JPS6129834B2 - - Google Patents

Info

Publication number
JPS6129834B2
JPS6129834B2 JP55044836A JP4483680A JPS6129834B2 JP S6129834 B2 JPS6129834 B2 JP S6129834B2 JP 55044836 A JP55044836 A JP 55044836A JP 4483680 A JP4483680 A JP 4483680A JP S6129834 B2 JPS6129834 B2 JP S6129834B2
Authority
JP
Japan
Prior art keywords
slag
less
flux
mno
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55044836A
Other languages
Japanese (ja)
Other versions
JPS56141992A (en
Inventor
Keiichiro Heisha
Masaharu Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4483680A priority Critical patent/JPS56141992A/en
Publication of JPS56141992A publication Critical patent/JPS56141992A/en
Publication of JPS6129834B2 publication Critical patent/JPS6129834B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、剥離性の良好なスラグを形成しつつ
靭性の良好な溶接金属を与える潜弧溶接用溶融型
フラツクスに関するものである。 薄板の高速溶接手段としては、SiO2やMnOを
主成分とするフラツクスを用いる潜弧溶接法が知
られているが、この様なフラツクスでは、
SiO2/MnOで与えられる比を調整することによ
り、溶接作業性(例えばスラグ剥離性)や溶接部
の機械的性質を比較的自由に調整できるという利
点がある。即ちフラツクスの用途に応じた選択が
可能である。ところが、例えばスパイラル・パイ
プの内面溶接の如くスラグの除去作業が困難であ
る場合、或はボンベにおける胴部と鏡板との溶接
の如く溶接パスを複数本連続して重ねる場合等に
ついては、スラグ剥離性を特に重視することが必
要であるにもかかわらず、他の性能を無視する訳
にはいかないので、スラグ剥離性を多少犠性にせ
ざるを得ないというのが実情である。 本発明はこれらに着目してなされたものであつ
て、溶接部の機械的性質を劣化させることなく、
スラグ剥離性を大幅に改善し得る様な潜弧溶接用
溶融型フラツクスを提供しようとするものであ
る。即ち本発明に係るフラツクスとは、SiO2
20〜60%、MnO:20〜60%、CaO:20%以下、
MgO:20%以下、Al2O3:1〜30%、CaF2:20
%以下、BaO:0.01〜4%、並びにPb及び/又は
Bi:酸化物または弗化物の形で配合され、且つ
Pb及び/又はBiに換算して0.01〜0.2%を夫々含
有すると共に、SiO2/MnOで与えられる比が0.7
〜2.6となるものである。又、特にBi配合時の欠
点である耐衝撃性の低下傾向を緩和する為の
TiO2やFeOを配合することを本発明に含まれ
る。 以下本発明フラツクスにおける各成分の配合理
由及び夫々の範囲設定理由等を述べる。 SiO2:20〜60% MnOと共に本発明フラツクスの基体を構成す
るもので、20%未満ではMnOの配合量との関係
において溶製困難になる。又60%超でも上記と同
様の理由で溶製困難になると共に、溶接金属中の
酸素量が増大し、且つスラグの巻きみが頻発する
ので、溶接金属の機械的性質が劣化する。尚更に
好ましい上限は、スラグの焼き付き易さを抑える
という主旨からすると35%程度である。 MnO:20〜60% MnOを配合すると溶接金属のMn量が増大する
傾向を示し、その結果靭性と抗張力のバランス化
と高温割れの防止に大きく寄与する。又スラグの
厚さが増大するので、スラグ中の残留応力が大き
くなつて剥離性が向上する。しかし20%未満では
これらの効果が発揮されず、逆に60%を越えると
溶製が困難になる。 SiO2/MnO:0.7〜2.6 フラツクスの適用部位や目的に応じて上記範囲
の中から選択するが、SiO2/MnOが増大するに
つれてスラグと溶接金属との結合が増すと共にス
ラグ自体が薄くなることによる内部応力が小さく
なり、自己離反力が乏しくなる。従つてスラグ剥
離性という観点からすれば小さくするのが望まし
いが、小さくすると次の様な問題が生じる。 (1) スラグの粘性が低下し、極端な場合はビード
リツプルに乱れが生じ、且つハンピング(繩状
ビードとなる)し易くなる。従つてビード状態
からすれば0.7〜1.5程度にしておくのが望まし
く、この様な範囲内であれば、むしろ小さい側
の比を採用することによつてビードの広がりを
良好にすることが推奨される。 (2) フラツクスの融点が低下して溶融され易く
なること、スラグの粘性が低下して周囲の未
溶融フラツクス粒を固着させたり2次溶融され
易くなること、アークが広がり易くなるこ
と、或はMnOの比重がSiO2の約2倍である
ので、同一体積のスラグが生じても重量が増す
こと等が総合的に作用し、フラツクスの消費量
が増大する。 この様なところからSiO2/MnOで与えられる
比の下限については0.7と定めた。他方上限につ
いてはスラグ剥離性に悪影響を与えない限界とし
て、2.6とした。従つて0.7〜2.6の範囲内で上記各
性状を調整すると共に、SiO2/MnOを変動させ
ることによつて溶接金属中のSi,Mn,O等の含
有量を制御し、シヤルピー衝撃値や引張り強さ等
の機械的性質を調整することが推奨される。 CaO:20%以下 SiO2やMnOに対する補助成分として配合され
るものであり、スラグの粘性を調整すると共に塩
基度の向上効果があり、それらの結果溶接金属の
機械的性質を向上させることができる。しかし20
%を越えると粘性が低下し過ぎ、ビードの絞れ
(ビードの幅が局部的に細くなる状態)やビード
リツプルの乱れが生じる。 MgO:20%以下 フラツクスの塩基度を高め溶接金属中の酸素含
有量の増大を防止する機能がある。しかし20%を
越えるとスラグの粘性が急激に向上し、アンダー
カツトが多発すると共に、フラツクスの結晶化や
吸湿性増大によるピツトやブローホールの発生を
招く。 Al2O3:1〜30% スラグの粘性を高めビード外観を整える機能を
発揮させる上で1%以上必要である。又TiO2
併合させたフラツクスでは、溶接金属中へのTi
還元添加を促進する機能も発揮し、やはり1%以
上の添加が望まれる(TiO2の添加の意義につい
ては後述する)。但し30%を越えると粘性が過大
になりビード表面にポツクマークやうねり等が発
生する。尚Al2O3の含有量とSiO2の含有量の比に
よつてビード形状に影響を与えることが伴つたの
で、その比を1/15〜1/3とすることが望まれる。 CaF2:20%以下 溶接アーク空胴中及び溶接金属中の酸素含有量
を減少させる機能があり、溶接金属の機械的性質
が向上する。又フラツクス自体の融点を低下させ
るので溶製が容易であり、且つビード形状が良好
になる。上記効果を発揮する為の下限は存在しな
いが、2%以上の配合が好ましい。他方20%を越
えるとスラグの焼き付きが生じ易くなる。 Pb及び/又はBi:0.01〜0.2% これらはBi2O3やPbO等の酸化物、或はBiF3
PbF2等の弗化物として配合されるが、アーク熱
によつて解離し、蒸気圧の高いBiやPbを生成す
る。即ちBiやPbは融点が低く且つスラグの凝固
過程においてもBiやPbの蒸気を発生し、スラグ
とビードの間に充満してスラグの焼き付きを防止
する。この様な効果を発揮する為には、BiやPb
として少なくとも0.01%以上必要である。一般に
スラグの焼き付きはSiO2/MnO比が高いとき、
更に具体的には1.05を越える当りから顕著になる
ものであるが、同時に上記の比が高くなるとシヤ
ルピー衝撃値が低くなるという問題もある。他方
上記Pb及び/又はBi、就中Biはシヤルピー衝撃
値を悪化させる元素であるから、焼き付き防止の
必要な領域(SiO2/MnOの比が高く、シヤルピ
ー衝撃値の低い領域)程Biの必要性が増大すると
いうことは極めて皮肉な状況であり、この様な不
都合を緩和する為には、Biとして上限を0.2%と
すると共に、SiO2/MnOで与えられる比の1/25
以下とすることが望ましい。尚Biによる機械的性
質劣化傾向は、前記Al2O3によつても間接的に補
償される。又Pbについても過剰配合によつてビ
ード表面がバツクスキン状となるので、Biと同様
の上限を設けるべきである。 BaO:0.01〜4% BiやPbの酸化物又は弗化物の分解を促進する
作用を有し、BiやPbの上記効果を発現させる上
では不可欠の成分である。従つてBiやPbの酸化
物又は弗化物としての添加量を上記の如く低く押
えることができ、特にBiによるシヤルピー衝撃値
の低下を可及的に抑制し、又Biの偏析による溶接
金属の割れも可及的に抑制される。上記の様な分
解促進効果を発揮するに必要なBaO量は、最低
0.01%である。これに対し上限は4%であり、4
%を越えるとブローホールやピツトが多発する。 TiO2:30%以下 溶接金属中へのTi供給源であり、溶接金属の
靭性を向上する。又スラグの粘性を余り低下させ
ずにフラツクスを溶け易くする機能があるので高
級鋼溶接用フラツクス或は高速溶接用フラツクス
の場合には、特に好適な成分である。又既述の通
りBi2O3等を配合したときは溶接金属の機械的性
質が劣化するので、これを補償するという意味に
おいてもTiO2は有意義な成分である。この場合
TiO2はBi2O3に対して5倍量以上配合することを
目安とするが、全フラツクス中に30%を越えて配
合すると、スラグの粘性が過少になつてビードリ
ツプルが不整になるだけでなく、Ti化合物の析
出により却つて溶接金属の脆化やスラグの焼き付
きを招き易くなる。 FeO:0.1〜10% アーク雰囲気中で分解して溶鋼中に酸素を供給
するから、溶鋼中のC,Si,Mn等を酸化減少せ
しめる。その結果溶接金属の衝撃値が向上する。
尚Bi2O3等による機械的性質の劣化を補償すると
いう意味ではTiO2と同効物質である。上記効果
発現の為には少なくとも0.1%配合しなければな
らないが、10%を越えるとスラグの粘性が過小と
なり、ビードエツジが蛇行する様になる。 上記で本発明の必須成分組成を説明したが、更
に次の様な成分をフラツクス中に配合することが
できる。 ZrO2:20%以下 酸性乃至中性成分としてSiO2やAl2O3の一部に
