JPH0455238B2 - - Google Patents

Info

Publication number
JPH0455238B2
JPH0455238B2 JP58047162A JP4716283A JPH0455238B2 JP H0455238 B2 JPH0455238 B2 JP H0455238B2 JP 58047162 A JP58047162 A JP 58047162A JP 4716283 A JP4716283 A JP 4716283A JP H0455238 B2 JPH0455238 B2 JP H0455238B2
Authority
JP
Japan
Prior art keywords
coal
amount
gasification
supplied
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58047162A
Other languages
Japanese (ja)
Other versions
JPS59172589A (en
Inventor
Shuntaro Koyama
Atsushi Morihara
Mitsuhiro Matsuo
Hiroshi Myadera
Jinichi Tomuro
Yoshiki Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP4716283A priority Critical patent/JPS59172589A/en
Publication of JPS59172589A publication Critical patent/JPS59172589A/en
Publication of JPH0455238B2 publication Critical patent/JPH0455238B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は微粉炭をガス化する石炭ガス化方法に
係り、特に反応速度が大きく、短時間で効率よく
ガス化する方法に関する。 〔従来技術〕 従来、石炭のガス化方法として固定層、流動層
および噴流層方式等が知られている。この中で噴
流層方式の場合は、石炭灰の融点以上(1300〜
1600℃)に温度を高めるので、他方式に比べ、カ
ーボンガス化率やH2及びCOガスの収量等が高め
やすく、また、公害性の副生物が少ないことか
ら、合成ガス及びカスタービン、スチームタービ
ン複合発電用原料ガスの製造に好適である。 噴流層方式には石炭バーナから、石炭又はチヤ
ー(ガスと共に飛散するカーボン粒子)と、スチ
ーム、並びに酸素又は空気等のガス化剤を同時に
供給する方式と、このようなバーナ以外に石炭単
独を供給するバーナを加えた方式がある。 ところで、石炭のガス化反応は大別すると、 〔石炭→C(チヤー),H2,CO,CO2,CH4
…(1)〕 〔C(チヤー)+O2→CO2,CO,H2 …(2)〕 〔石炭+O2→CO,CO2,H2 …(3)〕 で表わすことができる。(1)式は、熱分解反応(又
は乾留)である。前記の如く石炭単独バーナを加
えた方式では、この反応が起きやすい。(1)式と(2)
式を明らかに区別して併発させる方式の代表例と
しては公知の如く、米国のBI−GASプロセスが
ある。また、石炭バーナから石炭とガス化剤を同
時に供給し、意図的に(1),(2)式を区別しない(3)式
による代表例としては、Texacoプロセス、Shell
−Koppersプロセス等がある。 いずれのプロセスにおいても、カーボンガス化
率(ガスとして発生するカーボン量の、石炭中の
カーボン量に対する比率)を向上させるための種
種の試みがなされている。その最も代表的な方法
は、ガスと共に飛散するカーボン粒子、即ち、チ
ヤーを回収し、再びガス化炉に戻してガス化す
る、いわゆるチヤー再循環方法であるが、運転上
又は装置の信頼性等の点で以下の問題を残してい
る。即ち、チヤー再循環方式は、循環のための、
ポンプ、タンク、バルブ等の機器類を必要とする
ため、ガス化プロセスを複雑にし易く、ガス化装
置の運転性を悪化させる。また、チヤーの輸送量
を正確に測定する手段が確立されておらず循環量
の制御が困難である。特にチヤーの供給量によつ
て、ガス化条件が大きく変動するプロセスでは、
チヤーの定量循環に多大の設備を必要とする。 また、チヤーをガス化炉に供給するためには搬
送ガスを必要とするが、これに使用される窒素、
スチーム、CO2、生成ガスの一部等は、ガス化反
応にあまり寄与せず、これらのガスをガス化炉に
必要以上に供給することは好ましくない。更に、
循環するチヤーが多くなると、ガス化炉内や、ガ
ス化炉出口から先の配管等の摩耗量が増大する。 尚、特開昭57−174391号公報には、ガス化炉内
壁近傍の酸素濃度を高めることにより、溶融スラ
グ中の未反応炭素をより反応させるようにした石
炭のガス化方法が記載されている。しかしこの方
法では、炉壁面でのスラグ中の未燃分と酸素とが
反応して壁面が高温化されるという問題があつ
た。 〔発明の目的〕 本発明の目的は、微粉炭をガス化炉に一度通過
させるだけで未反応カーボンを減少することがで
き、チヤーの再循環の省略若しくは循環量の著し
い低減が図れる石炭ガス化方法を提供することに
ある。 〔発明の概要〕 本発明に係る石炭ガス化方法では、石炭がガス
化炉に供給されてから、ガス化炉を出るまでの反
応過程に着目し、反応を短時間で終了させるよう
にしている。即ち、反応にはどの過程で時間を要
するか調べた結果、石炭の反応速度は石炭灰の溶
融温度を越え、ガス化剤が多量にない場合に特に
低下することを見出した。この知見に基づき、石
炭をガス化する過程で灰の溶融温度を越えない反
応領域を形成させることにより反応時間の短縮を
図り、未反応カーボンを低減させるものである。 ここで反応速度について述べると、噴出層方式
の如く、酸素分圧が高い場合は、前記(3)式を次の
(4),(5),(6)式の3つの過程に分けて考えることが
できる。即ち、 〔石炭(C,H,O)+O2→CO2,H2O,チヤー
(C) …(4)〕 〔チヤー(C)+CO2→2CO …(5)〕 〔チヤー(C)+H2O→H2+CO …(6)〕 (4)〜(6)式のうち、(4)式は燃料反応であり、(5),
(6)式に比べて極めて反応が速い。つまり、反応時
間を左右するのは(5),(6)式である。一般に石炭又
はチヤーの反応速度は、それらの物理的、化学的
性状に大きく影響されることが知られている。し
かし、その性状は本来石炭が持つているもの以外
に、反応のさせ方によつても大きく異なることを
見出した。以下、この事実につき説明する。 第1図はいわゆる太平洋炭を酸素量及び温度を
任意に変えてガス化し、ガス化の中間生成物であ
るチヤーを回収して、そのチヤーとスチームとを
熱天秤中で(6)式に従い反応させ、チヤー中のカー
ボンが完全にガス化するまでに要した時間を示し
たものである。この結果、1300〜1400℃で生成
したチヤーの反応完結時間は短く、反応性に富む
ことがわかつた。 一方、チヤーの反応性はチヤーの物性との関係
