JPH045500A - Multiple blade blower - Google Patents

Multiple blade blower

Info

Publication number
JPH045500A
JPH045500A JP10314290A JP10314290A JPH045500A JP H045500 A JPH045500 A JP H045500A JP 10314290 A JP10314290 A JP 10314290A JP 10314290 A JP10314290 A JP 10314290A JP H045500 A JPH045500 A JP H045500A
Authority
JP
Japan
Prior art keywords
blade
impeller
flow
side plate
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10314290A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hashimoto
克彦 橋本
Susumu Yamazaki
進 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10314290A priority Critical patent/JPH045500A/en
Publication of JPH045500A publication Critical patent/JPH045500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To set an axial blockage range small, and equalize the flow velocity at an exit a blade of an impeller along the blade width by bending the blade in the rotating direction to the axial direction on the side plate side. CONSTITUTION:A blade 2 of an impeller 1 is bent in the rotating direction to the axial direction on the side plate side. Air flowing axially to the blade 2 goes perpendicularly to the axially direction by this, so a blockage range is reduced. In addition, the velocity distribution at the exit of the impeller 1 is almost equalized for a blade width b2. A high performance and a large reduction of noise can thus be achieved for a multiple blade blower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ファン・ブロワ等の送風機に係り、特に、遠
心式多翼羽根車を備えたファン・ブロワの羽根車構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air blower such as a fan blower, and particularly to an impeller structure of a fan blower equipped with a centrifugal multi-blade impeller.

〔従来の技術〕[Conventional technology]

従来の多翼送風装置の羽根車形状は、実開昭55−85
597号公報に記載の様に、円板状の主板とこの主板と
対向する円環状の側板との間に所要数の羽根が円周方向
に等ピッチで配置されていた。この構造によると、風の
流れは、実開昭59−5797号公報に記載の様に、側
板側から羽根へ円弧上の軌跡をたどって羽根出口へと流
れ、羽根出口での風速は、側板側から主板へ徐々に速く
なっていた。
The impeller shape of the conventional multi-blade blower was developed in 1985-1985
As described in Japanese Patent No. 597, a required number of blades are arranged at equal pitches in the circumferential direction between a disc-shaped main plate and an annular side plate facing the main plate. According to this structure, as described in Japanese Utility Model Application Publication No. 59-5797, the wind flows from the side plate side to the blade following an arcuate locus to the blade outlet, and the wind speed at the blade outlet is It was gradually getting faster from the side to the main board.

すなわち、羽根の軸方向で速度勾配が生した。In other words, a velocity gradient occurred in the axial direction of the blade.

一方、特開昭64−8396号公報に記載の様に、構造
的には従来と似ているが羽根の軸方向の速度分布、すな
わち、流出分布を全体的に均一化するため、主板側と側
板側の羽根弦の長さを異にした羽根車構造もあった。
On the other hand, as described in Japanese Patent Application Laid-Open No. 64-8396, although the structure is similar to the conventional one, in order to uniformize the overall velocity distribution in the axial direction of the blade, that is, the outflow distribution, the main plate side There was also an impeller structure in which the length of the blade chord on the side plate side was different.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

実開昭55−85597号公報若しくは実開昭5957
97号公報に開示された技術は、羽根軸方向に於ける速
度勾配の点について考慮がされておらず、羽根車が仕事
をしない、すなわち、主流の流れない死領域(ブロワケ
ージ領域)が発生するという問題があった。
Utility Model Application No. 55-85597 or Utility Model Application No. 5957
The technique disclosed in Publication No. 97 does not take into consideration the speed gradient in the direction of the blade axis, and the impeller does not do any work, that is, a dead area (blower cage area) where the main flow does not flow occurs. There was a problem.

又、速度勾配が発生する事により、この速度差による流
れの混合損失が生じるという問題点もあった。又、羽根
車から吐土した高速の流れは、スクロール内で速度エネ
ルギを静圧に変換するが、従来の羽根車のように、羽根
出口に於ける速度、及び、圧力が羽根幅間で不均一な流
れの場合、スクロール内で複雑な旋回をしながらスクロ
ールの出口に流れ、この途中で大きな混合損失が生し、
スクロールのデイフユーザ効果を著しく低下させた。こ
れらの羽根出口の不均一な流れの結果、スクロール出口
の圧力も低い値を示し、低性能・低効率と高い騒音にな
るという問題があった。
Furthermore, due to the occurrence of a velocity gradient, there is a problem in that a mixing loss of flows occurs due to this velocity difference. In addition, the high-speed flow of soil discharged from the impeller converts velocity energy into static pressure within the scroll, but unlike conventional impellers, the velocity and pressure at the blade outlet are invariant between the blade widths. In the case of a uniform flow, it flows to the exit of the scroll while making a complicated swirl inside the scroll, and a large mixing loss occurs along the way.
Significantly reduced the differential user effect of scrolling. As a result of the non-uniform flow at the outlet of these blades, the pressure at the scroll outlet also shows a low value, resulting in problems of low performance, low efficiency, and high noise.