代替できる。又ビード表面のリツプルを鎮静乃至
平滑化できるが、20%超ではスラグの粘性が過大
となり、ビードのうねりやポツクマークが発生す
る。 Na2O,K2O:5%以下 アークの安定効果を示すが、5%超になるとフ
ラツクスの吸湿性が高まり、ピツトやブローホー
ルを生じる様になる。 Li2O:5%以下 スラグの粘性を低下させるので、CaF2の一部
に代替できる。しかし5%超になるとフラツクス
の吸湿性を高めるという欠点がある。 上記の様なフラツクスは通常溶融型として提供
され、その製造法は一切制限されないが、一般的
には全原料を均一に混合し、溶融ルツボに少量ず
つ入れながら溶製していく。この様にして製造す
ればBi2O3やPbOのフラツクス内における偏析も
少なく、BiやPbの溶接金属中への偏析が発生原
因の段階から防止される。 上記の様な構成からなるフラツクスを採用する
と、溶接金属の性質やビード形状に悪影響を与え
ることなくスラグの剥離性が向上し、溶接作業性
が大幅に改善されることとなつた。又上記フラツ
クスと組み合わせて用いる溶接用ワイヤについて
は特段の制限はないが、特に好ましいワイヤの組
成例を示すと下記の通りである。 C:0.3%以下 Si:0.6%以下 Mn:0.2〜3% O:0.001〜0.05% N:0.001〜0.05% P:0.1%以下 S:0.1%以下 又上記組成の他 Ti:1%以下 Al:0.1%以下 Mo:0.5%以下 可溶性B:0.001%以下 を含むワイヤを挙げられる。 まず実験例を示す。 実験例 1 第1表に示す組成の溶融型フラツクス(F−
1)〜(F−6)を調製(いずれも比較フラツク
ス)し、SiO2/MnOとスラグ剥離状態の関係を
調べた。消耗電極としては、2.4mmφの高Mn系
(C:0.10%,S:0.03%,Mn:1.91%,O:
0.006%,N:0.05%)を用い、DC、400A×30V
×100cm/minの条件で黒皮つきSS−41鋼板(9
mmt)上にビード・オン・プレートを形成した。
結果は第1表に併記する通りであり、SiO2
MnOが0.67以下では、溶接直後スラグが弓状に
反り返り、自然剥離したが、0.87では、溶接中の
自然剥離が起らず、試験板が常温になつた後でス
ケールハンマーなどで外力を加えた場合、さほど
の困難なしに除去できたという程度であつた。又
1.10以上になるとハンマー等で叩いても簡単には
除去できず、又ビード・エツジ全長に亘り焼き付
きスラグが認められた。
The present invention relates to a melt-type flux for submerged arc welding that forms a slag with good peelability and provides a weld metal with good toughness. As a high-speed welding method for thin plates, submerged arc welding using a flux containing SiO 2 or MnO as the main components is known.
By adjusting the ratio given by SiO 2 /MnO, there is an advantage that welding workability (for example, slag removability) and mechanical properties of the welded part can be adjusted relatively freely. In other words, the flux can be selected depending on the intended use. However, in cases where it is difficult to remove slag, such as when welding the inner surface of a spiral pipe, or when multiple welding passes are overlapped in succession, such as when welding the body and end plate of a cylinder, slag peeling is difficult. Although it is necessary to place particular emphasis on performance, other performances cannot be ignored, and the reality is that slag removability must be sacrificed to some extent. The present invention has been made with attention to these points, and it does not deteriorate the mechanical properties of the welded part.
The object of the present invention is to provide a melting type flux for submerged arc welding that can significantly improve slag removability. That is, the flux according to the present invention is SiO 2 :
20-60%, MnO: 20-60%, CaO: 20% or less,
MgO: 20% or less, Al 2 O 3 : 1-30%, CaF 2 : 20
% or less, BaO: 0.01 to 4%, and Pb and/or
Bi: Compounded in the form of oxide or fluoride, and
It contains 0.01 to 0.2% in terms of Pb and/or Bi, and the ratio given by SiO 2 /MnO is 0.7.
~2.6. In addition, in order to alleviate the tendency for impact resistance to decrease, which is a drawback especially when Bi is added,
The present invention includes the addition of TiO 2 and FeO. The reason for blending each component in the flux of the present invention and the reason for setting each range will be described below. SiO 2 :20-60% Together with MnO, it constitutes the base of the flux of the present invention, and if it is less than 20%, it becomes difficult to melt in relation to the amount of MnO blended. Moreover, if it exceeds 60%, melting becomes difficult for the same reasons as above, and the amount of oxygen in the weld metal increases, and slag entrainment occurs frequently, resulting in deterioration of the mechanical properties of the weld metal. Furthermore, a more preferable upper limit is about 35%, considering the purpose of suppressing the tendency of slag to seize. MnO: 20-60% When MnO is added, the amount of Mn in the weld metal tends to increase, which greatly contributes to balancing toughness and tensile strength and preventing hot cracking. Furthermore, since the thickness of the slag increases, the residual stress in the slag increases and the peelability improves. However, if it is less than 20%, these effects will not be exhibited, and if it exceeds 60%, melting will become difficult. SiO 2 /MnO: 0.7 to 2.6 Select from the above range depending on the location and purpose of flux application, but as SiO 2 /MnO increases, the bond between slag and weld metal increases and the slag itself becomes thinner. The internal stress due to this decreases, and the self-separation force becomes poor. Therefore, from the viewpoint of slag removability, it is desirable to make the size small, but if the size is made small, the following problems arise. (1) The viscosity of the slag decreases, and in extreme cases, the bead ripples become disordered and humping (beads become serpentine) becomes more likely. Therefore, from the viewpoint of the bead condition, it is desirable to keep the ratio