が深い。第2図に石炭の反応条件と生成したチヤ
ーの比表面積の関係を示す。その結果、1300〜
1400℃で生成したチヤーの比表面積が最大である
ことが明らかとなつた。 以上の結果を総合すると、太平洋炭の場合、
1300〜1400℃付近で反応させるのが、ガス化の中
間生成物であるチヤーの反応性を最も高めること
ができ、ある程度のガス化剤が存在しさえすれば
短時間に完全ガス化が可能であることが判明し
た。 本発明は、1300〜1400℃の温度がなぜ最適かと
いう追求を更に進め、これが太平洋炭の灰分の溶
融温度に一致することを見いだしたことから生ま
れた。石炭灰の溶融温度をJIS−8801に従つて測
定した結果、灰の組成と合せて第1表に示す。
[Field of Application of the Invention] The present invention relates to a coal gasification method for gasifying pulverized coal, and particularly to a method that has a high reaction rate and efficiently gasifies in a short time. [Prior Art] Conventionally, fixed bed, fluidized bed, spouted bed methods, etc. are known as coal gasification methods. Among these, in the case of the spouted bed method, the temperature is higher than the melting point of coal ash (1300~
Since the temperature is raised to 1600℃, it is easier to increase the carbon gasification rate and the yield of H 2 and CO gas compared to other methods, and there are fewer polluting by-products, so it is suitable for synthesis gas, cast turbines, and steam. Suitable for producing raw material gas for turbine combined power generation. In the spouted bed method, coal or chia (carbon particles scattered with gas), steam, and gasifying agents such as oxygen or air are simultaneously supplied from a coal burner, and coal is supplied alone in addition to such a burner. There is a method that includes a burner. By the way, the coal gasification reaction can be roughly divided into [coal → C (char), H 2 , CO, CO 2 , CH 4
…(1)] [C (char) + O 2 → CO 2 , CO, H 2 …(2)] [Coal + O 2 → CO, CO 2 , H 2 …(3)] Equation (1) is a thermal decomposition reaction (or carbonization). This reaction is likely to occur in the system in which a coal-only burner is added as described above. Equation (1) and (2)
As is well known, a representative example of a system in which formulas are clearly distinguished and caused to coexist is the BI-GAS process in the United States. In addition, representative examples of formula (3), where coal and gasifying agent are supplied simultaneously from a coal burner and intentionally do not distinguish between formulas (1) and (2), include the Texaco process, Shell
- There are Koppers processes, etc. In both processes, various attempts have been made to improve the carbon gasification rate (the ratio of the amount of carbon generated as gas to the amount of carbon in coal). The most typical method is the so-called chir recirculation method, in which carbon particles, i.e., chire, scattered with the gas are collected and returned to the gasification furnace for gasification. The following problems remain. That is, the cher recirculation method uses
Since it requires equipment such as pumps, tanks, and valves, it tends to complicate the gasification process and deteriorates the operability of the gasifier. In addition, there is no established means to accurately measure the amount of chard transported, making it difficult to control the amount of circulation. Especially in processes where gasification conditions vary greatly depending on the amount of cher supplied,
