JPH0455401B2 - - Google Patents

Info

Publication number
JPH0455401B2
JPH0455401B2 JP61038980A JP3898086A JPH0455401B2 JP H0455401 B2 JPH0455401 B2 JP H0455401B2 JP 61038980 A JP61038980 A JP 61038980A JP 3898086 A JP3898086 A JP 3898086A JP H0455401 B2 JPH0455401 B2 JP H0455401B2
Authority
JP
Japan
Prior art keywords
tria
dispersion
stage
yield
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61038980A
Other languages
Japanese (ja)
Other versions
JPS62198603A (en
Inventor
Yoshio Murata
Sakae Kawashima
Kazunori Sakane
Tokihide Nagoshi
Yoshio Toi
Takahiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP3898086A priority Critical patent/JPS62198603A/en
Publication of JPS62198603A publication Critical patent/JPS62198603A/en
Publication of JPH0455401B2 publication Critical patent/JPH0455401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明は、水稲の収量を増大させる方法に関す
る。更に詳しくは、水稲の生育期における或る特
定時期に1−トリアコンタノールを施用すること
によつて、水稲の収量を増加させる方法に関す
る。 b 従来技術 わが国において、水稲は最も重量な穀物であ
り、多量に生産されている。水稲は人類がそれを
主要食用源として利用し、そのために生育し始め
て以来極めて長い歴史を有している。その間幾多
の品種改良、栽培技術の発展によつて近年におけ
る単位面積当りの米穀の収量は比較的高い水準に
あり、また生育地域も全国の殆んどの区域に拡大
された。 しかしながら、自然環境の変動、例えば冷害、
干ばつ、台風などにより時には大きな減産を余儀
なくされることがある。 また世界的な人口増加に伴ない、食糧の確保は
必須のことである。従つて食糧の増収や安定的収
量確保ために新しい植物ホルモンの開発や遺伝子
技術による植物の改変は最も期待されている技術
である。 最近、植物の生長を促す植物生長調節剤の研
究、開発が盛んに行なわれ、数多く提案され、一
部は実用化されている。その植物生長調節剤の1
つとして、むらさきうまごやしから抽出された1
−トリアコンタノールが提案された(特開昭53−
86369号公報参照)。この公報には、1−トリアコ
ンタノールは、微量の使用によつて、各種植物、
例えば稲、小麦、とうもろこし、トマト、そらま
め、大麦などに対して、乾燥重量、生長、水吸
収、水利用効率およびタンパク質合成を増加させ
ると記載されている。同公報には、稲に対して1
−トリアコンタノールを施用することおよびその
実施例が掲載され、殊に1−トリアコンタノール
が稲の全植物体に与える影響、或いは全植物体に
対するタンパク質の割合に与える影響について記
載されているが、稲の種子いわゆる最終収穫物と
しての米の収量に与える1−トリアコンタノール
の影響について具体的な教示はない。 c 発明の目的 かくして本発明の目的は、1−トリアコンタノ
ールを使用して米(乾燥重量として)の収量を増
加させる方法を提供することにある。 本発明の他の目的は、1−トリアコンタノール
の使用態様と米の収量増加との再現性のある関係
を明らかにすることにある。 本発明の更に他の目的は、1−トリアコンタノ
ールを使用して米の収量増加を行うことができ
る、具体的で且つ実用的な方法を提供することに
ある。 本発明の更に他の目的は、以下の説明から明ら
かとなるであろう。 d 発明の構成 本発明者らの研究によれば、前述した本発明の
目的は、水稲の本田初期および/または苗代期に
少くともその茎葉面または根部へ1−トリアコン
タノールを極めて小さい微粒子として分散させて
た微分散水性液を特定条件で施用することにより
達成されることがわかつた。 以下本発明方法について更に具体的に説明す
る。本発明において1−トリアンコンタノール
(以下“TRIA”と略称することがある)は、水
稲の生育時における本田初期または苗代期もしく
は両期に水稲へ施用される。施用は茎葉面へ
TRIA分散液を散布するか根部の浸漬により又は
根部へ土壌を介して行えばよいが、茎葉面へ散布
するのが有利である。 TRIAの施用時期は、前述の通り本田初期また
は苗代期であり、その両期に施用しても差支えな
いが、いずれか一方でも目的は充分に達成され
る。本田初期に施用する方が、苗代期に施用する
よりも好ましい結果が得られる場合が多い。 本発明者の研究によればTRIAの施用時期は、
最終目的物である米の収量に影響を与え、本田初
期および/または苗代期に施用することによつ
て、約5〜約15%増収可能である。これに対し
て、幼穂形成期や出穂期にTRIAを施用しても増
収効果は殆んど期待できない。また本田初期と幼
穂形成期、本田初期と出穂期に重複してTRIAを
施しても本田初期または苗代期に試用するよりも
優れた増収効果は認められなかつた。 TRIAは、分子式CH3(CH228CH2OHで表わさ
れる長鎖のアルコールであり、水には極めて難容
性の化合物である。そこでTRIAの施用に当つて
は、TRIAを水に微分散したいわゆる分散液で行
われる。TRIAの水分散液の濃度は、少くとも
0.2ppbであるのが望ましく、また、溶解性、分散
性および経済性の点から10ppb以下であるのが有
利である。 TRIAの分散液は、TRIAが極めて小さい微粒
子として分散し、且つ安定に保持されるように調
整するのが望ましく、そのため種々の乳化剤が使
用される。またTRIAを施用した場合、水稲の茎
葉面または根に展着し易いような各種展着剤が水
分散液に加えられる。かかる乳化剤或いは展着剤
として、例えばオクタデシル、ソデイウムサルフ
エート、トウイーン(tween)20,NP−25
a. Industrial Application Field The present invention relates to a method for increasing the yield of paddy rice. More specifically, the present invention relates to a method of increasing the yield of paddy rice by applying 1-triacontanol at a specific time during the growing season of paddy rice. b. Prior Art In Japan, paddy rice is the heaviest grain and is produced in large quantities. Paddy rice has an extremely long history since humans began using it as a major food source and growing it for that purpose. Due to numerous improvements in varieties and development of cultivation techniques, the yield of rice per unit area has reached a relatively high level in recent years, and the growing area has expanded to almost all areas of the country. However, changes in the natural environment, such as cold damage,
Droughts, typhoons, etc. sometimes force production to be reduced significantly. Furthermore, as the world's population increases, securing food is essential. Therefore, the development of new plant hormones and the modification of plants through genetic technology are the most promising technologies for increasing food yields and ensuring stable yields. Recently, research and development of plant growth regulators that promote plant growth have been actively conducted, and many proposals have been made, some of which have been put into practical use. One of the plant growth regulators
