
解還元によりニツケルを取り去られた後のスラグ
であり、組成としてはSiO2:50〜60%、MgO:
30〜40%を主成分とし、他にAl2O3:5%以下、
CaO:5%以下、T.Fe:10%以下から構成され
るものである。 本発明のフラツクスは、上記のニツケルスラグ
を30〜80%含有するものであるが、これはSiO2
とMgOがフラツクス成分として極めて重要であ
ることによる。即ちSiO2は溶解スラグ中におい
て、スラグの粘性を上げ平滑でなじみの良いビー
ド形状を生成するのに有用な成分であり、特に高
速溶接におけるビード形状の改善に有効である。
一方、MgOは溶融点が高く、スラグの耐火性を
上げ、スラグの垂れ落ちを防ぎ、ビード形状に均
一性をもたらすのに有効であるばかりでなく、塩
基性酸化物であるため溶接金属中の酸素量を低減
し、溶接金属の靭性向上に有効な成分である。こ
の場合、MgOを単一酸化物で添加するとその融
点は2800℃と極めて高く、MgOを単一酸化物で
添加するボンドフラツクスでは、溶接時フラツク
スが溶け難くなるためスラグの流動性が阻害さ
れ、馬の背状のビード形状、趾端部のなじみ不良
等の欠陥が生ずる。一方、メルトフラツクスにお
いてMgOを多量に含有した場合、やはり溶け難
くなり、フラツクスの製造自体が困難あるいは不
可能となる。ところが本発明においては、多くの
MgOはニツケルスラグより添加される。このニ
ツケルスラグ中のMgOはSiO2と共晶組成を生成
しているため大幅に溶解点が低下して1600℃程度
になり、ボンドフラツクスに見られる上記のよう
な欠陥発生を防止できる。またメルトフラツクス
のような問題もない。更に、ニツケルスラグはメ
ルトフラツクスに比べ溶解点が高いため、これら
の混合型フラツクスはベースとなるメルトフラツ
クスより溶解点が高くなる。このため、スパイラ
ル鋼菅の溶接時の凝固過程における急傾斜位置で
の垂れ下がり現象を防ぎ、コーンケーブの増大、
アンダーカツト、オーバーラツプの防止効果が得
られる。加えて、ニツケルスラグは精選された鉱
石を溶融して得られたスラグであり、有害な不純
物の含有量が極めて少なく、結晶水のような水分
も含有されていない。 本発明ではニツケルスラグを30〜80%に限定し
ているが、30%未満では上記のような効果が得ら
れない。一方、ニツケルスラグが80%を越えると
ビード表面にポツクマークが発生する傾向があ
る。そこで、ニツケルスラグの量は30〜80%と
し、残りは主にメルトフラツクスにしなければな
らない。 尚、ここで耐ポツクマーク対策として上記混合
型フラツクスにCa,Mg,Al,Si,Mnの如き脱
酸剤、CaCO3,MgCO3の如きガス発生剤あるい
は溶接金属の靭性を向上させるNi,Mo,Crの如
き合金剤等を混合する場合もある。 次に、本発明フラツクスの各成分の限定理由に
ついて詳細に説明する。 Sio:40〜60% スラグ形成剤およびスラグの粘性を上げ高速溶
接性を確保する上で必要な成分であるが、40%未
満では傾斜溶接時スラグが流れ易くなる他、前述
した効果が得られない。一方、60%を越えると粘
性が大きくなりすぎ、溶接中に発生したガスが抜
けきれず、ポツクマークが発生する。 MgO:7〜40% スラグ形成剤であり、スラグの粘性を低くし、
スラグの溶解温度をあげるばかりでなく、塩基性
成分であり、フラツクスの脱酸作用を高める上で
も必要な成分であるが、7%未満ではその効果が
得られない。一方、40%を越えるとビード断面形
状が凸型となり、アンダーカツトが発生するばか
りでなくポツクマークも発生する。 Al2O3:0.5〜5% スラグ粘性調整剤およびスラグ溶融温度の調整
剤として必要な成分であるが、0.5%未満ではス
ラグの溶融温度が低下し、傾斜溶接時スラグが流
れ易くなり、コーンケーブ深さが大となる。一
方、5%を越えるとポツクマークが発生し易くな
る。 CaO:0.5〜5% 塩基性成分であり、フラツクスの脱酸作用を高
めるばかりでなく、スラグ溶融温度を調整する上
で必要な成分であるが、0.5%未満ではその効果
が得られず、5%を越えるとポツクマークが著し
く発生する。 CaF2:0.5〜5% 塩基成分であり、フラツクスの脱酸作用を高め
る上で必要な成分であるが、0.5%未満ではその
効果が得られない。一方、5%を越えるとスラグ
粘性の低下が大きく、傾斜溶接時スラグが流れ易
くなり、ビードのコーンケーブ深さが大となる。 MnO:0.5〜30% スラグ形成剤となるばかりでなく、スラグ剥離
性を高める性膨であるが、0.5%未満ではその効
果が得られない。一方、30%を越えるとスラグの
溶融温度が低下し、傾斜溶接時スラグが流れ易く
なり、ビード形状が劣化する。 (実施例) 板厚12mmtの帯鋼(SM−41B)を用いた外形
800mmφのスパイラル鋼菅の内面溶接に第1表に
示す混合比率および成分組成のフラツクスを使用
し、第2表の溶接条件で多電極溶接を行つた結
果、第3表に示す結果を得た。なお、コーンケー
ブ深さdは第1図に示す如く計測を行い、アンダ
ーカツトは第2図に示す如くビード長さlに対し
アンダーカツトの総長さΣΔlとし、 アンダーカツト=ΣΔl/2l×100(%) とした。 第3表に示す如く、本発明フラツクスA〜Dを
用いた溶接ではその効果により高速溶接において
もビード形状が良好で、溶接欠陥の発生もなかつ
た。 比較フラツクスEはビード形状は良好であつた
が、ニツケルスラグのみであつたためアンダーカ
ツトが発生し、ビード表面に多数のポツクマーク
が発生した。 フラツクスFはニツケルスラグが不足し、
MgOが少なくCaO,CaF2が上限を越えているた
めスラグの粘性が不足し、コーンケーブが深くな
つた。またポツクマークも多発した。 フラツクスGはニツケルスラグが不足し、
MnOが上限を越えているためアークが不安定と
なり、ビードが蛇行し、またスラグが流れ、コー
ンケーブの深さが大きくなり、オーバーラツプ、
アンダーカツトが発生し、さらにスラグの剥離性
も劣化した。 フラツクスHはSiO2が上限を越え、CaOが少
ないためにコーンケーブが深くなり、オーバーラ
ツプが発生し、またポツクマークも多発した。 フラツクスIはSiO2が少なく、Al2O3,CaOが
上限を越えているため、ビード形状は凸型とな
り、アンダーカツトが発生した。また、ポツクマ
ークも発生した。 フラツクスJはSiO2が少なく、CaF2,MnOが
上限を越えているためコーンケーブが深くなり、
オーバーラツプも大きくなつた。
(Industrial Application Field) The present invention relates to a flux for high-speed submerged arc welding of spiral steel tubes.The present invention uses a mixed type of nickel slag and melt flux, and specifies the component composition to achieve good slag peeling and excellent This invention relates to a flux for submerged arc welding that can produce spiral beads with high efficiency. (Prior art) Submerged arc welding can use a relatively large current and has good welding efficiency, and is widely used in the field of welding steel structures such as pipes, ships, offshore structures, steel frames, and bridges. ing. The manufacture of spiral steel tubes is one example of this, and since increasing welding speed directly leads to improved productivity in the manufacture of spiral steel tubes, studies have been conducted to increase welding speed. Generally, with spiral steel pipes, internal welding is performed at an upwardly inclined position and external surface welding is performed at a downwardly inclined position, considering welding workability and bead shape.
Instead of downward slope welding, the inner surface slopes upward and the outer surface slopes downward at the point where the arc occurs, and during the solidification process of the weld metal and slag, the inner surface slopes downward and the outer surface slopes upward until it reaches a steeply sloped position, and gradually sag due to gravity. For this reason, in internal welding, the concave increases and becomes a convex bead, which tends to cause undercuts and overlaps. On the other hand, external welding tends to result in convex beads and undercuts. The occurrence of such defects increases as the welding speed increases, and tends to be particularly noticeable in internal welding. In order to improve these problems, conventionally the flow of slag has been suppressed mainly by adjusting flux components and physical property values. That is, Japanese Patent Application Publication No. 1983-
