JPH045575A - Optical spectrum analyzer - Google Patents

Optical spectrum analyzer

Info

Publication number
JPH045575A
JPH045575A JP10814190A JP10814190A JPH045575A JP H045575 A JPH045575 A JP H045575A JP 10814190 A JP10814190 A JP 10814190A JP 10814190 A JP10814190 A JP 10814190A JP H045575 A JPH045575 A JP H045575A
Authority
JP
Japan
Prior art keywords
signal
frequency
peak
photodetector
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10814190A
Other languages
Japanese (ja)
Inventor
Yasutaka Kato
加藤 泰孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10814190A priority Critical patent/JPH045575A/en
Publication of JPH045575A publication Critical patent/JPH045575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To continuously and accurately calculate the frequency of an input signal by interpolating the signal of a detecting element which adjoins to a detecting element indicating the peak signal of a photodetector and finding an offset frequency, and correcting the frequency indicating the peak signal. CONSTITUTION:Light emitted by a light source 1 is diffracted according to the frequency of an RF signal inputted to an optical modulator 3 and focused on a corresponding detecting element of the linear photodetector 6. Then a peak detecting circuit 11 determines the detecting element which indicates the peak signal and a frequency calculating circuit 12 calculates the frequency of the RF signal which varies continuously. A sum circuit 14 corrects the offset frequency based upon the interpolation of the output signals of adjacent detecting elements on both sides of the detecting element indicating the peak signal from the circuit 11 by an interpolating circuit 11 to continuously and accurately calculate and output the input signal frequency having no offset error.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光スペクトラムアナライザに関し、特に入力
RF信号の周波数または入力レベルを精度よく検出でき
る光スペクトラムアナライザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical spectrum analyzer, and more particularly to an optical spectrum analyzer that can accurately detect the frequency or input level of an input RF signal.

〔従来の技術〕[Conventional technology]

第6図は、例えばマイクロウェイブジャーナル(Mic
rowave Journal、 March 198
6+ p141〜157)にて示された従来の光スペク
トラムアナライザを示すものであり、この光スペクトラ
ムアナライザは入力RF信号の周波数を検出する。図に
おいて、1は光源、2は光源1からの入射光7を平行光
にするコリメートレンズ、3は入力RF信号IOによっ
て光を回折する光変調器、4は光変調器3を通過した光
を集光する集光レンズ、5は光変調器3を通過した光の
うち非回折光8を吸収する吸収体、6は光変調器3を通
過した光のうち回折光9を検波するリニア光検出器、1
1は光検出器6からの出力信号からピーク信号を検出す
るピーク検出回路、12は前記ピーク信号を出力した光
検出器の素子に対応した周波数を求め出力する周波数算
出回路である。
FIG. 6 shows, for example, a microwave journal (Mic
rowave Journal, March 198
6+ p141-157), this optical spectrum analyzer detects the frequency of an input RF signal. In the figure, 1 is a light source, 2 is a collimating lens that converts the incident light 7 from the light source 1 into parallel light, 3 is an optical modulator that diffracts the light according to the input RF signal IO, and 4 is the light that has passed through the optical modulator 3. 5 is an absorber that absorbs undiffracted light 8 of the light that has passed through the optical modulator 3; 6 is a linear light detector that detects the diffracted light 9 of the light that has passed through the optical modulator 3; vessel, 1
1 is a peak detection circuit that detects a peak signal from the output signal from the photodetector 6, and 12 is a frequency calculation circuit that calculates and outputs a frequency corresponding to the element of the photodetector that outputs the peak signal.

次に動作について説明する。Next, the operation will be explained.