A large amount of equipment is required for quantitative circulation of the chartreuse. In addition, a carrier gas is required to supply the char to the gasifier, and the nitrogen used for this,
Steam, CO 2 , a part of the produced gas, etc. do not contribute much to the gasification reaction, and it is not preferable to supply these gases to the gasification furnace more than necessary. Furthermore,
When the number of circulating chars increases, the amount of wear on the inside of the gasifier and the piping beyond the outlet of the gasifier increases. Furthermore, JP-A-57-174391 describes a coal gasification method in which unreacted carbon in molten slag is made to react more by increasing the oxygen concentration near the inner wall of the gasifier. . However, this method has a problem in that the unburned content in the slag reacts with oxygen on the furnace wall surface, causing the wall surface to become hot. [Object of the Invention] The object of the present invention is to provide a coal gasification method in which unreacted carbon can be reduced by passing pulverized coal once through a gasification furnace, and the recirculation of coal can be omitted or the amount of circulation can be significantly reduced. The purpose is to provide a method. [Summary of the Invention] The coal gasification method according to the present invention focuses on the reaction process from when coal is supplied to the gasifier until it leaves the gasifier, and is designed to complete the reaction in a short time. . That is, as a result of investigating which processes require time for the reaction, it was found that the reaction rate of coal exceeds the melting temperature of coal ash and is particularly reduced when there is not a large amount of gasifying agent. Based on this knowledge, by forming a reaction region that does not exceed the melting temperature of ash during the process of gasifying coal, the reaction time is shortened and unreacted carbon is reduced. Regarding the reaction rate, when the oxygen partial pressure is high, such as in the ejected bed method, the above equation (3) can be converted to the following:
The process can be divided into three processes: Equations (4), (5), and (6). That is, [coal (C, H, O) + O 2 → CO 2 , H 2 O, coal
(C) …(4)] [Char(C)+CO 2 →2CO…(5)] [Char(C)+H 2 O→H 2 +CO…(6)] Among formulas (4) to (6), Equation (4) is the fuel reaction, and (5),
The reaction is extremely fast compared to equation (6). In other words, equations (5) and (6) govern the reaction time. It is generally known that the reaction rate of coal or coal is greatly influenced by their physical and chemical properties. However, it was discovered that the properties differ not only from the inherent properties of coal but also depending on how the reaction is carried out. This fact will be explained below. Figure 1 shows the process of gasifying so-called Pacific coal by arbitrarily changing the amount of oxygen and temperature, collecting the intermediate product of gasification, char, and reacting the char with steam in a thermobalance according to