between 0.7 and 1.5, and within this range, it is recommended to use a ratio on the smaller side to improve the spread of the bead. Ru. (2) The melting point of the flux decreases, making it easier to melt; the viscosity of the slag decreases, causing surrounding unmelted flux grains to stick together or being more likely to undergo secondary melting; or the arc becoming more likely to spread; Since the specific gravity of MnO is about twice that of SiO 2 , even if the same volume of slag is produced, the weight increases, etc., and the amount of flux consumed increases. From this point of view, the lower limit of the ratio given by SiO 2 /MnO was set at 0.7. On the other hand, the upper limit was set at 2.6 as a limit that does not adversely affect slag removability. Therefore, by adjusting each of the above properties within the range of 0.7 to 2.6, and by varying SiO 2 /MnO, the content of Si, Mn, O, etc. in the weld metal is controlled, and the Charpy impact value and tensile strength are Adjustment of mechanical properties such as strength is recommended. CaO: 20% or less It is blended as an auxiliary component to SiO 2 and MnO, and has the effect of adjusting the viscosity of slag and improving basicity, and as a result, can improve the mechanical properties of weld metal. . But 20
If it exceeds %, the viscosity decreases too much, causing bead constriction (a condition in which the bead width becomes locally narrow) and disordered bead ripples. MgO: 20% or less It has the function of increasing the basicity of flux and preventing an increase in oxygen content in the weld metal. However, when it exceeds 20%, the viscosity of the slag increases rapidly, resulting in frequent undercuts, as well as the formation of pits and blowholes due to flux crystallization and increased hygroscopicity. Al 2 O 3 : 1 to 30% 1% or more is required to exhibit the function of increasing the viscosity of the slag and adjusting the appearance of the bead. Furthermore, in the case of a flux that incorporates TiO 2 , TiO2 is incorporated into the weld metal.
It also exhibits the function of promoting reduction addition, and addition of 1% or more is also desired (the significance of adding TiO 2 will be described later). However, if it exceeds 30%, the viscosity becomes excessive and pockmarks, waviness, etc. occur on the bead surface. Since the bead shape was affected by the ratio of the Al 2 O 3 content to the SiO 2 content, it is desirable that the ratio be 1/15 to 1/3. CaF 2 : 20% or less Has the function of reducing the oxygen content in the welding arc cavity and in the weld metal, improving the mechanical properties of the weld metal. Furthermore, since the melting point of the flux itself is lowered, melting is easy and the bead shape is improved. Although there is no lower limit for exhibiting the above effects, a blending amount of 2% or more is preferable. On the other hand, if it exceeds 20%, slag burning tends to occur. Pb and/or Bi: 0.01-0.2% These are oxides such as Bi 2 O 3 and PbO, or BiF 3 and
Although it is blended as a fluoride such as PbF 2 , it dissociates due to arc heat and produces Bi and Pb with high vapor pressure. That is, Bi and Pb have a low melting point and generate Bi and Pb vapor even during the solidification process of the slag, filling the space between the slag and the beads and preventing the slag from seizing. In order to exhibit such an effect, Bi and Pb must be used.
0.01% or more is required. Generally, slag seizure occurs when the SiO 2 /MnO ratio is high.
More specifically, this becomes noticeable when the ratio exceeds 1.05, but at the same time, there is also the problem that as the ratio increases, the Shalpy impact value decreases. On the other hand, since Pb and/or Bi, especially Bi, is an element that worsens the Shapey impact value, the more Bi is required in areas where seizure prevention is required (areas where the SiO 2 /MnO ratio is high and the Shapey impact value is low). It is a very ironic situation that the oxidation property increases, and in order to alleviate this inconvenience, the upper limit of Bi should be set at 0.2%, and the ratio given by SiO 2 /MnO should be 1/25.
The following is desirable. Note that the mechanical property deterioration tendency due to Bi is also compensated indirectly by the aforementioned Al 2 O 3 . In addition, the upper limit for Pb should be set in the same way as for Bi, since the bead surface becomes backskin-like due to excessive blending. BaO: 0.01 to 4% It has the effect of promoting the decomposition of Bi and Pb oxides or fluorides, and is an essential component for expressing the above-mentioned effects of Bi and Pb. Therefore, the amount of Bi and Pb added as oxides or fluorides can be kept low as mentioned above, and in particular, the decrease in the Sharpy impact value due to Bi can be suppressed as much as possible, and cracking of the weld metal due to Bi segregation can be suppressed. is also suppressed as much as possible. The minimum amount of BaO required to exhibit the above-mentioned decomposition promoting effect is