光源1から発した光はコリメートレンズ2により平行光
となり、光変調器3に入射する。光変調器3は入力RF
信号10Si、、の周波数f inに比例した角度だけ
入力光7の一部を回折する。回折光9及び非回折光8は
集光レンズ4を通り、焦点面に集光される。このうち、
非回折光8は吸収体5で吸収される。一方、回折光9は
焦点面に配置されたリニア光検出器6によって検波され
る。光検出器6からの出力信号S。、、、は第7図に示
すように光検出器の各素子の検波出力が直列に並んだも
のである。図中、0・・・k・・・n−1は光検出器の
素子の順番を示す番号である。ピーク検出回路11はこ
のS outよりピーク位置を求め、それを出力する素
子を決定する。前述したように回折光の回折角度は入力
RF信号周波数f =nに比例するので、入力周波数f
、イに応じて回折光が集光する検出器6の素子位置も異
なる。以上のことから、周波数算出回路12にてピーク
検出回路で決定された5outのピーク値を示す光検出
器素子位置から逆に入力RF信号の周波数r inが求
まる。
Light emitted from a light source 1 is turned into parallel light by a collimating lens 2, and enters an optical modulator 3. Optical modulator 3 is input RF
A portion of the input light 7 is diffracted by an angle proportional to the frequency f in of the signal 10Si, . The diffracted light 9 and the undiffracted light 8 pass through the condensing lens 4 and are condensed onto the focal plane. this house,
The undiffracted light 8 is absorbed by the absorber 5. On the other hand, the diffracted light 9 is detected by a linear photodetector 6 placed on the focal plane. Output signal S from photodetector 6. , , , are the detection outputs of the respective elements of the photodetector arranged in series as shown in FIG. In the figure, 0...k...n-1 are numbers indicating the order of the elements of the photodetector. The peak detection circuit 11 determines the peak position from this S out and determines the element that outputs it. As mentioned above, the diffraction angle of the diffracted light is proportional to the input RF signal frequency f = n, so the input frequency f
, A, the element position of the detector 6 on which the diffracted light is focused also differs. From the above, the frequency calculation circuit 12 calculates the frequency r in of the input RF signal inversely from the photodetector element position indicating the peak value of 5out determined by the peak detection circuit.

第8図は、同じ(マイクロウニイブジャーナル(Mic
rowave Journal、 March 198
6. p141〜157)にて示された従来の光スペク
トラムアナライザを示すものであり、この光スペクトラ
ムアナライザは入力RF倍信号信号レベルを検出するも
のである。
Figure 8 shows the same (micro unit journal (Mic)
rowave Journal, March 198
6. This shows the conventional optical spectrum analyzer shown on pages 141 to 157), and this optical spectrum analyzer detects the input RF multiplied signal signal level.

図において、第6図と同一符号は同一または相当部分で
あり、120は前記ピーク信号値より入力信号レベルを
求め出力する回路である。
In the figure, the same reference numerals as in FIG. 6 indicate the same or corresponding parts, and 120 is a circuit that calculates the input signal level from the peak signal value and outputs it.

次に動作について説明する。Next, the operation will be explained.

光源1から発した光は、コリメートレンズ2により平行
光となり、光変調器3に入射する。光変調器3は入力R
F信号10Si、の周波数f inに比例した角度方向
に、入力RFパワーP87に比例した量だけ入射光7の
一部を回折する。回折光9及び非回折光8は集光レンズ
4を通り、焦点面に集光される。このうち、非回折光8
は吸収体5で吸収される。一方、回折光9は焦点面に配
置されたリニア光検出器6によって検波される。光検出
器6からの出力信号S。U、は第9図のように光検出器
の各素子の検波出力が直列に並んだものである。
Light emitted from a light source 1 is turned into parallel light by a collimating lens 2, and enters an optical modulator 3. Optical modulator 3 has input R
A portion of the incident light 7 is diffracted by an amount proportional to the input RF power P87 in an angular direction proportional to the frequency f in of the F signal 10Si. The diffracted light 9 and the undiffracted light 8 pass through the condensing lens 4 and are condensed onto the focal plane. Of these, 8 undiffracted lights
is absorbed by the absorber 5. On the other hand, the diffracted light 9 is detected by a linear photodetector 6 placed on the focal plane. Output signal S from photodetector 6. U, is the detection output of each element of the photodetector arranged in series as shown in FIG.

図中、0・・・k・・・n−1は光検出器の素子の順番
を示す番号である。ピーク検出回路11はこのS。ut
よりピーク位置を求め、それを出力する素子を決定する
。前述したように回折光の強度は入力RFパワーに比例
するので、光検出器60レベルも入力RF信号パワーに
比例することになる。以上のことから、入力レベル算出
回路120にて、ピーク検出回路で決定されたS。ut
のピーク値から逆に入力RF信号のレベルが求まる。
In the figure, 0...k...n-1 are numbers indicating the order of the elements of the photodetector. The peak detection circuit 11 is this S. ut
The peak position is then determined and the element that outputs it is determined. As mentioned above, since the intensity of the diffracted light is proportional to the input RF power, the photodetector 60 level is also proportional to the input RF signal power. From the above, S determined by the peak detection circuit in the input level calculation circuit 120. ut
The level of the input RF signal can be determined conversely from the peak value of .