In JP-A No. 176098 and JP-A-59-104290, a melt flux for inclined welding was proposed in which the flux components were specified, and in JP-A-59-47069, the flux components and physical property values were specified, and the welding position and A combined welding method, JP-A-59-66979 proposes a welding method that combines welding conditions with a bond flux whose flux composition and grain size structure are specified. However, if an attempt is made to suppress the flow of slag by increasing the viscosity of the flux, pockmarks will occur on the bead surface and high-speed welding performance will be inhibited. As shown in each of the examples, these fluxes correspond to welding speeds of less than 5 m/min, and defects are unavoidable at welding speeds of 5 m/min or higher. Unexamined Japanese Patent Publication 1983-
In the bond flux proposed in Publication No. 66979, welding is performed at a speed close to 5 m/min in the examples, but when welding spiral steel pipes where the flux is repeatedly collected and reused, it tends to powder. A bond flux with a large value has problems such as deterioration of welding workability and segregation, and is therefore difficult to use in practice. (Problems to be Solved by the Invention) The present invention relates to high-speed submerged arc welding of spiral steel tubes, and is concerned with high-speed submerged arc welding of spiral steel pipes. The object of the present invention is to provide a submerged arc welding flux that can be obtained. (Means for Solving the Problems) The gist of the present invention is to use 30 to 80% by weight (or less) of nickel slag and 20% by weight of melt flux.
Contains ~70%, SiO2 : 40~60%, MgO: 7~40
%, Al2O3 : 0.5-5% , CaO: 0.5-5%,
The flux for high- speed submerged arc welding of spiral steel tubes is characterized by having CaF2: 0.5-5% and MnO: 0.5-30% as main components. The structure and function of the flux of the present invention will be explained below. (Function) First, the flux of the present invention is produced by mechanically mixing nickel slag and melt flux. Unlike melt flux, there is no need to select a material with a soluble composition, allowing relatively free flux design, and unlike bond flux, it can be granulated with a fixing agent such as water glass. This is because there are no problems with moisture absorption or powdering due to repeated use. Furthermore, the manufacturing process does not require melting all the raw materials, and can be manufactured at low cost. Here, the nickel slag in the present invention is
It is the slag after nickel is removed from nickel ore by dissolution reduction in the nickel refining process, and its composition is SiO 2 : 50-60%, MgO:
The main component is 30 to 40%, and in addition Al 2 O 3 : 5% or less,
It is composed of CaO: 5% or less and T.Fe: 10% or less. The flux of the present invention contains 30 to 80% of the above-mentioned nickel slag, which is SiO 2
This is because MgO is extremely important as a flux component. That is, SiO 2 is a component in the molten slag that is useful for increasing the viscosity of the slag and producing a smooth and familiar bead shape, and is particularly effective in improving the bead shape during high-speed welding.
On the other hand, MgO has a high melting point and is effective in increasing the fire resistance of slag, preventing slag dripping, and providing uniformity to the bead shape. It is an effective component for reducing the amount of oxygen and improving the toughness of weld metal. In this case, when MgO is added as a single oxide, its melting point is extremely high at 2800°C, and in bond fluxes in which MgO is added as a single oxide, the flux becomes difficult to melt during welding, which inhibits the fluidity of the slag. , defects such as a horseback bead shape and poor fitting of the toe end occur. On the other hand, if a melt flux contains a large amount of MgO, it will also become difficult to dissolve, making the production of the flux itself difficult or impossible. However, in the present invention, many
MgO is added from nickel slag. Since the MgO in this nickel slag forms a eutectic composition with SiO 2 , the melting point is significantly lowered to about 1600°C, which can prevent the above-mentioned defects seen in bond flux. There are also no problems like melt flux. Furthermore, since nickel slag has a higher melting point than melt flux, these mixed fluxes have higher melting points than the base melt flux. This prevents the spiral steel tube from sagging at a steeply inclined position during the solidification process during welding, and prevents the cone from increasing.