It is 0.01%. On the other hand, the upper limit is 4%;
%, blowholes and pits occur frequently. TiO 2 :30% or less It is a source of Ti supply to the weld metal and improves the toughness of the weld metal. Furthermore, since it has the function of making the flux easier to melt without significantly lowering the viscosity of the slag, it is a particularly suitable component for high-grade steel welding fluxes or high-speed welding fluxes. Furthermore, as mentioned above, when Bi 2 O 3 or the like is added, the mechanical properties of the weld metal deteriorate, so TiO 2 is a significant component in the sense of compensating for this. in this case
The standard is to mix TiO 2 in an amount of at least 5 times the amount of Bi 2 O 3 , but if it is mixed in more than 30% of the total flux, the viscosity of the slag will become too low and the bead ripples will become irregular. Instead, the precipitation of Ti compounds tends to cause embrittlement of the weld metal and slag seizure. FeO: 0.1 to 10% FeO decomposes in an arc atmosphere and supplies oxygen to the molten steel, reducing oxidation of C, Si, Mn, etc. in the molten steel. As a result, the impact value of the weld metal is improved.
In addition, it is a substance with the same effect as TiO 2 in the sense of compensating for the deterioration of mechanical properties caused by Bi 2 O 3 and the like. In order to achieve the above effect, the content must be at least 0.1%, but if it exceeds 10%, the viscosity of the slag becomes too low and the bead edge becomes meandering. Although the essential component composition of the present invention has been explained above, the following components can be further blended into the flux. ZrO 2 : 20% or less Can be substituted for part of SiO 2 or Al 2 O 3 as an acidic or neutral component. Although ripples on the bead surface can be suppressed or smoothed, if it exceeds 20%, the viscosity of the slag becomes excessive, causing bead undulations and pockmarks. Na 2 O, K 2 O: 5% or less This exhibits an arc stabilizing effect, but if it exceeds 5%, the hygroscopicity of the flux increases, causing pits and blowholes. Li 2 O: 5% or less Since it reduces the viscosity of slag, it can be partially substituted for CaF 2 . However, if it exceeds 5%, it has the disadvantage of increasing the hygroscopicity of the flux. The above-mentioned flux is usually provided as a molten type, and although there are no restrictions on the manufacturing method, generally all the raw materials are mixed uniformly and melted while being poured into a melting crucible little by little. If manufactured in this manner, segregation of Bi 2 O 3 and PbO in the flux will be reduced, and segregation of Bi and Pb in the weld metal will be prevented from the stage where it occurs. When a flux having the above-mentioned structure was adopted, the slag removability was improved without adversely affecting the properties of the weld metal or the bead shape, and welding workability was significantly improved. Although there are no particular restrictions on the welding wire used in combination with the above-mentioned flux, particularly preferred wire compositions are as follows. C: 0.3% or less Si: 0.6% or less Mn: 0.2-3% O: 0.001-0.05% N: 0.001-0.05% P: 0.1% or less S: 0.1% or less In addition to the above compositions Ti: 1% or less Al: Examples include wires containing 0.1% or less, Mo: 0.5% or less, and Soluble B: 0.001% or less. First, an experimental example will be shown. Experimental Example 1 Melting type flux (F-
1) to (F-6) were prepared (all comparative fluxes), and the relationship between SiO 2 /MnO and the state of slag exfoliation was investigated. As a consumable electrode, 2.4 mmφ high Mn type (C: 0.10%, S: 0.03%, Mn: 1.91%, O:
0.006%, N: 0.05%), DC, 400A x 30V
×100cm/min condition SS-41 steel plate with black skin (9
mm t ) on which a bead-on plate was formed.
The results are shown in Table 1, and SiO 2 /
When MnO was less than 0.67, the slag warped into an arch shape immediately after welding and spontaneously peeled off, but at 0.87, natural peeling did not occur during welding, and external force was applied with a scale hammer etc. after the test plate came to room temperature. In most cases, it could be removed without much difficulty. or
When the value exceeded 1.10, it could not be easily removed by hitting with a hammer, etc., and baked-in slag was observed over the entire length of the bead and edge.