ところで、RF入力信号S inの周波数f inを同
一パワーで連続的に変化させると、回折光9の焦点位置
は連続的に変化するので、光検出器6のある素子に注目
した場合、その出力信号レベルはf87を横軸、レベル
を縦軸にとると、第10図(a)に示す曲線を描く。こ
れを光検出器6の全素子について求めると、第10図(
b)に示す曲線群が得られる。この個々の山を結んだ曲
線が出力レベルの周波数特性を示すことになる。ひと山
が光検出器6の1素子がカバーする帯域で、入力信号の
周波数帯域を8、光検出器の素子数をnとすると、B/
nとなる。
By the way, when the frequency f in of the RF input signal S in is continuously changed with the same power, the focal position of the diffracted light 9 changes continuously, so when focusing on a certain element of the photodetector 6, its output When the signal level is plotted with f87 on the horizontal axis and the level on the vertical axis, a curve shown in FIG. 10(a) is drawn. When this is determined for all elements of the photodetector 6, it is shown in Fig. 10 (
A group of curves shown in b) is obtained. A curve connecting these individual peaks shows the frequency characteristics of the output level. One peak is the band covered by one element of the photodetector 6, and if the frequency band of the input signal is 8 and the number of elements of the photodetector is n, then B/
It becomes n.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光スペクトラムアナライザは以上のように構成さ
れているので、入力信号Si、、の周波数帯域をB、光
検出器の素子数をnとすると、各素子に対応する周波数
はfo +に−B/n (ただし、k=o〜n1.fo
は素子番号0の素子に対応する周波数)となり、B /
 n毎に離散的に配置されたことになり、その周波数が
検出周波数f。utとなるため検出周波数f outは
士B / 2 nの不確定さを伴うという問題点があっ
た。
Since the conventional optical spectrum analyzer is configured as described above, if the frequency band of the input signal Si, , is B and the number of elements of the photodetector is n, the frequency corresponding to each element is fo + -B /n (however, k=o~n1.fo
is the frequency corresponding to the element with element number 0), and B /
This means that they are discretely arranged every n, and the frequency is the detection frequency f. There is a problem in that the detection frequency fout is accompanied by an uncertainty of B/2n.

また従来の光スペクトラムアナライザは以上のように構
成されているので、第10図中)に示すごとく同一レベ
ルのRF信号入力にかかわらず、光検出器出力レベルに
リプルを生ずる。従って、前記比例関係により、入力R
F信号レベルを算出する際にもこのリプルに伴う誤差が
発生するという問題点があった。
Furthermore, since the conventional optical spectrum analyzer is constructed as described above, ripples occur in the photodetector output level, as shown in FIG. 10, regardless of the RF signal input at the same level. Therefore, due to the proportional relationship, the input R
There is also a problem in that an error occurs due to this ripple when calculating the F signal level.

この発明は上記のような問題点を解消するためになされ
たもので、検出周波数f。utを連続的に精度良く求め
ることのできる光スペクトラムアナライザを得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and the detection frequency f. An object of the present invention is to obtain an optical spectrum analyzer that can continuously determine ut with high accuracy.

また、この発明は上記のような問題点を解消するために
なされたもので、検出レベルP。utを精度良く求める
ことのできる光スペクトラムアナライザを得ることを目
的とする。
Moreover, this invention was made to solve the above-mentioned problems, and the detection level is P. An object of the present invention is to obtain an optical spectrum analyzer that can accurately determine ut.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る光スペクトラムアナライザは、ピーク信
号を示す素子に隣接する素子の信号を用いて内挿処理す
ることによりピーク信号を示す素子に対応した周波数か
らのオフセット周波数を求め、該オフセット周波数によ
りピーク信号を示す素子に対応した周波数を補正する手
段を備えたものである。
The optical spectrum analyzer according to the present invention calculates the offset frequency from the frequency corresponding to the element exhibiting the peak signal by performing interpolation processing using the signals of the elements adjacent to the element exhibiting the peak signal, and uses the offset frequency to obtain the peak signal. It is equipped with means for correcting the frequency corresponding to the element indicating the signal.