The effect of preventing undercuts and overlaps can be obtained. In addition, nickel slag is a slag obtained by melting carefully selected ores, and contains extremely low amounts of harmful impurities and does not contain water such as crystallization water. In the present invention, the content of nickel slag is limited to 30 to 80%, but if it is less than 30%, the above effects cannot be obtained. On the other hand, if the nickel slag content exceeds 80%, pockmarks tend to occur on the bead surface. Therefore, the amount of nickel slag should be 30 to 80%, and the rest should be mainly melt flux. Here, as a countermeasure against potmarks, the above mixed flux may be supplemented with deoxidizing agents such as Ca, Mg, Al, Si, and Mn, gas generating agents such as CaCO 3 and MgCO 3 , or Ni, Mo, which improves the toughness of the weld metal. In some cases, alloying agents such as Cr are mixed. Next, the reasons for limiting each component of the flux of the present invention will be explained in detail. Sio: 40 to 60% A slag forming agent and a necessary component to increase the viscosity of slag and ensure high-speed weldability, but if it is less than 40%, the slag will flow easily during inclined welding and the above-mentioned effects will not be obtained. do not have. On the other hand, if it exceeds 60%, the viscosity becomes too large, and the gas generated during welding cannot escape completely, resulting in pockmarks. MgO: 7-40% A slag forming agent that lowers the viscosity of slag.
It is a basic component that not only raises the melting temperature of slag, but also is a necessary component to enhance the deoxidizing effect of flux, but if it is less than 7%, this effect cannot be obtained. On the other hand, if it exceeds 40%, the cross-sectional shape of the bead becomes convex, causing not only undercuts but also pockmarks. Al 2 O 3 : 0.5-5% This is a necessary component as a slag viscosity modifier and a slag melting temperature modifier, but if it is less than 0.5%, the slag melting temperature will drop, the slag will flow easily during inclined welding, and cone cave The depth is great. On the other hand, if it exceeds 5%, pockmarks are likely to occur. CaO: 0.5-5% It is a basic component that not only enhances the deoxidizing effect of flux but also is a necessary component to adjust the slag melting temperature, but if it is less than 0.5%, the effect will not be obtained. If it exceeds %, pockmarks will be noticeable. CaF2 : 0.5-5% This is a basic component and is a necessary component to enhance the deoxidizing effect of flux, but if it is less than 0.5%, the effect cannot be obtained. On the other hand, if it exceeds 5%, the slag viscosity decreases significantly, the slag tends to flow during inclined welding, and the cone cave depth of the bead increases. MnO: 0.5-30% MnO not only serves as a slag forming agent but also has a property of increasing slag removability, but if it is less than 0.5%, this effect cannot be obtained. On the other hand, if it exceeds 30%, the melting temperature of the slag decreases, the slag tends to flow during inclined welding, and the bead shape deteriorates. (Example) External shape using steel strip (SM-41B) with a plate thickness of 12 mm
Multi-electrode welding was performed under the welding conditions shown in Table 2 using fluxes with the mixing ratio and composition shown in Table 1 for internal welding of a spiral steel tube of 800 mmφ, and the results shown in Table 3 were obtained. The cone cave depth d is measured as shown in Figure 1, and the undercut is the total length of the undercut ΣΔl relative to the bead length l as shown in Figure 2. Undercut = ΣΔl/2l x 100 (%) ). As shown in Table 3, due to the effects of welding using fluxes A to D of the present invention, the bead shape was good even in high-speed welding, and no welding defects occurred. Comparative flux E had a good bead shape, but because it contained only nickel slag, undercuts occurred and many pock marks appeared on the bead surface. Flux F is running out of nickel slag,
Because MgO was low and CaO and CaF 2 exceeded the upper limit, the slag lacked viscosity and the cone cave became deep. Pockmarks also appeared frequently. Flux G is running out of nickel slag,
Because the MnO content exceeds the upper limit, the arc becomes unstable, the bead meandering, slag flows, the cone cave becomes deeper, and overlap occurs.
Undercutting occurred, and the slag releasability also deteriorated. In Flux H, SiO 2 exceeded the upper limit and CaO was low, resulting in deep cone caves, overlaps, and frequent pockmarks. Flux I had less SiO 2 and Al 2 O 3 and CaO exceeding the upper limit, so the bead shape was convex and undercut occurred. Pockmarks also appeared. Flux J has less SiO 2 and CaF 2 and MnO exceeding the upper limit, so the cone cave becomes deeper.
The overlap has also increased.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明は以上のように構成され、5m/min以
上の高速溶接においてアンダーカツトやコーンケ
ーブポツクマーク等の欠陥が生じず、良好なビー
ド形状を得ることができる。
[Table] (Effects of the Invention) The present invention is constructed as described above, and a good bead shape can be obtained without defects such as undercuts and cone cave marks during high-speed welding of 5 m/min or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコーンケーブ深さの計測方法を示す
図、第2図はアンダーカツトの算出方法を示す
図、第3図は実施例の各溶接におけるビード形状
断面図である。
FIG. 1 is a diagram showing a method of measuring the cone cave depth, FIG. 2 is a diagram showing a method of calculating an undercut, and FIG. 3 is a cross-sectional view of a bead shape in each weld of an example.