【表】 実験例 2 第1表のフラツクス(F−4)組成の原料に
Bi2O3を加えて均一に混合し、溶融ルツボ中へ少
量ずつ加えながら(A−1)〜(A−11)のフラ
ツクス(第2表)を調製し、実験例1と同様の条
件でビード・オン・プレートを形成しつつスラグ
剥離性を調べた。同時に12mmtの黒皮つき軟鋼板
(SS−41)に、高Mn系溶接ワイヤ(成分は前と
同じ:4.0mmφ)を用い、BP:AC,700A×35V
×60cm/min及びFP:AC,800A×36V×55cm/
minで1バツト溶接を行ない、シヤルピー衝撃試
験を行なつた。 溶接作業性における変化は第2表の通りである
が、スラグ剥離性はBi2O3:0.013%(A−2)で
やや改善され、0.03%(A−3)ではかなり改善
された。又0.07%(A−4)〜0.38%(A−8)
の範囲になると非常に改善された。一方ビード肌
は0.19%(A−6)迄光沢を維持するが、0.27%
(A−7)では光沢を失ない、0.43%(A−9)
より上になるとやゝざらつき感が生じ、0.67%
(A−10)になると、あたかもバツクスキンの様
な外観を与え、同時にスラグ剥離性にも悪影響が
生じはじめている。これらに対しシヤルピー衝撃
試験の結果を見ると、Bi2O3が増加するにつれて
衝撃値はばらつきが生じており、特に0.2%を越
えると、最大値と最小値の差が極めて大きくなつ
ている。このことはBiの偏析に基づくものと思わ
れる。
[Table] Experimental example 2 For the raw material of the flux (F-4) composition in Table 1
Bi 2 O 3 was added and mixed uniformly, and the fluxes (A-1) to (A-11) (Table 2) were prepared by adding it little by little into the melting crucible, and the fluxes were heated under the same conditions as in Experimental Example 1. The slag removability was investigated while forming a bead on plate. At the same time, high Mn welding wire (components are the same as before: 4.0 mmφ) was used on a 12 mm t black mild steel plate (SS-41), BP: AC, 700 A x 35 V.
×60cm/min and FP: AC, 800A×36V×55cm/
One butt welding was performed at 1 min, and a sharpie impact test was conducted. The changes in welding workability are shown in Table 2, and the slag removability was slightly improved with Bi 2 O 3 :0.013% (A-2), and considerably improved with Bi 2 O 3 :0.03% (A-3). Also 0.07% (A-4) to 0.38% (A-8)
The range has been greatly improved. On the other hand, bead skin maintains its luster up to 0.19% (A-6), but 0.27%
(A-7) does not lose its luster, 0.43% (A-9)
As it goes higher, it feels a little rougher, 0.67%
(A-10) gives an appearance similar to backskin, and at the same time begins to have an adverse effect on slag removability. On the other hand, looking at the results of the Charpy impact test, it is found that as Bi 2 O 3 increases, the impact values vary, and especially when it exceeds 0.2%, the difference between the maximum and minimum values becomes extremely large. This seems to be based on the segregation of Bi.