equation (6). The figure shows the time required for the carbon in the char to completely gasify. As a result, it was found that the reaction completion time of the char produced at 1300-1400°C was short and it was highly reactive. On the other hand, the reactivity of the char is closely related to the physical properties of the char. Figure 2 shows the relationship between the coal reaction conditions and the specific surface area of the produced coal. As a result, 1300~
It was revealed that the specific surface area of the char produced at 1400℃ was the largest. Combining the above results, in the case of Pacific coal,
Reaction at around 1300-1400℃ can maximize the reactivity of the gasification intermediate product, and complete gasification can be achieved in a short time as long as a certain amount of gasification agent is present. It turns out that there is something. The present invention was developed by further investigating why a temperature of 1300 to 1400°C is optimal and finding that this corresponds to the melting temperature of ash in Pacific coal. The melting temperature of coal ash was measured according to JIS-8801, and the results are shown in Table 1 along with the composition of the ash.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第3図に示す実施例に基づいて
具体的に説明する。 第3図は微粉炭ガス化装置の系統図である。 石炭1は200メツシユ以下のものが70〜80wt%
となる粒度に粉砕して、石炭貯蔵、粉砕設備(図
示せず)を介してバケツトコンベア又は気体輸送
なる手段により、常圧石炭ホツパ20に輸送す
る。ここから、加圧ホツパ21,22に送り、ロ
ータリーフイーダ又はスクリユーフイーダ等の石
炭定量装置23,24で供給量を制御する。な
お、ホツパ20,21,22及び切り換え弁4
0,41で構成する石炭供給方法はロツクホツパ
ー方式と呼ばれるもので、ホツパ21と22は同
圧で、いずれもガス化炉よりも0.5〜1.0Kg/cm2
高い圧力にしておく。ホツパ22の石炭がある量
まで減少したら、弁41を開け、ホツパ21から
22へ自由落下により石炭を移動させる。ホツパ
22に石炭が所定量たまつたら弁41を閉じ、ホ
ツパ21の圧力を常圧まで下げ、弁40を開け
て、ホツパ20からホツパ21へ自由落下により
石炭を移動させる。その後、ホツパ20へ石炭を
輸送すると共に、弁40を閉じ、ホツパ21の圧
力をホツパ22の圧力に等しくなるまで上げ、次
の移動に備える。以上の方法をくり返すことによ
り石炭を連続的に高圧のガス化炉29に送る。 石炭定量装置は石炭をガス炉の異なる位置に
別々に供給するため、少なくとも22と23で示
す如く2台設ける。石炭は、ここからエジエクタ
25,26に自由落下させ、搬送ガス7により、
それぞれ供給管2,3を通して石炭バーナ27,
28に送る。搬送ガスとしては窒素、スチーム、
空気、二酸化炭素及びガス化炉で生成したガスの
一部等が用いるが、供給管内での炭塵爆発や閉塞
に対する安全性の面からは窒息ガスや二酸化炭素
ガスにすることが望ましい。 バーナ27,28からガス化炉29に供給され
た石炭は酸素4によつてガス化される。この酸素
は最初、流動調節計49によつて石炭の供給量に
見合う一定量が供給され、その後、上、下段バー
ナ27,28毎に区別して供給される。即ち、上
段バーナ27に供給される酸素は、供給管5を通
り、流量調節計42によつて流量を制御され、残
りの酸素が全量、供給管6を通つて下段バーナ2
8に流れる。この場合、石炭及び酸素の各バーナ
27,28への分配比がガス化効率に対し重要で
あるが、その分配法については後に更に詳細に説
明する。 石炭ガス化炉29には、ガス化領域30、熱回
収領域31及びスラグ冷却領域50が構成され
る。ガス化領域は非常に高温となり、金属容器で
構成することはできないので、耐火材52で覆
う。また、ここからの輻射による熱損失防止と、
粒子滞留時間増大を目的とし、上部、下部の径は
バーナ付近の径よりも縮少してある。ガス化領域
30では前記(4)〜(6)式の反応によりH2,COに豊
むガスが発生する。一方、石炭灰は溶融スラグ9
となり、耐火材52の表面に付着して重力によつ
て下方に流れ、スラグタツプ孔53を通つてスラ
グ冷却領域50に落下する。スラグ冷却領域には
水が溜めてあり、溶融スラグ9はここで急冷され
て固まり、さらにスラグタンク32に落下する。
ガス化炉29とスラグタンク32の間に切り換え
弁43を設け、平常時はこれを開けておく。従つ
てスラグタンク32内も水で満たされている。ス
ラグタンク内に一定量水冷スラグが溜るか又は一
定時間経過したら、一方の切り換え弁43を閉
じ、他方の切り換え弁44を開け、水と水冷スラ
グを共にスラグ分離器33に流し込む。スラグ分
離器33では金剛によつて水から水冷スラグ9を
分離する。スラグタンク32が空になつたら切り
換え弁44を閉じ、冷却水循環ポンプ35から管
54を通して水を流し、タンク32の圧力をガス
化炉と等しくする。その後、弁53を閉じ、弁4
3を開けて、スラグ9が、タンク32に溜まるよ
うにする。スラグ冷却領域50に溜めてある水
は、溶融スラグ9の熱により暖まるので、適時切
り換え弁46を開け、スラグ分離器に流し、水冷
管34により冷却する。冷却された水は冷却水循
環ポンプ35により、ガス化炉圧まで昇圧し、管
14を通して再びガス化炉のスラグ冷却領域50
に供給する。このように冷却水を常時循環するこ
とにより、スラグ冷却領域の水を一定温度に保