また、この発明に係る光スペクトラムアナライザは、ピ
ーク信号を示す素子に隣接する素子の信号を用いて内挿
処理することにより光検出器のピーク信号値の補正値を
求め、該補正値により光検出器のピーク信号値を補正す
る手段を備えたものである。
Further, the optical spectrum analyzer according to the present invention calculates a correction value for the peak signal value of the photodetector by performing interpolation processing using the signal of the element adjacent to the element showing the peak signal, and uses the correction value to detect the photodetector. The device is equipped with means for correcting the peak signal value of the device.

〔作用〕[Effect]

この発明においては、ピーク信号を示す素子に隣接する
素子の信号を用いて内挿処理することによりピーク信号
を示す素子に対応した周波数からのオフセット周波数を
求め、該オフセット周波数によりピーク信号を示す素子
に対応した周波数を補正するようにしたから、検出周波
数f。uLを連続的に精度良く求めることができる。
In this invention, an offset frequency from the frequency corresponding to the element exhibiting the peak signal is obtained by interpolation processing using the signal of the element adjacent to the element exhibiting the peak signal, and the offset frequency of the element exhibiting the peak signal is determined by the offset frequency. Since the frequency corresponding to f is corrected, the detected frequency f. uL can be determined continuously and accurately.

また、この発明においては、ピーク信号を示す素子に隣
接する素子の信号を用いて内挿処理することにより光検
出器のピーク信号値の補正値を求め、該補正値により光
検出器のピーク信号値を補正するようにしたから、検出
レベルP。uLを精度良く求めるものである。
Further, in the present invention, a correction value for the peak signal value of the photodetector is obtained by performing interpolation processing using the signal of the element adjacent to the element showing the peak signal, and the correction value is used to generate the peak signal of the photodetector. Since the value is corrected, the detection level is P. This is to obtain uL with high accuracy.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例による光スペクトラムア
ナライザの構成を示す図であり、図において、1は光源
、2は光源lからの入射光7を平行光にするコリメート
レンズ、3はRF入力信号10によって光を回折する光
変調器、4は光変調器を通過した光を集光する集光レン
ズ、5は光変調器3を通過した光のうち非回折光8を吸
収する吸収体、6は光変調器3を通過した光のうち回折
光9を検波するリニア光検出器、11は光検出器6から
の出力信号からピーク信号を検出するピーク検出回路、
12は前記ピーク信号を出力した光検出器の素子に対応
した周波数を求め出力する周波数算出回路、13はピー
ク信号を示す素子に隣接する素子の信号レベルから内挿
処理によりオフセット周波数を求め出力する内挿処理回
路、14は周波数算出回路12で求めた周波数と内挿処
理回路13で求めた周波数の和をとり、出力する加算回
路である。
FIG. 1 is a diagram showing the configuration of an optical spectrum analyzer according to a first embodiment of the present invention. In the figure, 1 is a light source, 2 is a collimating lens that converts incident light 7 from the light source 1 into parallel light, and 3 is a collimating lens. An optical modulator that diffracts light according to the RF input signal 10; 4 a condensing lens that condenses the light that has passed through the optical modulator; 5 an absorber that absorbs non-diffracted light 8 of the light that has passed through the optical modulator 3; 6 is a linear photodetector that detects the diffracted light 9 out of the light that has passed through the optical modulator 3; 11 is a peak detection circuit that detects a peak signal from the output signal from the photodetector 6;
12 is a frequency calculation circuit that calculates and outputs a frequency corresponding to the element of the photodetector that outputs the peak signal; 13 is a frequency calculation circuit that calculates and outputs an offset frequency by interpolation processing from the signal level of an element adjacent to the element exhibiting the peak signal; The interpolation processing circuit 14 is an addition circuit that calculates the sum of the frequency obtained by the frequency calculation circuit 12 and the frequency obtained by the interpolation processing circuit 13 and outputs the sum.

次に動作について説明する。Next, the operation will be explained.

集光レンズ4によって集光された回折光9は光検出器6
上に焦点を結ぶ。RF入力信号S8.、の周波数f、、
、を連続的に変化させると、この回折光の焦点位置は連
続的に変化するので、光検出器6のある素子に注目した
場合、その出力信号レベルはf knを横軸、レベルを
縦軸にとると、第2図(a)に示すような曲線を描く。
The diffracted light 9 focused by the condensing lens 4 is transmitted to the photodetector 6
Focus on the top. RF input signal S8. , the frequency f, ,
, the focal position of this diffracted light changes continuously. Therefore, when focusing on a certain element of the photodetector 6, its output signal level is expressed by fkn on the horizontal axis and level on the vertical axis. When taken, a curve as shown in FIG. 2(a) is drawn.