【表】 実施例 1 これまでの実験によると、Bi2O3によるスラグ
剥離性改善効果に対して衝撃値のばらつきという
幣害があつた。そこでBaOによる補償効果を調べ
る為に、やはり第1表の(F−4)フラツクスに
実験例2と同様の炉中へBi2O3とBaOを投入し、
第3表のB,C,D系列のフラツクスを得た。こ
れらフラツクスにより実験例2と同様にして溶接
作業性及びスラグ剥離性を確認した。結果は第3
表の通りである。 まず、Bi2O3が0.06%のとき(B系列)、スラグ
剥離性はBaO3.9%迄は好結果が得られ、5.2%で
はやや不満足であり、ビード肌についてもほぼ同
様であつた。Bi2O3が0.12%(C系列)、0.18%
(D系列)においてもこの様に、溶接作業性、ビ
ードの健全性等の点で、BaOの添加量に制限があ
り、B系列の場合同様4%を越えない様にすべき
であることがわかる。他方BaOの添加によつて衝
撃値のばらつきが解消しており、Biの偏析がなく
なつたことを知ることができる。
[Table] Example 1 According to the experiments conducted so far, the effect of Bi 2 O 3 on improving the slag removability was adversely affected by variations in impact values. Therefore, in order to investigate the compensation effect of BaO, Bi 2 O 3 and BaO were introduced into the same furnace as in Experimental Example 2 using the flux (F-4) in Table 1.
The fluxes of series B, C, and D in Table 3 were obtained. Using these fluxes, welding workability and slag removability were confirmed in the same manner as in Experimental Example 2. The result is the third
As shown in the table. First, when Bi 2 O 3 was 0.06% (B series), good results were obtained in slag releasability up to 3.9% BaO, but slightly unsatisfactory at 5.2%, and the same was true for the bead skin. Bi 2 O 3 is 0.12% (C series), 0.18%
(D series) as well, there is a limit to the amount of BaO added in terms of welding workability, bead integrity, etc., and as in the case of B series, it should not exceed 4%. Recognize. On the other hand, the variation in impact values was eliminated by adding BaO, indicating that Bi segregation was eliminated.