1 extracted from Murasaki Umagoyashi
−Triacontanol was proposed (Japanese Patent Application Laid-open No. 1983-
(Refer to Publication No. 86369). This publication states that 1-triacontanol can be used in various plants when used in trace amounts.
For example, it has been described to increase dry weight, growth, water absorption, water use efficiency, and protein synthesis in rice, wheat, corn, tomato, fava beans, barley, etc. The same bulletin states that 1
- The application of triacontanol and its examples are published, and in particular the effect of 1-triacontanol on the whole plant of rice or the effect on the ratio of protein to the whole plant is described. There is no specific teaching regarding the influence of 1-triacontanol on the yield of rice seeds, so-called final crops. c. Object of the invention It is thus an object of the invention to provide a method for increasing the yield of rice (as dry weight) using 1-triacontanol. Another object of the present invention is to clarify the reproducible relationship between the mode of use of 1-triacontanol and the increase in rice yield. Still another object of the present invention is to provide a specific and practical method for increasing rice yield using 1-triacontanol. Further objects of the invention will become apparent from the description below. d Structure of the Invention According to the research conducted by the present inventors, the above-mentioned object of the present invention is to apply 1-triacontanol as extremely small particles to at least the stem and leaf surfaces or roots of paddy rice during the initial stage and/or seedling stage. It has been found that this can be achieved by applying a finely dispersed aqueous solution under specific conditions. The method of the present invention will be explained in more detail below. In the present invention, 1-triancontanol (hereinafter sometimes abbreviated as "TRIA") is applied to paddy rice during the early stage, seedling stage, or both stages of rice growth. Apply to the foliage and foliage surfaces
It is possible to apply the TRIA dispersion by dipping the roots or through the soil to the roots, but it is advantageous to apply the TRIA dispersion to the foliage. As mentioned above, TRIA can be applied at the early Honda stage or at the seedling stage, and it can be applied at both stages, but the purpose can be fully achieved with either one. Applying at the early stage often yields better results than applying at the seedling stage. According to the research of the present inventor, the timing of application of TRIA is as follows:
It affects the yield of rice, which is the final target, and can increase the yield by about 5 to about 15% by applying it at the early stage and/or seedling stage. On the other hand, even if TRIA is applied during the panicle formation stage or heading stage, almost no effect on increasing yield can be expected. Furthermore, even if TRIA was applied overlappingly at the early Honda stage and the panicle formation stage, or between the early Honda stage and the heading stage, no better yield-increasing effect was observed than when TRIA was applied at the early Honda stage or the seedling stage. TRIA is a long-chain alcohol with the molecular formula CH 3 (CH 2 ) 28 CH 2 OH, and is a compound that is extremely intolerant to water. Therefore, when applying TRIA, a so-called dispersion liquid in which TRIA is finely dispersed in water is used. The concentration of the aqueous dispersion of TRIA should be at least
The content is preferably 0.2 ppb, and from the viewpoint of solubility, dispersibility, and economy, it is advantageous to be 10 ppb or less. It is desirable to adjust the dispersion of TRIA so that TRIA is dispersed and stably maintained as extremely small particles, and for this purpose various emulsifiers are used. In addition, when TRIA is applied, various spreading agents are added to the aqueous dispersion that are likely to spread on the stems, leaves, or roots of paddy rice. Such emulsifiers or spreading agents include, for example, octadecyl, sodium sulfate, Tween 20, NP-25.