これを光検出器6の全素子について求めると、第2図(
b)に示す曲線群が得られる。図中、0・・・n−1は
光検出器の素子番号、fo・・・f 、、−1は各素子
に割り当てられた周波数であり、図に示すように離散し
ている。従来においてはピーク信号を示す素子に対応し
た周波数を検出周波数としたので離散的な値を算出して
いた。
When this is determined for all elements of the photodetector 6, it is shown in Figure 2 (
A group of curves shown in b) is obtained. In the figure, 0...n-1 are element numbers of the photodetector, and fo...f, -1 are frequencies assigned to each element, which are discrete as shown in the figure. Conventionally, the frequency corresponding to the element exhibiting the peak signal was used as the detection frequency, so discrete values were calculated.

今、第2図(b)に示す曲線群を直線にて近似すると第
2図(C)に示すようになる。周波数fifi(fk−
+< f 、−< f k−+ )の信号が入力される
と、第2図(C)に示されるように番号にの素子でピー
クレベル■1を示す。この時隣接する番号に−1,k+
1の素子にはf inがfkからのズレに応じたレベル
の信号vk−□、Vつ。1が出力されるが、そのレベル
差δV =Vs=−+   Vk−+ は図より明らか
なように、オフセット周波数δf=fi−fkに比例し
たものとなる。つまり、逆にレベル差δ■よりオフセッ
ト周波数δfが求まり、これとピークレベルを示す素子
に対応する周波数fkとの和から入力周波数が求まる。
Now, when the curve group shown in FIG. 2(b) is approximated by a straight line, it becomes as shown in FIG. 2(C). Frequency fifi (fk-
When a signal of +<f, -<fk-+) is input, as shown in FIG. 2(C), the element numbered indicates a peak level 1. At this time, the adjacent number is -1,k+
Element 1 has two signals vk-□ and V whose level corresponds to the deviation of fin from fk. 1 is output, but the level difference δV =Vs=-+Vk-+ is proportional to the offset frequency δf=fi-fk, as is clear from the figure. That is, conversely, the offset frequency δf is determined from the level difference δ■, and the input frequency is determined from the sum of this and the frequency fk corresponding to the element exhibiting the peak level.

なお、上記実施例では光検出器6からの出力信号が直接
処理される場合について述べたが、第3図に示す本実施
例の変形例のように光検出器6からの信号が対数増幅器
15を通って出力される場合には、第2図(b)で示さ
れた曲線群を、e−b (f−fklf k= f 、
 + k −B / n (k = O〜n −1)な
るガウス関数で近似すればよい。そうすれば、対数増幅
器出力においてはピーク信号に示す素子に隣接する素子
の対数増幅器15出力後のレベル差δ■はδV = V
k++  Vm−+ = 4 b−B / nδfとな
り、オフセット周波数δfに比例したものとなる。
In the above embodiment, a case has been described in which the output signal from the photodetector 6 is directly processed, but as in a modification of this embodiment shown in FIG. When the curves shown in FIG. 2(b) are outputted through
It may be approximated by a Gaussian function + k −B / n (k = O to n −1). Then, in the logarithmic amplifier output, the level difference δ■ after the logarithmic amplifier 15 output of the element adjacent to the element indicated by the peak signal is δV = V
k++ Vm-+ = 4 b-B/nδf, which is proportional to the offset frequency δf.

次に本発明の第2の実施例を図について説明する。Next, a second embodiment of the present invention will be described with reference to the drawings.

第4図は本発明の第2の実施例による光スペクトラムア
ナライザの構成を示す図であり、図において、1は光源
、2は光源1からの入射光7を平行光にするコリメート
レンズ、3はRF入力信号10によって光を回折する光
変調器、4は光変調器を通過した光を集光する集光レン
ズ、5は光変調器3を通過した光のうち、非回折光8を
吸収する吸収体、6は光変調器3を通過した光のうち、
回折光9を検波するリニア光検出器、11は光検出器6
からの出力信号からピーク信号を検出する回路、120
は前記ピーク信号値の補正値より入力信号レベルを求め
出力する回路、130はピーク信号を示す素子に隣接す
る素子の信号レベルから内挿処理により前記ピーク信号
値の補正値を求め出力する回路である。
FIG. 4 is a diagram showing the configuration of an optical spectrum analyzer according to a second embodiment of the present invention. In the figure, 1 is a light source, 2 is a collimating lens that converts the incident light 7 from the light source 1 into parallel light, and 3 is a collimating lens. An optical modulator that diffracts light according to the RF input signal 10; 4 a condenser lens that condenses the light that has passed through the optical modulator; 5 that absorbs non-diffracted light 8 of the light that has passed through the optical modulator 3; Absorber 6 is the light that has passed through the optical modulator 3.
A linear photodetector detects the diffracted light 9, 11 is a photodetector 6
a circuit for detecting a peak signal from an output signal from 120;
130 is a circuit that calculates and outputs the input signal level from the correction value of the peak signal value, and 130 is a circuit that calculates and outputs the correction value of the peak signal value by interpolation processing from the signal level of the element adjacent to the element showing the peak signal. be.