【表】【table】

【表】 実施例 2 以上でBi2O3及びBaOの効果が確認されたの
で、さらにPbOによりBi2O3と同様の効果が得ら
れるか、或はPbOがBaOと共存したときにどの様
な効果が得られるかを知る為、第4表のE系列
(PbOのみ)及びF′系列(PbO+BaO)のフラツ
クスを作り、同様に調査した。 まず、溶接作業性であるが、E系列において、
PbO:0.21%でビード表面の光沢が失われ、0.24
%で完全なバツクスキン状となり、それにともな
いスラグ剥離性も若干悪くなつた。又、F′系列
では、BaOが過剰で4.5%のときにビード肌の荒
れと、ピツト発生が認められたが、BaO3.8%以
下のときは特に幣害は認められなかつた。 一方、これらのときのシヤルピー衝撃値の変化
は第4表に付記した様にPbOが0.2%以下の領域
においては何ら問題はなかつた。しかしPbOが
0.21%(E−4)ではBi2O3の場合と同様衝撃値
のばらつきが多くなつた。これに対しBaOを添加
したときは衝撃値のばらつきは抑えられた。
[Table] Example 2 The effects of Bi 2 O 3 and BaO have been confirmed above, so it is important to know whether the same effect as Bi 2 O 3 can be obtained with PbO, or what happens when PbO coexists with BaO. In order to find out whether a significant effect can be obtained, fluxes of the E series (PbO only) and F' series (PbO+BaO) shown in Table 4 were created and investigated in the same way. First, regarding welding workability, in the E series,
PbO: At 0.21%, the gloss on the bead surface is lost, and at 0.24
%, it became completely backskin-like, and the slag removability also deteriorated slightly. In addition, in the F' series, when BaO was excessive at 4.5%, bead skin roughness and pitting were observed, but when BaO was 3.8% or less, no particular damage to the bead was observed. On the other hand, as noted in Table 4, there were no problems with changes in the Shalpy impact value in the range where PbO was 0.2% or less. However, PbO
At 0.21% (E-4), the impact value varied widely as in the case of Bi 2 O 3 . On the other hand, when BaO was added, the variation in impact values was suppressed.

【表】【table】

【表】 実施例 3 第1表のフラツクス(F−4)組成の原料に適
量のBi2O3と6%前後のTiO2を加えて調製したフ
ラツクス(G−1)〜(G−5)を用い、実施例
1,2に従つてスラグ剥離性とシヤルピー衝撃値
を調べた。結果を第5表に一括して示す。
[Table] Example 3 Fluxes (G-1) to (G-5) prepared by adding an appropriate amount of Bi 2 O 3 and around 6% TiO 2 to the raw material having the flux (F-4) composition shown in Table 1. Using this, slag removability and Charpy impact value were investigated according to Examples 1 and 2. The results are summarized in Table 5.

【表】 即ちTiO2の配合によつてシヤルピー衝撃値が
改善されており、Bi2O3:1.12%のG−5でも、
Bi2O3:0%の場合(EVO=5.48Kg−m)とほぼ
同じ様な値が得られており、TiO2の補償効果は
明白である。 実施例 4 第1表のフラツクス(F−6)にBi2O3を添加
したフラツクス(H−1)〜(H−5)、並びに
これらのうち(H−3)に更にTiO2を加えた
(I−1)〜(I−3)の各フラツクスを調整
(第6表)し、実験例1と同様の溶接を行なつ
た。結果を第6表に併記する。
[Table] That is, the Charpy impact value was improved by adding TiO 2 , and even in G-5 with Bi 2 O 3 : 1.12%,
Almost the same value as in the case of 0% Bi 2 O 3 (E VO =5.48 Kg-m) was obtained, and the compensation effect of TiO 2 is obvious. Example 4 Fluxes (H-1) to (H-5) obtained by adding Bi 2 O 3 to the flux (F-6) in Table 1, and among them (H-3), TiO 2 was further added. The fluxes (I-1) to (I-3) were adjusted (Table 6) and welding was carried out in the same manner as in Experimental Example 1. The results are also listed in Table 6.

【表】 スラグ剥離性はBi2O3:0.05%でもわずかなが
ら改善の跡がみられ、0.1%以上になるとかなり
の改善が認められる。又(I−1)〜(I−3)
では、TiO2の添加によつてシヤルピー衝撃値が
改善されている。
[Table] Slag removability shows slight signs of improvement even at 0.05% Bi 2 O 3 , and considerable improvement is observed at 0.1% or more. Also (I-1) to (I-3)
In this case, the addition of TiO 2 improved the Charpy impact value.

Claims (1)