一方、特開昭64−8396号公報による従来技術は、
上記問題点を解決するべく考案された羽根車であるが、
実際の空気の流九は、従来の羽根車と同様羽根車の吸込
側ではサクションコーンに沿って流れ流速はサクション
コーンに近い程大きく、羽根車の回転中心に近い程小さ
い。一方、羽根車内における流速は、吸込側の流速に沈
入て急激にしかも大幅に減速した流速となる。その為、
側板付近には軸方向に広い剥離領域が発生する。それ故
、主流は側板付近では側板に近接して流れることができ
ず回転軸に対し傾斜して流れ、一方、回転中心に近い主
流は、主板付近を回転中心に、はぼ、直角に流れる。そ
れにより、主板側の速度は増大し、側板側へ行く程速度
は遅くなっていた。しかも、この発明は側板側と主板側
の翼弦長が異なるため、その継なぎ目に、ウェークが発
生し、性能・騒音に悪影響を及ぼした。
On the other hand, the prior art disclosed in Japanese Patent Application Laid-Open No. 64-8396 is
Although the impeller was devised to solve the above problems,
As with conventional impellers, the actual flow of air flows along the suction cone on the suction side of the impeller, and the flow velocity increases as it approaches the suction cone and decreases as it approaches the center of rotation of the impeller. On the other hand, the flow velocity inside the impeller sinks to the flow velocity on the suction side and becomes a flow velocity that is suddenly and significantly reduced. For that reason,
A wide peeling area occurs in the axial direction near the side plate. Therefore, the main stream cannot flow close to the side plate near the side plate and flows obliquely to the axis of rotation, while the main stream near the center of rotation flows approximately at right angles to the center of rotation near the main plate. As a result, the speed on the main plate side increased, and the speed became slower toward the side plates. Moreover, in this invention, since the chord lengths of the side plate side and the main plate side are different, a wake occurs at the joint, which has an adverse effect on performance and noise.

一方、従来の研究で発表されている内容では羽根入口部
における風の相対流れは、軸方向・径方向とも入射角度
を持っており従来の平板二次元翼羽根であれば、風の相
対流れに対し、無理が生じていた。
On the other hand, according to what has been published in previous research, the relative flow of wind at the blade inlet has an incident angle in both the axial and radial directions. However, it was becoming impossible.

本発明の目的は、羽根側板側の風の相対流れ入射角不一
致を合わせてやり、又、羽根車軸方向におけるプロツケ
ージ領域を小さくし、羽根出口における流速Cmzを幅
b2にわたって均一化し、羽根車の仕事量の増大、およ
び、高効率低騒音の多翼送風機用羽根車を提供すること
にある。
The purpose of the present invention is to correct the discrepancy in the relative flow incidence angle of the wind on the side of the blade side plate, to reduce the protrusion area in the axial direction of the impeller, to equalize the flow velocity Cmz at the blade outlet over the width b2, and to reduce the work of the impeller. It is an object of the present invention to provide an impeller for a multi-blade blower with increased capacity, high efficiency, and low noise.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成する為に、側板側の羽根を軸方
向に対し、回転方向へ折り曲げたものである。
In order to achieve the above object, the present invention has blades on the side plate side bent in the rotational direction with respect to the axial direction.

〔作用〕[Effect]

本発明の多翼送風機の空気の流れは、サクションコーン
に近い空気は、従来、羽根の軸方向に沿って、主板側の
方向へ流れていたが本発明の形状によると、軸方向に対
し、側板側の羽根形状が、回転方向へ折り曲げ部をもっ
ている為、従来の羽根の軸方向へ流れようとした空気の
流れが軸方向と直角方向へ空気が流れるように動作する
。その為、従来、羽根出口の側板側に発生していた主流
の流れない死領域(プロツケージ領域)を減少し羽根車
出口の速度の分布は羽根幅b2にわたりほぼ均一な分布
となる。
The air flow in the multi-blade blower of the present invention is that, conventionally, the air near the suction cone flows along the axial direction of the blades toward the main plate side, but according to the shape of the present invention, the air near the suction cone flows in the axial direction. Since the blade shape on the side plate side has a bent portion in the direction of rotation, air flows in a direction perpendicular to the axial direction, instead of the air flowing in the axial direction of the conventional blade. Therefore, the dead area (blockage area) where the main flow does not flow, which conventionally occurred on the side plate side of the blade outlet, is reduced, and the velocity distribution at the impeller outlet becomes a substantially uniform distribution over the blade width b2.

又、風の相対流れは羽根への入射角度があり、特に、側
板側では軸方向に対し回転方向へ傾斜角をもっているた
め、本発明の形状により、風の相対流れがスムーズに流
れる。
Further, the relative flow of the wind has an incident angle to the blades, and in particular, the side plate side has an angle of inclination toward the rotational direction with respect to the axial direction, so the shape of the present invention allows the relative flow of the wind to flow smoothly.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図と第2図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、本発明の羽根車を用いた送風機の斜視図であ
り、第2図は第1図のn−n−n線断面図である。
FIG. 1 is a perspective view of a blower using the impeller of the present invention, and FIG. 2 is a sectional view taken along line n-n-n in FIG. 1.