次に動作について説明する。Next, the operation will be explained.

従来例の説明のところで示した第1O図(b)の曲線群
を直線の折れ線にて近似すると、第10図(C)のよう
になる。図中のに−1,に、に+1は光検出器の素子番
号、fk−0+  fk+  rk++ は各近似関数
のピーク値に対応する入力信号周波数であり、隣接する
近似関数のクロスポイントOkに対応する周波数である
。またF (r−rk−、)、  F (ffk)、F
 (f−fk、、)は各素子特性に割り当てた近似関数
を示す。周波数fin (fk−1<r6、<fm−+
)の信号が入力されると、第10図(C)に示されるよ
うに、番号にの素子でピークレベル■アを示す。この時
隣接する番号に−1,k+1の素子にはflFlがf、
からのズレに応じたレベルの信号Vm−+ 、  Vi
=。1が出力されるが、そのレベル差δV=V、。l 
  Vk−1は図より明らかなように、オフセット周波
数δf = f i++−r kに比例したものとなる
。つまり、逆にレベル差δ■よりオフセット周波数δf
が求まり、これとピークレベルを示す素子に対応する周
波数fkとの和から入力周波数f inが求まる。さら
にこのf inと上記近似関数F (f−fk)とから
、ピーク値(fmfk)に対するV、(fmf、、)の
比(これが補正係数となる)が求まる。この比により■
うを補正し、補正後の入力信号レベルを求める。
If the group of curves shown in FIG. 10(b) shown in the description of the conventional example is approximated by straight polygonal lines, the result will be as shown in FIG. 10(c). -1, ni and +1 in the figure are the element numbers of the photodetector, fk-0+ fk+ rk++ are the input signal frequencies corresponding to the peak values of each approximation function, and correspond to the cross points Ok of adjacent approximation functions. frequency. Also, F (r-rk-,), F (ffk), F
(f−fk,,) indicates an approximation function assigned to each element characteristic. Frequency fin (fk-1<r6,<fm-+
) When a signal of ) is input, as shown in FIG. 10(C), the element numbered indicates a peak level ①A. At this time, flFl is f for the adjacent numbered elements -1 and k+1,
The level of the signal Vm-+ corresponds to the deviation from Vi
=. 1 is output, and the level difference δV=V. l
As is clear from the figure, Vk-1 is proportional to the offset frequency δf=f i++-r k. In other words, on the contrary, the offset frequency δf is greater than the level difference δ■.
is determined, and the input frequency f in is determined from the sum of this and the frequency fk corresponding to the element exhibiting the peak level. Furthermore, from this f in and the above approximation function F (f-fk), the ratio of V, (fmf, .) to the peak value (fmfk) (this becomes a correction coefficient) is determined. According to this ratio■
and calculate the input signal level after correction.