【式】ラウリル 硫酸ソーダ[CH3(CH210CH2OSO3Na]、タロ
アルキルサルフエートなどが挙げられる。 前述した如きTRIAを含む分散液を、水稲の本
田初期または苗代期において茎葉面或いは根部に
施用する方法としては、分散液を茎葉面へ直接散
布してもよいし、また生育している区域全体に散
布してもよい。さらに根部浸漬または根部へ土壌
を介して処理してもよい。茎葉面散布は上記濃度
の分散液をスプレイヤーにて行えばよく、分散液
は、施用しようとする区域100m2当り、約3〜
約200の範囲で使用される。この分散液の好適
使用割合は、分散液におけるTRIAの濃度、散布
時期などにより左右される。また分散液は、1回
で使用してもよく、また2回またはそれ以上の回
数に分けて施用してもよい。 本発明方法は、水稲であればいかなる種類のも
のにも適用される。例えばコシヒカリ、ニホンバ
レ(日本晴れ)、ササニシキ、アキヒカリ、キヨ
ニシキ、トヨニシキ、イシカリ、越路早生、レイ
ホウ、ホウネンワセなどに対して好ましく採用さ
れるが、とりわけコシヒカリ、ニホンバレに増収
効果が優れており、コシヒカリはニホンバレに比
べてその効果が高い。 以下実施例を掲げ本発明方法を詳述する。 [] 参考例(TRIA分散液の調整) 10p.p.m.のタロアルキルサルフエートを溶解し
た40重量部の水中に、0.04重量部の1−トリアコ
ンタノール(TRIA)を添加し、超音波処理を行
つてTRIAの分散液を得、次いで大きなTRIA粒
子をガラスフイルターを用いて除去し、TRIAの
濃度が約800p.p.m.の微分散液を調製した。 この微分散液を水で希釈してTRIAの濃度が、
それぞれ0.2ppbの分散液(以下“分散液L”とい
う)および1.0ppbの分散液(以下“分散液H”と
いう)の2種のTRIA分散液を調製した。 なお、上記タロアルキルサルフエート
(Sodiumtallow alkyl sulfate)は式Cn H(2o+1)
OSO3Naで表わされ、ここでnは14のものが3.8
%、16のものが27.9%、18のものが63.2%の組成
であつた。 [] 実施例 実施例 1〜6 水稲コシヒカリを下記スケジユールにて生育せ
しめた(昭和59年度:神奈川県厚木市東京農大農
場にて行つた。)。 播種日 4月26日 移植日 6月 7日 出穂日 8月16日 収穫日 10月 5日 なお栽植密度は33.0×13.5cm、22.4株/m2であ
つた。 圃場での実験は、TRIAの分散液Lまたは分散
液Hを茎葉面に散布した6処理区と、対照区とし
て無処理を設け、乱塊法により1区4m2の4反復
で行つた。前期6処理区の散布処理は、その6区
分を3つのグループに分け、各グループに対し下
記の如く1〜3時期に行つた。 グループ1 分げつ初期(6月21日と6月22日) グループ2分げつ初期(6月21日と6月22日) + 幼穂形成期(7月19日と7月20日) + 出穂期(8月27日) グループ3分げつ初期(6月21日と6月22日) + 出穂期(8月27日) すなわち、グループ1は分げつ初期のみ散布処
理を行ない、グループ2は分げつ初期、幼穂形成
期及び出穂期の3時期での重複散布処理を行な
い、グループ3は分げつ初期及び出穂期の2時期
での重複散処理を行なつた。 またグループ1〜3のそれぞれにおける2区分
は、一方の区分には分散液Lを散布し、他方の区
分には分散液Hを散布するために用いられた。 前記分散液は、190ml/m2の割合となるように
スプレイヤーを用いて茎葉面に散布された分げつ
初期と幼穂形成期の散布は2日続けて行つた。 上記したTRIA分散液の散布を各々の区分に行
なつて後収穫し、1株当りの玄米重量を調べた結
果、下記表1に示す通りであつた。 表中“収量比”は、無散布を100とした時の比
率で示した。
[Formula] Sodium lauryl sulfate [CH 3 (CH 2 ) 10 CH 2 OSO 3 Na], taloalkyl sulfate, and the like. As a method for applying the above-mentioned dispersion containing TRIA to the stem and foliage surfaces or roots of paddy rice during the initial or seedling stage, the dispersion may be applied directly to the stem and foliage surface, or the dispersion may be applied to the entire growing area. May be sprayed on. Furthermore, the roots may be immersed or treated through the soil. Spraying on the foliage and foliage can be done by using a sprayer with a dispersion liquid of the above concentration.
Used in a range of approximately 200. The preferred proportion of this dispersion liquid depends on the concentration of TRIA in the dispersion liquid, the time of spraying, etc. Further, the dispersion may be used once, or may be divided into two or more applications. The method of the present invention can be applied to any type of paddy rice. For example, it is preferably used for Koshihikari, Nihonbare (Nipponbare), Sasanishiki, Akihikari, Kiyonishiki, Toyonishiki, Ishikari, Koshiji Wase, Reihou, Hounenwase, etc., but the yield increasing effect is especially excellent for Koshihikari and Nihonbare, and Koshihikari is particularly good for Nihonbare. It is more effective than