つ。この水は長い間の運転で、少しずつ蒸気する
ので、減少した量の水は、適時管16から補充す
る。 ガス化炉のガス化領域で生成したガスはガス化
炉を上昇し、熱回収領域31に入る。この領域に
は水冷管を設け、この管に水を流し、ガス顕熱と
熱交換によつてスチームを発生させる。従つてガ
ス化炉29の出口におけるガスの温度は400〜900
℃位に低下する。このガスを配管11を通してサ
イクロン36に導き、ガス中に含まれているダス
トを分離する。ダストを除去されたガスは配管1
2を通し、次のガス処理工程(図示せず)に導
く。ガスの処理工程は、ガスの用途により異なる
が、通常は、熱交換器、2次サイクロン又は洗浄
塔等の脱塵装置及びH2S又はCO2を除去する脱硫
装置等から構成される。 サイクロン36で回収された灰、チヤー等のダ
ストはダストホツパ37,38に貯溜する。ダス
ト13の排出方法は、石炭の供給及びスラグの排
出法と同様で、ホツパ38に一定量溜まつた後、
切り換え弁47を閉じ、ホツパ38の圧力を常圧
にして切り換え弁48を開け、フイーダ38によ
り抜き出す。排出が終了したら、切り換え弁39
を閉じ、ホツパ38をサイクロン36と同じ圧力
まで昇圧させ、切り換え弁37を開けてダストを
ホツパ38に貯溜する。以上のくり返しにより、
ダストは連続的に系外に排出される。 水冷スラグ18及びダスト13は共に灰処理設
備及び灰貯蔵所(図示せず)に送られる。 以上の微粉炭ガス化方法において、石炭及び酸
素の供給法、ガス化炉内温度の制御について更に
詳細に説明する。 前記の如く、石炭はガス化領域の上段バーナ2
7と下段バーナ38とに分離して供給される。
上、下段への供給比率は運転操作因子を少なく
し、制御を簡単にするため1対1とすることが最
も好ましい。即ち、供給する全石炭を上、下バー
ナへ均等に流れるように石炭定量装置23,24
を作動させればよい。 例えば石炭フイーダの回転数を同じにする等で
ある。一方、酸素の供給量は石炭供給量に対応さ
せて供給する。 ところで、ガス化炉の性能を表わす次の2つの
効率は、酸素の石炭に対する供給量の比αに最も
強く影響されることが知られている。 カーボンガス化率ηe=ガス化されたカーボン量/石炭
中のカーボン量 冷ガス化率ηG=ガス発熱量×ガス発生量/石炭発熱量
×石炭供給量 そして、酸素量/石炭量=αはηGが最も大きく
なる所を狙つていることが多く、炭種にもよる
が、通常0.7<α<1.0(Kg/Kg)である。本実施
例で使用した太平洋炭の場合にはα=0.82(Kg/
Kg)である。このようにして石炭供給量が決まれ
ば酸素の全供給量が決まり、調節計49により制
御される。その後酸素は上段バーナ27と下段バ
ーナ28に分離して供給される。この場合、上段
バーナ27へ供給する酸素量は、ガス化炉29の
ガス化領域の上段バーナ付近の温度が灰の溶融温
度を越えないように制御する。この制御法は、例
えば上段バーナ27と同一高さに設置した温度計
51によりバーナ27付近の温度を常に監視し、
その温度が灰の溶融温度を越えないように制御器
52から酸素上段供給管5の調節計42に信号を
送り、酸素の流量を調節すればよい。 なお、下段バーナ28へは上段バーナ27へ供
給された残りの酸素が供給される。本実施例では
ガス化炉に供給する全酸素量と上段に供給する酸
素量をそれぞれ調節計49,42で制御する。 太平洋炭の場合には石炭を上段、下段に1対1
で分配し、全酸素量/全石炭供給量=0.82(Kg/
Kg)の時、上段酸素供給量/上段石炭供給量=
0.36〜0.38(Kg/Kg)にすると、上段バーナ27
付近の温度を1310℃、即ち灰の溶融温度を越えな
い値にすることが確認された。従つてこの場合、
下段酸素供給量/下段石炭供給量は、1.26〜1.28
(Kg/Kg)であり、温度は灰の溶融温度を越える
1880℃である。 かかる操作条件のとき、ガス化炉29のガス化
領域では反応が次のように進行している。 上段バーナ27から供給された石炭は、炭素量
が少ない条件でガス化するため、カーボンをかな
り含んだチヤーに転化するが、このチヤーは灰の
溶融温度を越えない条件で生成したため、前述し
た如く極めて反応性に富んでいる。従つてここに
H2OやCO2等のガス化剤が存在すれば短時間の間
に(5),(6)式によりガス化する。一方、下段に供給
した石炭は、通常の酸素量/石炭量よりも大きい
条件で反応するので、極めて短時間で完全にガス
化する。この際、過剰の酸素を供給しているた
め、ここから生成するガス中にはCO,H2の他、
CO2,H2Oが相当量含まれる。そして下段で生成
したガスは、ガス化炉を上昇するので、上段で生
成したチヤーは、下段から生成するCO2,H2Oを
含むガスをガス化剤として反応させることができ
る。チヤーの反応が進行して未反応カーボン量が
少なくなり、灰となつた粒子は、ガス化炉領域内
を浮遊する間に炉壁に付着したり、下段バーナ2
8の高温領域に下降したりして、最終的に大部分
が溶融スラグ9となり、スラグ冷却領域に落下す
る。溶融スラグ化しない灰は、ガスと共に飛散
し、サイクロン36によつて分離、回収される。 本実施例に係る石炭ガス化方法の試験結果と従
来法による結果との比較値を第2表及び第4図に
示す。
The present invention will be specifically explained below based on the embodiment shown in FIG. FIG. 3 is a system diagram of the pulverized coal gasifier. Coal 1 is 70-80wt% less than 200 mesh
The coal is pulverized to a particle size of , and transported to the atmospheric coal hopper 20 via coal storage and pulverization equipment (not shown) by means of a bucket conveyor or gas transportation. From here, it is sent to pressurized hoppers 21 and 22, and the supply amount is controlled by coal quantitative devices 23 and 24 such as a rotary feeder or screw feeder. In addition, the hopper 20, 21, 22 and the switching valve 4
The coal supply method consisting of 0.0 and 41 is called the lock hopper method, and the hoppers 21 and 22 are at the same pressure, and both are 0.5 to 1.0 Kg/cm 2 G lower than the gasifier.