なお、上記実施例では光検出器6からの出力信号が直接
処理される場合について述べたが、第5図に示す本実施
例の変形例のように光検出器6からの信号が対数増幅器
14を通って出力される場合には、第10図(b)で示
された曲線群を 、 −b (f−fklfk=f0+
に−B/n (k=o 〜n−1)なるガウス関数で近
似すればよい。そうすれば、対数増幅器出力においては
ピーク信号を示す素子に隣接する素子の対数増幅器14
出力後のレベル差δ■はδV”’Vh、+  ¥に−+
 =4 b−B/ n ・δfとなり、オフセット周波
数δfに比例したものとなる。
In the above embodiment, a case has been described in which the output signal from the photodetector 6 is directly processed, but as in a modification of this embodiment shown in FIG. In the case of output through the curve group shown in FIG. 10(b), -b (f-fklfk=f0+
can be approximated by a Gaussian function -B/n (k=o to n-1). Then, in the logarithmic amplifier output, the logarithmic amplifier 14 of the element adjacent to the element exhibiting the peak signal
The level difference δ■ after output is δV"'Vh, + ¥ - +
=4b-B/n·δf, which is proportional to the offset frequency δf.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、光検出器のピーク信
号を示す素子に隣接する素子の信号を用いて内挿処理に
よりオフセット周波数を求め、前記ピーク信号を示す素
子に対応する周波数を補正するようにしたので、入力信
号周波数を連続的に精度良く算出できる効果がある。
As described above, according to the present invention, the offset frequency is determined by interpolation using the signal of the element adjacent to the element showing the peak signal of the photodetector, and the frequency corresponding to the element showing the peak signal is corrected. This has the effect that the input signal frequency can be calculated continuously and accurately.

また1以上のように、この発明によれば、光検出器のピ
ーク信号を示す素子に隣接する素子の信号を用いて内挿
処理によりオフセット周波数を求め、前記ピーク信号値
を補正するようにしたので、入力信号レベルを精度良く
算出できる効果がある。
Further, as described above, according to the present invention, the offset frequency is determined by interpolation using the signal of the element adjacent to the element indicating the peak signal of the photodetector, and the peak signal value is corrected. Therefore, there is an effect that the input signal level can be calculated with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例による光スペクトラム
アナライザを示す図、第2図は本発明の第1の実施例の
原理を説明するための光検出器の出力特性を示す図、第
3図は第1の実施例の変形例を示す図、第4図この発明
の第2の実施例による光スペクトラムアナライザを示す
図、第5図は第2の実施例の変形例を示す図、第6図は
従来の光スペクトラムアナライザの一例を示す図、第7
図は第6図の従来例の原理を説明するための光検出器の
出力を示す図、第8図は従来の光スペクトラムアナライ
ザの他の例を示す図、第9図は第8図の従来例の原理を
説明するための光検出器の出力を示す図、第10図は第
8図の従来例及び第2の実施例を説明するための光検出
器の出力特性を示す図である。 1は光源、2はコリメートレンズ、3は光変調器、4は
集光レンズ、5は光吸収体、6はリニア光検出器、7は
入射光、8は非回折光、9は回折光、10は入力信号、
11はピーク検出回路、12は周波数算出回路、13は
内挿回路、14は和回路、15は対数増幅器、120は
入力信号レベル算出回路、130は内挿回路である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a diagram showing an optical spectrum analyzer according to a first embodiment of the present invention, FIG. 2 is a diagram showing output characteristics of a photodetector for explaining the principle of the first embodiment of the present invention, and FIG. 3 shows a modification of the first embodiment, FIG. 4 shows an optical spectrum analyzer according to the second embodiment of the invention, and FIG. 5 shows a modification of the second embodiment. Figure 6 shows an example of a conventional optical spectrum analyzer, Figure 7 shows an example of a conventional optical spectrum analyzer.
The figure shows the output of a photodetector to explain the principle of the conventional example shown in Fig. 6, Fig. 8 shows another example of the conventional optical spectrum analyzer, and Fig. 9 shows the conventional example shown in Fig. 8. FIG. 10 is a diagram showing the output of the photodetector for explaining the principle of the example, and FIG. 10 is a diagram showing the output characteristics of the photodetector for explaining the conventional example and the second embodiment of FIG. 1 is a light source, 2 is a collimating lens, 3 is a light modulator, 4 is a condensing lens, 5 is a light absorber, 6 is a linear photodetector, 7 is incident light, 8 is non-diffracted light, 9 is diffracted light, 10 is an input signal,
11 is a peak detection circuit, 12 is a frequency calculation circuit, 13 is an interpolation circuit, 14 is a summation circuit, 15 is a logarithmic amplifier, 120 is an input signal level calculation circuit, and 130 is an interpolation circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)光源より出射された光を入力RF信号に応じて回
折する光変調器と、 直線状に配列された複数の光検出素子を有し、上記光変
調器により回折され光学系により導かれた光を検出する
光検出器と、 上記複数の光検出素子のうちピーク信号を示す素子を検
出するピーク検出回路と、 該記ピーク検出回路により検出された素子に対応する周
波数を出力する周波数算出回路と、上記光検出器のピー
ク信号を示す素子に隣接する素子の信号を用いて内挿処
理し、上記周波数算出回路の出力を補正し、上記入力R
F信号の周波数を求める内挿処理手段とを備えたことを
特徴とする光スペクトラムアナライザ。
(1) It has an optical modulator that diffracts the light emitted from the light source according to the input RF signal, and a plurality of linearly arranged photodetecting elements, and the light is diffracted by the optical modulator and guided by the optical system. a photodetector that detects the light detected by the light; a peak detection circuit that detects an element exhibiting a peak signal among the plurality of photodetection elements; and a frequency calculation that outputs a frequency corresponding to the element detected by the peak detection circuit. The output of the frequency calculation circuit is corrected by interpolation processing using the circuit and the signal of the element adjacent to the element indicating the peak signal of the photodetector, and the input R
An optical spectrum analyzer comprising: interpolation processing means for determining the frequency of the F signal.
(2)光源より出射された光を入力RF信号に応じて回
折する光変調器と、 直線状に配列された複数の光検出素子を有し、上記光変
調器により回折され光学系により導かれた光を検出する
光検出器と、 上記複数の光検出素子のうちピーク信号を示す素子を検
出するピーク検出回路と、 該記ピーク検出回路により検出された素子の信号レベル
を出力する入力レベル算出回路と、上記光検出器のピー
ク信号を示す素子に隣接する素子の信号を用いて内挿処
理し、上記入力レベル算出回路の出力を補正し、上記入
力RF信号の信号レベルを求める内挿処理手段とを備え
たことを特徴とする光スペクトラムアナライザ。
(2) It has an optical modulator that diffracts the light emitted from the light source according to the input RF signal, and a plurality of linearly arranged photodetecting elements, and the light is diffracted by the optical modulator and guided by the optical system. a photodetector that detects the light detected by the photodetector, a peak detection circuit that detects an element exhibiting a peak signal among the plurality of photodetection elements, and an input level calculator that outputs a signal level of the element detected by the peak detection circuit. interpolation processing using a circuit and a signal of an element adjacent to the element indicating the peak signal of the photodetector, correcting the output of the input level calculation circuit, and determining the signal level of the input RF signal; An optical spectrum analyzer characterized by comprising means.
JP10814190A 1990-04-23 1990-04-23 Optical spectrum analyzer Pending JPH045575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10814190A JPH045575A (en) 1990-04-23 1990-04-23 Optical spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10814190A JPH045575A (en) 1990-04-23 1990-04-23 Optical spectrum analyzer