that. The method of the present invention will be described in detail below with reference to Examples. [] Reference example (Preparation of TRIA dispersion) 0.04 parts by weight of 1-triacontanol (TRIA) was added to 40 parts by weight of water in which 10 p.pm of talloalkyl sulfate was dissolved, and the mixture was subjected to ultrasonication. A dispersion of TRIA was obtained, and then large TRIA particles were removed using a glass filter to prepare a fine dispersion of TRIA with a concentration of about 800 p.pm. This fine dispersion was diluted with water to determine the concentration of TRIA.
Two types of TRIA dispersions were prepared, each containing a 0.2 ppb dispersion (hereinafter referred to as "dispersion L") and a 1.0 ppb dispersion (hereinafter referred to as "dispersion H"). In addition, the above-mentioned taloalkyl sulfate (Sodiumtallow alkyl sulfate) has the formula Cn H (2o+1)
OSO 3 Na, where n is 14 is 3.8
%, 16 had a composition of 27.9%, and 18 had a composition of 63.2%. [] Examples Examples 1 to 6 Paddy rice Koshihikari was grown according to the following schedule (1981: At Tokyo University of Agriculture Farm, Atsugi City, Kanagawa Prefecture). Sowing date: April 26th Transplanting date: June 7th Earing date: August 16th Harvesting date: October 5th The planting density was 33.0 x 13.5 cm, 22.4 plants/ m2 . The experiment in the field was conducted in 4 replicates of 4 m 2 per plot using the randomized block method, with 6 treated plots in which TRIA dispersion L or dispersion H was sprayed on the stems and foliage, and an untreated control plot. For the first six treatment areas, the six treatment areas were divided into three groups, and each group was sprayed in periods 1 to 3 as shown below. Group 1 Early tillering (June 21st and June 22nd) Group 2 Early tillering (June 21st and June 22nd) + Panicle formation stage (July 19th and July 20th) + Heading period (August 27th) Group 3 Early tillering period (June 21st and June 22nd) + Heading period (August 27th) In other words, Group 1 was sprayed only at the early tillering stage; In Group 2, multiple dispersal treatments were performed at three stages: early tillering, panicle formation, and heading stage, and in Group 3, multiple dispersal treatments were performed at two stages, early tillering and heading stage. Moreover, two divisions in each of Groups 1 to 3 were used to spray dispersion L in one division and spray dispersion H in the other division. The dispersion liquid was sprayed onto the stem and foliage using a sprayer at a rate of 190 ml/m 2 .The spraying was carried out for 2 consecutive days at the early tillering stage and the panicle formation stage. The TRIA dispersion described above was sprayed on each section and then harvested, and the weight of brown rice per plant was determined as shown in Table 1 below. "Yield ratio" in the table is expressed as a ratio when no spraying is taken as 100.