Keep the pressure high. When the coal in the hopper 22 is reduced to a certain amount, the valve 41 is opened and the coal is moved from the hopper 21 to the hopper 22 by free fall. When a predetermined amount of coal has accumulated in the hopper 22, the valve 41 is closed, the pressure in the hopper 21 is lowered to normal pressure, the valve 40 is opened, and the coal is moved from the hopper 20 to the hopper 21 by free fall. Thereafter, the coal is transported to the hopper 20, the valve 40 is closed, and the pressure in the hopper 21 is increased until it becomes equal to the pressure in the hopper 22, in preparation for the next movement. By repeating the above method, coal is continuously sent to the high-pressure gasifier 29. At least two coal quantitative devices are provided as shown at 22 and 23 in order to separately supply coal to different positions of the gas furnace. The coal is allowed to fall freely from here to the ejectors 25 and 26, and is transported by the carrier gas 7.
Coal burner 27,
Send to 28th. Carrier gases include nitrogen, steam,
Air, carbon dioxide, or a part of the gas generated in the gasifier can be used, but from the viewpoint of safety against coal dust explosions and blockages in the supply pipes, it is desirable to use suffocation gas or carbon dioxide gas. Coal supplied from burners 27 and 28 to gasifier 29 is gasified by oxygen 4. This oxygen is first supplied in a constant amount corresponding to the amount of coal supplied by the flow controller 49, and then separately supplied to the upper and lower burners 27 and 28. That is, the oxygen supplied to the upper stage burner 27 passes through the supply pipe 5 and the flow rate is controlled by the flow rate controller 42, and the remaining oxygen passes through the supply pipe 6 to the lower stage burner 2.
It flows to 8. In this case, the distribution ratio of coal and oxygen to each burner 27, 28 is important for gasification efficiency, and the distribution method will be explained in more detail later. The coal gasifier 29 includes a gasification region 30, a heat recovery region 31, and a slag cooling region 50. The gasification region will be very hot and cannot be constructed with a metal container, so it will be covered with a refractory material 52. In addition, prevention of heat loss due to radiation from here,
For the purpose of increasing particle residence time, the diameters at the top and bottom are smaller than the diameter near the burner. In the gasification region 30, gas rich in H 2 and CO is generated by the reactions of equations (4) to (6) above. On the other hand, coal ash is molten slag9
The slag adheres to the surface of the refractory material 52, flows downward by gravity, and falls into the slag cooling area 50 through the slag tap hole 53. Water is stored in the slag cooling area, where the molten slag 9 is rapidly cooled and solidified, and further falls into the slag tank 32.
A switching valve 43 is provided between the gasifier 29 and the slag tank 32, and is kept open during normal times. Therefore, the inside of the slag tank 32 is also filled with water. When a certain amount of water-cooled slag accumulates in the slag tank or after a certain period of time has elapsed, one switching valve 43 is closed, the other switching valve 44 is opened, and both water and water-cooled slag are poured into the slag separator 33. In the slag separator 33, the water-cooled slag 9 is separated from the water by a diamond. When the slag tank 32 is empty, the switching valve 44 is closed and water is allowed to flow from the cooling water circulation pump 35 through the pipe 54 to equalize the pressure in the tank 32 with that of the gasifier. After that, valve 53 is closed, and valve 4 is closed.
3 is opened so that the slag 9 accumulates in the tank 32. Since the water stored in the slag cooling area 50 is warmed by the heat of the molten slag 9, the switching valve 46 is opened at an appropriate time, the water flows to the slag separator, and is cooled by the water cooling pipe 34. The cooled water is pressurized to the gasifier pressure by the cooling water circulation pump 35, and is then passed through the pipe 14 again to the slag cooling area 50 of the gasifier.
supply to. By constantly circulating the cooling water in this way, the water in the slag cooling area is kept at a constant temperature. Since this water gradually steams over a long period of operation, the reduced amount of water is replenished from the pipe 16 in a timely manner. The gas produced in the gasification zone of the gasifier ascends through the gasifier and enters the heat recovery zone 31 . A water-cooled pipe is provided in this area, and water is flowed through this pipe to generate steam by heat exchange with gas sensible heat. Therefore, the temperature of the gas at the outlet of the gasifier 29 is between 400 and 900°C.
The temperature drops to around ℃. This gas is led to the cyclone 36 through the pipe 11, and the dust contained in the gas is separated. The gas from which dust has been removed is pipe 1
2 to lead to the next gas treatment step (not shown). The gas treatment process differs depending on the use of the gas, but usually includes a heat exchanger, a dust removal device such as a secondary cyclone or a cleaning tower, and a desulfurization device for removing H 2 S or CO 2 . Dust such as ash and char collected by the cyclone 36 is stored in dust hoppers 37 and 38. The method of discharging the dust 13 is similar to the method of supplying coal and discharging slag, and after a certain amount has accumulated in the hopper 38,
The switching valve 47 is closed, the pressure in the hopper 38 is set to normal pressure, the switching valve 48 is opened, and the feeder 38 extracts the material. When the discharge is finished, switch valve 39
is closed, the pressure in the hopper 38 is increased to the same pressure as the cyclone 36, and the switching valve 37 is opened to store dust in the hopper 38. By repeating the above,
Dust is continuously discharged out of the system. Both water-cooled slag 18 and dust 13 are sent to an ash treatment facility and ash storage (not shown). In the above pulverized coal gasification method, the method of supplying coal and oxygen and controlling the temperature inside the gasifier will be explained in more detail. As mentioned above, the coal is transferred to the upper burner 2 of the gasification region.