【特許請求の範囲】 1 SiO2:20〜60%、MnO:20〜60%、CaO:
20%以下、MgO:20%以下、Al2O3:1〜30%、
CaF2:20%以下、BaO:0.01〜4%、並びにPb
及び/又はBi:酸化物または弗化物の形で配合
し、且つ並びにPb及び/又はBiに換算して0.01〜
0.2%を夫々含有する他、SiO2/MnOで与えられ
る比が0.7〜2.6であることを特徴とする潜弧溶接
用溶融型フラツクス。 2 SiO2:20〜60%、MnO:20〜60%、CaO:
20%以下、MgO:20%以下、Al2O3:1〜30%、
CaF2:20%以下、BaO:0.01〜4%、並びにPb
及び/又はBi:酸化物または弗化物の形で配合
し、且つ並びにPb及び/又はBiに換算して0.01〜
0.2%を夫々含有する他、TiO2:30%以下及び
FeO:0.1〜10%のうち少なくともいずれか一方
を含有し、更にSiO2/MnOで与えられる比が0.7
〜2.6であることを特徴とする潜弧溶接用溶融型
フラツクス。
[Claims] 1 SiO 2 : 20-60%, MnO: 20-60%, CaO:
20% or less, MgO: 20% or less, Al 2 O 3 : 1 to 30%,
CaF2 : 20% or less, BaO: 0.01-4%, and Pb
and/or Bi: blended in the form of oxide or fluoride, and from 0.01 to Pb and/or Bi
A melt-type flux for submerged arc welding characterized by containing 0.2% of each and having a ratio given by SiO 2 /MnO of 0.7 to 2.6. 2 SiO2 : 20-60%, MnO: 20-60%, CaO:
20% or less, MgO: 20% or less, Al 2 O 3 : 1 to 30%,
CaF2 : 20% or less, BaO: 0.01-4%, and Pb
and/or Bi: blended in the form of oxide or fluoride, and from 0.01 to Pb and/or Bi
In addition to containing 0.2% respectively, TiO2 : 30% or less and
FeO: Contains at least one of 0.1 to 10%, and the ratio given by SiO 2 /MnO is 0.7
A melting type flux for submerged arc welding characterized by a temperature of ~2.6.
JP4483680A 1980-04-05 1980-04-05 Fused flux for submerged arc welding Granted JPS56141992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4483680A JPS56141992A (en) 1980-04-05 1980-04-05 Fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4483680A JPS56141992A (en) 1980-04-05 1980-04-05 Fused flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS56141992A JPS56141992A (en) 1981-11-05
JPS6129834B2 true JPS6129834B2 (en) 1986-07-09

Family

ID=12702548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4483680A Granted JPS56141992A (en) 1980-04-05 1980-04-05 Fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS56141992A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187495A (en) * 1984-03-06 1985-09-24 Nippon Steel Corp Fused flux for submerged arc welding
JPS60191692A (en) * 1984-03-14 1985-09-30 Nippon Steel Corp Fused flux for submerged arc welding
JPS61154791A (en) * 1984-12-27 1986-07-14 Nippon Steel Corp Fused flux for submerged arc welding
US20060266799A1 (en) * 2005-05-31 2006-11-30 Lincoln Global, Inc. Slag detachability
JP4783708B2 (en) * 2006-10-12 2011-09-28 日鐵住金溶接工業株式会社 Fused flux for submerged arc welding
FR2939340B1 (en) * 2008-12-09 2010-12-31 Air Liquide FLOW AND WIRE FOR SUBMERGED ARC WELDING OF CRMOV STEELS.
CN102632349B (en) * 2012-05-16 2013-07-24 蒋才银 Automatic submerged arc welding flux and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499443A (en) * 1972-05-25 1974-01-28
JPS53125243A (en) * 1977-04-07 1978-11-01 Nippon Steel Corp Fused flux for submerged arc welding
JPS5510358A (en) * 1978-07-10 1980-01-24 Nippon Steel Corp Fused flux for submerged arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499443A (en) * 1972-05-25 1974-01-28
JPS53125243A (en) * 1977-04-07 1978-11-01 Nippon Steel Corp Fused flux for submerged arc welding
JPS5510358A (en) * 1978-07-10 1980-01-24 Nippon Steel Corp Fused flux for submerged arc welding

Also Published As

Publication number Publication date
JPS56141992A (en) 1981-11-05

Similar Documents

Publication Publication Date Title
JP7010675B2 (en) Flux-filled wire for gas shielded arc welding and welding method
JP3017063B2 (en) High nitrogen flux cored wire for all-position welding of Cr-Ni stainless steel
JPS6313694A (en) Baked flux for submerged arc welding
KR100706026B1 (en) High speed submerged arc welding flux
US3424626A (en) Low silica welding composition
JPH0130597B2 (en)
CN111702371A (en) Ultralow-hydrogen acidic flux-cored wire and production method thereof
JPS6129834B2 (en)
JP3787104B2 (en) Flux-cored wire for gas shielded arc welding
US4663244A (en) Filler containing easily oxidizable elements
JP2001205483A (en) Flux-containing wire for gas shield arc welding
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JPS5944156B2 (en) Flux for overlay welding
KR102051960B1 (en) Tandem gas shielded arc welding wire
JP3027312B2 (en) Flux for submerged arc welding
JP7078436B2 (en) Flux for submerged arc welding and its manufacturing method
JP2021137855A (en) Flux for electroslag welding and electroslag welding method
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP3828088B2 (en) Flux-cored wire for fillet welding
JPH01150497A (en) Low hydrogen covered electrode for fillet welding
JP7239437B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
KR100817828B1 (en) Metal cored wire for high speed twin-tandem arc welding
JPH01138098A (en) Coated electrode for stainless steel
JPS63199093A (en) Arc welding electrode coated on stainless core wire