【表】【table】

【表】 実施例 7,8 水稲ニホンバレ(日本晴)を下記スケジユール
にて生育せしめた(昭和59年度:神奈川県厚木市
東京農大農場にて行つた)。 播種日 5月 7日 移植日 6月12日 出穂日 8月27日 収穫日 10月19日 栽植密度は33.0×13.5cm、22.4株/m2であつた。 圃場での実験は、TRIA分散液を茎葉面に散布
した2処理区と対照区として無処理を設け、乱塊
法により1区4m2の4反復で行つた。上記2処理
区の散布処理はそのうちの1区分に対し、前記
TRIA分散液Lを分げつ初期に散布し、更に他の
1区分は前記TRIA分散液Hを分げつ初期に散布
した。 散布方法及び調査は前記実施例1〜6と同様に
して行つた。その結果は下記表2の通りであつ
た。
[Table] Examples 7 and 8 Paddy rice Nihonbare (Nipponbare) was grown according to the following schedule (1981: carried out at Tokyo University of Agriculture Farm, Atsugi City, Kanagawa Prefecture). Sowing date: May 7th Transplanting date: June 12th Earing date: August 27th Harvesting date: October 19th Planting density was 33.0 x 13.5 cm, 22.4 plants/ m2 . The experiment in the field was conducted in four replicates of 4 m 2 per plot using the randomized block method, with two treated plots in which the TRIA dispersion was sprayed on the foliage and an untreated plot as a control plot. The spraying treatment for the above two treatment areas will be applied to one of the above two treatment areas.
TRIA dispersion L was sprayed at the early stage of tillering, and in another section, the TRIA dispersion H was sprayed at the early stage of tillering. The spraying method and investigation were carried out in the same manner as in Examples 1 to 6 above. The results were as shown in Table 2 below.