7 and the lower burner 38 separately.
The ratio of supply to the upper and lower stages is most preferably 1:1 in order to reduce operational factors and simplify control. That is, the coal metering devices 23 and 24 are installed so that all the coal to be supplied flows evenly to the upper and lower burners.
All you have to do is activate it. For example, the number of revolutions of the coal feeders should be the same. On the other hand, the amount of oxygen supplied corresponds to the amount of coal supplied. By the way, it is known that the following two efficiencies representing the performance of the gasifier are most strongly influenced by the ratio α of the supply amount of oxygen to coal. Carbon gasification rate ηe = Gasified carbon amount / Carbon amount in coal Cold gasification rate η G = Gas calorific value x Gas generation amount / Coal calorific value x Coal supply amount And oxygen amount / Coal amount = α is The target is often the location where η G is the largest, and although it depends on the type of coal, it is usually 0.7<α<1.0 (Kg/Kg). In the case of Pacific coal used in this example, α=0.82 (Kg/
Kg). When the amount of coal supplied is determined in this manner, the total amount of oxygen supplied is determined, and is controlled by the controller 49. Thereafter, oxygen is separately supplied to the upper stage burner 27 and the lower stage burner 28. In this case, the amount of oxygen supplied to the upper burner 27 is controlled so that the temperature near the upper burner in the gasification region of the gasifier 29 does not exceed the melting temperature of the ash. This control method constantly monitors the temperature near the burner 27 using a thermometer 51 installed at the same height as the upper burner 27, for example.
The controller 52 sends a signal to the controller 42 of the upper oxygen supply pipe 5 to adjust the flow rate of oxygen so that the temperature does not exceed the melting temperature of the ash. Note that the remaining oxygen supplied to the upper burner 27 is supplied to the lower burner 28 . In this embodiment, the total amount of oxygen supplied to the gasifier and the amount of oxygen supplied to the upper stage are controlled by controllers 49 and 42, respectively. In the case of Pacific Coal, the coal is placed in the upper row and the lower row 1:1.
Total oxygen amount/total coal supply amount = 0.82 (Kg/
Kg), upper stage oxygen supply amount / upper stage coal supply amount =
When it is set to 0.36 to 0.38 (Kg/Kg), the upper burner 27
It was confirmed that the temperature in the vicinity should be kept at 1310°C, a value that does not exceed the melting temperature of ash. Therefore, in this case,
Lower stage oxygen supply amount/lower stage coal supply amount is 1.26 to 1.28
(Kg/Kg), and the temperature exceeds the melting temperature of ash.
The temperature is 1880℃. Under such operating conditions, the reaction progresses in the gasification region of the gasification furnace 29 as follows. Since the coal supplied from the upper burner 27 is gasified under conditions with a low carbon content, it is converted into chia containing a considerable amount of carbon, but since this chia was generated under conditions that do not exceed the melting temperature of ash, as described above, Extremely reactive. therefore here
If a gasifying agent such as H 2 O or CO 2 is present, it will be gasified in a short time according to equations (5) and (6). On the other hand, the coal supplied to the lower stage reacts under conditions where the amount of oxygen/the amount of coal is greater than the usual ratio, so it is completely gasified in an extremely short time. At this time, since excess oxygen is supplied, the gas generated from this includes CO, H2, and other gases.
Contains considerable amounts of CO 2 and H 2 O. Since the gas generated in the lower stage ascends through the gasifier, the char generated in the upper stage can react with the gas containing CO 2 and H 2 O produced from the lower stage as a gasifying agent. As the reaction of the char progresses, the amount of unreacted carbon decreases, and the particles that turn into ash adhere to the furnace wall while floating in the gasifier area, or the lower burner 2
Most of the molten slag finally becomes molten slag 9 and falls into the slag cooling area. The ash that has not been turned into molten slag is scattered with the gas, and is separated and collected by the cyclone 36. Table 2 and FIG. 4 show comparison values between the test results of the coal gasification method according to this example and the results of the conventional method.