Claims (1)

【特許請求の範囲】 1 ニツケルスラグを30〜80重量%、メルトフラ
ツクスを20〜70重量%含有し、 SiO2:40〜60重量%、 MgO:7〜40重量%、 Al2O3:0.5〜5重量%、 CaO:0.5〜5重量%、 CaF2:0.5〜5重量%、 MnO:0.5〜30重量% を主成分とすることを特徴とするスパイラル鋼管
の高速サブマージアーク溶接用フラツクス。
[Claims] 1 Contains 30-80% by weight of nickel slag, 20-70% by weight of melt flux, SiO 2 : 40-60% by weight, MgO: 7-40% by weight, Al 2 O 3 : A flux for high-speed submerged arc welding of spiral steel pipes, characterized in that the main components are 0.5 to 5% by weight, CaO: 0.5 to 5% by weight, CaF 2 : 0.5 to 5% by weight, and MnO: 0.5 to 30% by weight.
JP24477488A 1988-09-29 1988-09-29 Flux for high-speed submerged arc welding of spiral steel pipe Granted JPH0292497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24477488A JPH0292497A (en) 1988-09-29 1988-09-29 Flux for high-speed submerged arc welding of spiral steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24477488A JPH0292497A (en) 1988-09-29 1988-09-29 Flux for high-speed submerged arc welding of spiral steel pipe