【表】 実施例 9,10 水稲コシヒカリを実施例1〜6と同じ圃場にて
ほぼ同じスケジユールで生育させた。 この実験では苗代期にTRIA処理を行つた時の
効果を調べたものである。この実験では、参考例
におけるTRIA濃度が800ppmの微分散液を希釈
して、10ppmのTRIA分散液を調製して用いた。 1区分は無処理区とし、他の1区分は苗代末期
(6月2日)に茎葉面に前記分散液を190ml/m2
割合で散布し、更に他の区分は抜き取つた苗の根
部を移植前日1夜前記分散液に浸漬処理したもの
である。 尚乱塊法による1区4m2の4反復で実験した。
その結果は下記表3の通りであつた。
[Table] Examples 9 and 10 Paddy rice Koshihikari was grown in the same field as in Examples 1 to 6 and at approximately the same schedule. This experiment investigated the effect of TRIA treatment during the seedling stage. In this experiment, a fine dispersion liquid with a TRIA concentration of 800 ppm in the reference example was diluted to prepare a TRIA dispersion liquid with a TRIA concentration of 10 ppm. One category is untreated, the other category is sprayed with the above dispersion at a rate of 190ml/m 2 on the stem and leaves at the end of the seedling period (June 2nd), and the other category is the root area of the extracted seedlings. were immersed in the above dispersion overnight the day before transplantation. The experiment was conducted using the random block method with 4 repetitions of 4 square meters per section.
The results were as shown in Table 3 below.

【表】 実施例 11〜15 水稲コシヒカリを下記スケジユールにて生育せ
しめた(昭和60年度:神奈川県厚木市東京農大農
場にて行つた)。 播種日 4月24日 移植日 6月11日 出穂日 8月19日 収穫日 10月 4日 栽植密度は、33.0×13.5cm、22.4株/m2であつ
た。 圃場での実験は、下記表4に示したTRIA分散
液を同表に示した時期に茎葉面に散布した6処理
区と対照区として無処理区を設け、乱塊法により
1区4m2の4反復で行つた。散布方法及び調査は
実施例1〜6と同様に行つた。その結果を下記表
4に示した。 なお表4中の“分散液HH”はTRIAの濃度が
10ppbのTRIA分散液を意味する。
[Table] Examples 11 to 15 Paddy rice Koshihikari was grown according to the following schedule (1985: carried out at Tokyo University of Agriculture Farm, Atsugi City, Kanagawa Prefecture). Sowing date: April 24th Transplanting date: June 11th Earing date: August 19th Harvesting date: October 4th The planting density was 33.0 x 13.5 cm, 22.4 plants/ m2 . The experiment in the field consisted of 6 treated plots in which the TRIA dispersion shown in Table 4 below was sprayed on the stems and leaves at the times shown in the same table, and an untreated plot as a control plot, and each plot of 4 m 2 was planted using the randomized block method. This was done in 4 repetitions. The spraying method and investigation were carried out in the same manner as in Examples 1-6. The results are shown in Table 4 below. In addition, “Dispersion liquid HH” in Table 4 has a concentration of TRIA.
Means 10 ppb TRIA dispersion.