【表】 石炭供給量×石炭中
カーボン
ガス生成量×ガ
ス発熱量
2) 冷ガス効率=
[Table] Coal supply amount x Carbon in coal
Gas generation amount x gas calorific value
2) Cold gas efficiency =

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭をガス化炉のバーナに供給し、酸素又
は空気と蒸気とによつて気流中でガス化する石炭
ガス化方法において、前記微粉炭の供給を、前記
ガス化炉のガス化反応領域の異なる上下2箇所に
分け、上段のバーナへ供給する酸素量の微粉炭供
給量に対する比を微粉炭灰の溶融温度を越えない
値に設定し、下段のバーナへ供給する酸素量の微
粉炭供給量に対する比を前記上段バーナのそれよ
りも大きく設定し、下段バーナ近傍を微粉炭灰の
溶融温度以上にすることを特徴とする石炭ガス化
方法。
1. In a coal gasification method in which pulverized coal is supplied to a burner of a gasification furnace and gasified in an air stream with oxygen or air and steam, the supply of pulverized coal is transferred to a gasification reaction area of the gasification furnace. The ratio of the amount of oxygen supplied to the upper stage burner to the amount of pulverized coal supplied is set to a value that does not exceed the melting temperature of pulverized coal ash, and the ratio of the amount of oxygen supplied to the upper stage burner to the amount of pulverized coal supplied is set to a value that does not exceed the melting temperature of pulverized coal ash. A coal gasification method characterized in that the ratio to the amount of coal is set larger than that of the upper stage burner, and the temperature near the lower stage burner is set to be equal to or higher than the melting temperature of pulverized coal ash.
JP4716283A 1983-03-23 1983-03-23 Gasification of coal Granted JPS59172589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4716283A JPS59172589A (en) 1983-03-23 1983-03-23 Gasification of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4716283A JPS59172589A (en) 1983-03-23 1983-03-23 Gasification of coal

Publications (2)

Publication Number Publication Date
JPS59172589A JPS59172589A (en) 1984-09-29
JPH0455238B2 true JPH0455238B2 (en) 1992-09-02

Family

ID=12767377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4716283A Granted JPS59172589A (en) 1983-03-23 1983-03-23 Gasification of coal

Country Status (1)

Country Link
JP (1) JPS59172589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163499A (en) * 2009-01-13 2010-07-29 Electric Power Dev Co Ltd Method for operating entrained-bed gasification furnace
CN102453550A (en) * 2011-05-06 2012-05-16 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578494B2 (en) * 1994-10-05 2004-10-20 株式会社日立製作所 Spouted bed coal gasifier and coal gasification method
AU730980B2 (en) * 1996-05-20 2001-03-22 Babcock-Hitachi Kabushiki Kaisha Coal gasification apparatus and a coal gasification hybrid power generation system
JP5372580B2 (en) * 2009-04-14 2013-12-18 優久雄 片山 Coal gasification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432508A (en) * 1977-08-18 1979-03-09 Combustion Eng Operation of coal gasification plant
JPS57139184A (en) * 1981-02-23 1982-08-27 Hitachi Ltd Coal gasification
JPS57174391A (en) * 1981-04-22 1982-10-27 Hitachi Ltd Coal gasification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432508A (en) * 1977-08-18 1979-03-09 Combustion Eng Operation of coal gasification plant
JPS57139184A (en) * 1981-02-23 1982-08-27 Hitachi Ltd Coal gasification
JPS57174391A (en) * 1981-04-22 1982-10-27 Hitachi Ltd Coal gasification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163499A (en) * 2009-01-13 2010-07-29 Electric Power Dev Co Ltd Method for operating entrained-bed gasification furnace
CN102453550A (en) * 2011-05-06 2012-05-16 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof

Also Published As

Publication number Publication date
JPS59172589A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
US4238226A (en) Method for producing molten iron by submerged combustion
US4270740A (en) Apparatus for producing molten iron by submerged combustion
KR20120031060A (en) Method for producing cast iron or semi steel with reducing gas
KR850000823B1 (en) Method for producing molten iron from iron oxide with coal &amp; oxygen
CN101885990A (en) Dry coal powder gasification device with multiple burners on top
CN1328356C (en) Gasification of dry-powder solid fuel
PL135926B1 (en) Method of and apparatus for gasifying carbon containing materials
CN101885991A (en) Tower-type powdered coal pressure gasification device with chilling process
CN101845326B (en) Spiral-flow melting pond gasifier
JPS5936195A (en) Method for gasifying coal in jetted stream bed
US4248626A (en) Method for producing molten iron from iron oxide with coal and oxygen
US4235425A (en) Impact bed gasifier-melter
CA1232456A (en) Process for the preparation of synthesis gas
CN201046952Y (en) Circulating fluidized bed gasification apparatus
EP0150533B2 (en) Process and apparatus for the production of synthesis gas
JPS62236892A (en) Method and apparatus for gasifying coal
JPH0455238B2 (en)
US4316739A (en) Method for producing molten iron
EP0000442A1 (en) Process and apparatus for the gasification of coal
EP0290087B1 (en) Process and apparatus for the preparation of synthesis gas
JPS649376B2 (en)
JPS5851987B2 (en) How to produce syngas with almost no particles
JPS6157685A (en) Method and apparatus for producing gas from carbon-containing fuel
US4578110A (en) Method of reducing iron oxides
EP0015261B1 (en) Means and procedure for gasification of solid fuels