Publications (1)

Publication Number Publication Date
JPH045575A true JPH045575A (en) 1992-01-09

Family

ID=14476981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10814190A Pending JPH045575A (en) 1990-04-23 1990-04-23 Optical spectrum analyzer

Country Status (1)

Country Link
JP (1) JPH045575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037389A (en) * 2001-11-03 2003-05-14 한국과학기술원 Fluorescence spectrometer using acousto-optic tunable filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037389A (en) * 2001-11-03 2003-05-14 한국과학기술원 Fluorescence spectrometer using acousto-optic tunable filter

Similar Documents

Publication Publication Date Title
US6396588B1 (en) Hybrid curvature-tilt wave front sensor
US20220066004A1 (en) Distortion determination apparatus and method of determining a distortion
JPH0328691B2 (en)
JP2809133B2 (en) Solid-state imaging device
US3941996A (en) Automatic focus apparatus
US6509729B2 (en) Multiple simultaneous optical frequency measurement
JP2003106980A (en) Measuring device and measuring method for minute particle group
JPH045575A (en) Optical spectrum analyzer
JPH0328689B2 (en)
JP3133416B2 (en) Photometric device
JPS6281519A (en) Range finder
JPS59125007A (en) Distance measuring device
JPS6115404B2 (en)
JP3096361B2 (en) Optical spectrum analyzer
JPS5993409A (en) Focusing error detector
JPH074553Y2 (en) Photometric device
KR950005035Y1 (en) Distance counting apparauts for auto focus camera
SU767510A1 (en) Photoelectric device
JPS61209413A (en) Focus detector
JP3310079B2 (en) Camera ranging device
JPS59228131A (en) Laser light warning device
JPH06201742A (en) Correction method for frequency discrimination circuit of receiving signal
JPH05323030A (en) Frequency detector, frequency followup method and doppler speedometer using the same
JPH02118402A (en) High accuracy position measuring circuit
JPH06265561A (en) Spatial filter type speed measuring equipment