Publications (2)

Publication Number Publication Date
JPH0292497A JPH0292497A (en) 1990-04-03
JPH0455790B2 true JPH0455790B2 (en) 1992-09-04

Family

ID=17123715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24477488A Granted JPH0292497A (en) 1988-09-29 1988-09-29 Flux for high-speed submerged arc welding of spiral steel pipe

Country Status (1)

Country Link
JP (1) JPH0292497A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245794A (en) * 2002-02-26 2003-09-02 Jfe Steel Kk Manufacturing method for sintered flux for submerged arc welding
CN105149818A (en) * 2015-09-25 2015-12-16 宝鸡石油钢管有限责任公司 Sintered flux applicable to X80 thick-wall high-heat-input spiral submerged arc steel pipe welding
CN112775586B (en) * 2020-12-25 2022-11-04 四川省绵阳市华意达化工有限公司 Method for preparing surfacing material from chromium-containing waste residues

Also Published As

Publication number Publication date
JPH0292497A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
JP7010675B2 (en) Flux-filled wire for gas shielded arc welding and welding method
JP4741445B2 (en) Flux-cored wire for gas shielded arc welding
KR100706026B1 (en) High speed submerged arc welding flux
JPS6313694A (en) Baked flux for submerged arc welding
KR20090012045A (en) Weld metal and titania-based flux cored wire
JP2000158107A (en) Mold powder for open casting
US4189318A (en) Flux for use in centrifugal casting of bimetallic pipes
JPH0455790B2 (en)
JP2005230906A (en) Gas shielded arc welding method
JPS6327120B2 (en)
JP4260127B2 (en) Composite wire for submerged arc welding
JPS6129834B2 (en)
JPH0521677B2 (en)
JP2009028764A (en) Weld metal and titania-based flux cored wire
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JPH11216593A (en) Low hydrogen system covered arc electrode
JPS5841694A (en) Calcined flux for submerged arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JPS6357154B2 (en)
JP3481146B2 (en) Flux-cored wire for stainless steel welding
JPH0630819B2 (en) High-speed submerged arc welding method for spiral steel pipe
JPH01233089A (en) Melt flux for duplex stainless steel
JP3177638B2 (en) Flux for submerged arc welding