【表】 実施例 16,17 水稲ニホンバレ(日本晴)を下記スケジユール
にて生育せしめた(昭和60年度:神奈川県厚木市
東京農大農場にて行つた)。 播種日 5月 2日 移植日 6月18日 出穂日 8月27日 収穫日 10月17日 栽植密度は33.0×13.5cm、22.4株/m2であつた。 圃場での実験は、TRIA分散液を茎葉面に散布
した2処理区と対照区として無処理を設け、乱塊
法により1区4m2の4反復で行つた。上記2処理
区の散布処理は,そのうち1区分に前記TRIA分
散液Lを分げつ初期に散布し、更に他の1区分は
前記10ppbTRIA分散液HHを分げつ初期に散布
した。 散布方法及び調査は前記実施例1〜6と同様に
して行つた。その結果は下記表5の通りであつ
た。
[Table] Examples 16 and 17 Paddy rice Nihonbare (Nipponbare) was grown according to the following schedule (1985: carried out at Tokyo University of Agriculture Farm, Atsugi City, Kanagawa Prefecture). Sowing date: May 2nd Transplanting date: June 18th Earing date: August 27th Harvesting date: October 17th The planting density was 33.0 x 13.5 cm, 22.4 plants/ m2 . The experiment in the field was conducted in four replicates of 4 m 2 per plot using the randomized block method, with two treated plots in which the TRIA dispersion was sprayed on the foliage and an untreated plot as a control plot. The above two treatment plots were sprayed with the TRIA dispersion L at the beginning of tillering in one section, and the 10 ppb TRIA dispersion HH at the beginning of tillering in the other section. The spraying method and investigation were carried out in the same manner as in Examples 1 to 6 above. The results were as shown in Table 5 below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 水稲の本田初期および/または苗代期に少く
ともその茎葉面または根部へ1−トリアコンタノ
ール濃度が0.2〜10ppbである1−トリアコンタノ
ールの微分散水性液を100m2当り3〜200の範囲
で施用することにより米の収量を増大させること
を特徴とする水稲の収量を増大させる方法。
1. Apply a finely dispersed aqueous solution of 1-triacontanol with a 1-triacontanol concentration of 0.2 to 10 ppb to at least the stem and leaf surfaces or roots of paddy rice at the early stage and/or seedling stage in the range of 3 to 200 per 100 m2 . A method for increasing the yield of paddy rice, characterized by increasing the yield of rice by applying
JP3898086A 1986-02-26 1986-02-26 Method for increasing yield of paddy rice plant Granted JPS62198603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3898086A JPS62198603A (en) 1986-02-26 1986-02-26 Method for increasing yield of paddy rice plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3898086A JPS62198603A (en) 1986-02-26 1986-02-26 Method for increasing yield of paddy rice plant

Publications (2)

Publication Number Publication Date
JPS62198603A JPS62198603A (en) 1987-09-02
JPH0455401B2 true JPH0455401B2 (en) 1992-09-03

Family

ID=12540297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3898086A Granted JPS62198603A (en) 1986-02-26 1986-02-26 Method for increasing yield of paddy rice plant

Country Status (1)

Country Link
JP (1) JPS62198603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386369A (en) * 1977-01-03 1978-07-29 Univ Michigan State Method and compositions for regulating plant growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386369A (en) * 1977-01-03 1978-07-29 Univ Michigan State Method and compositions for regulating plant growth

Also Published As

Publication number Publication date
JPS62198603A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
US4150970A (en) Growth regulator for plants
EP2601833B1 (en) A method for promoting microbial activity in soil
JP5235137B2 (en) Use of proline to improve growth and / or production
JPH11506102A (en) Treatment of plants with Bacillus subtilis
US4212664A (en) Nicotinamide-ammonium hydroxide plant growth regulator compositions
KR20020086604A (en) Methods for enhancing plant health, protecting plants from biotic and abiotic stress related injuries and enhancing the recovery of plants injured as a result of such stresses
CN113615695B (en) Composition for improving fruit tree yield and quality and application thereof
US4764201A (en) Plant growth regulation
CN111165491A (en) Pesticide composition containing Vanilthioketal and plant growth regulator
WO2019030443A1 (en) Composition made from polyol(s) and sterol(s) for use in the agricultural field
CN112293428A (en) Synergistic composition containing organic silicon plant growth regulator
CN111493095A (en) Plant growth regulator composition containing hypersensitive protein and application thereof
CN114946858B (en) Plant growth regulating composition containing triacontanol and gibberellin
Singh et al. Effect of calcium nitrate, GA3 and ethrel on fruiting, ripening and chemical traits of phalsa (grewia subinaequalis DC).
US4449997A (en) Plant growth regulator
Mes Gibberellic acid and the chilling requirements of peach seeds
JPS60115501A (en) Photorespiration inhibitor
JPH0455401B2 (en)
WO2002003803A1 (en) Methods and compositions for modulating plant growth and senescence
Samant et al. Efficacy of some chemicals for crop regulation in Allahabad Safeda guava under coastal Indian conditions of Odisha.
JPH03178901A (en) Method for improving taste of rice grain
CN114794126A (en) Weeding composition, pesticide, application method and application
Hossain et al. Effect of Cephalexin on Sex Expression, Fruit Development
SUZUKI et al. Restoration of thickening growth of radishes by application of SADH at higher temperatures
JPS62161701A (en) Seed treatment agent