多翼送風機は第1図のように羽根車1とスクロール20
及び羽根車1を回転させるためのモータ30より構成さ
れている。羽根車1は、さらに、回転方向に前向形状で
複数の羽根2と主板3.側板4より構成される。多翼送
風機に於ける空気の流れは羽根車の吸込側ではサクショ
ンコーン21に沿って流れ、流速は、サクションコーン
21に近いほど大きく、羽根車の回転中心に近いほど小
さい。
A multi-blade blower has an impeller 1 and a scroll 20 as shown in Figure 1.
and a motor 30 for rotating the impeller 1. The impeller 1 further includes a plurality of blades 2 and a main plate 3 . It is composed of side plates 4. The air flow in the multi-blade blower flows along the suction cone 21 on the suction side of the impeller, and the flow velocity increases as it approaches the suction cone 21 and decreases as it approaches the rotation center of the impeller.

本発明の羽根車1の羽根2を取り呂した形状を第3図に
示す。
FIG. 3 shows the shape of the blades 2 of the impeller 1 of the present invention.

この形状は、羽根車1の羽根2の側板側から軸方向へΔ
bの位置から回転方向へΔp進ませた羽根形状とした。
This shape is Δ in the axial direction from the side plate side of the blades 2 of the impeller 1.
The blade has a shape that advances by Δp in the rotational direction from the position b.

すなわち、側板側の羽根形状は回転方向へ折り曲がった
三次元の羽根形状に対し、主板側は従来と同様に二次元
の羽根形状である。
That is, the blade shape on the side plate side is a three-dimensional blade shape bent in the rotation direction, whereas the blade shape on the main plate side is a two-dimensional blade shape as in the conventional case.

第4図は、羽根車1に空気の流れを記入した図である。FIG. 4 is a diagram showing the flow of air in the impeller 1.

羽根車1の外径上における流速の径方向速度成分Cm 
2を羽根出口幅(寸法b2)について考えてみる。従来
の構造に於ける分布は前述の通り側板近辺ではC112
が小さく、主板4に近づくにつれてCIIZが大きくな
る分布となっていた。
Radial velocity component Cm of the flow velocity on the outer diameter of the impeller 1
2 with respect to the blade outlet width (dimension b2). As mentioned above, the distribution in the conventional structure is C112 near the side plate.
was small, and CIIZ increased as it approached the main plate 4.

本発明の羽根形状によると、羽根側板側を軸方向に対し
て回転方向へ折り曲げた羽根形状となっているため、羽
根が回転する事により、側板4附近の流線10aは従来
流れていた軌跡と比較して、回転中心に対し、はぼ、垂
直な状態となる。すなわち従来の流れは、羽根の側板側
から主板側へすべって流れていたのに対し、折り曲げ部
がついているため、そこで急激にすべらず、側板側の外
周面へ、風が流れてしまう。又、一方、折り曲げにより
空気をかき集めて羽根外径へと空気を流すため、側板側
の空気の量が増加する。
According to the blade shape of the present invention, since the blade side plate side is bent in the rotational direction with respect to the axial direction, as the blade rotates, the streamline 10a near the side plate 4 moves along the trajectory that conventionally flowed. Compared to this, it is almost perpendicular to the center of rotation. In other words, in the conventional air flow, the flow would slide from the side plate side of the blade to the main plate side, but because the blade has a bent part, the wind does not slide suddenly at that point, and instead flows toward the outer circumferential surface of the side plate side. On the other hand, since air is collected by bending and flows toward the outer diameter of the blade, the amount of air on the side plate side increases.

一方、流線10bも同様、従来と比較してみるとやはり
、すベリが減少し、側板側へ流れが移動する。流線10
cは、従来と同様、徐々に回転中心に対しほぼ垂直な状
態の流れとなり、羽根車出口におけるC112の分布は
羽根幅b2にわたり、はぼ、均一な分布を示す。
On the other hand, when comparing the streamline 10b with the conventional one, the slippage is reduced and the flow moves toward the side plate side. Streamline 10
As in the conventional case, C112 gradually becomes a flow almost perpendicular to the center of rotation, and the distribution of C112 at the impeller outlet shows a fairly uniform distribution over the blade width b2.

これによって羽根車出口におけるCoxの速度差による
混合損失、さらに、スクロール内における旋回と混合損
失も小さくなる。
This reduces the mixing loss due to the Cox speed difference at the impeller outlet, as well as the swirling and mixing loss within the scroll.

風の相対流れについて、第5図を用いて説明する。第5
図に記載の様に、風の流れ、特に相対流れは複雑な角度
を持っている。すなわち、羽根内径の周速U1と羽根の
内径の絶対速度C1の合成された速度が、羽根入口部で
の相対速度となる。
The relative flow of wind will be explained using FIG. 5. Fifth
As shown in the figure, the wind flow, especially the relative flow, has complicated angles. That is, the combined speed of the circumferential speed U1 of the inner diameter of the blade and the absolute speed C1 of the inner diameter of the blade becomes the relative speed at the blade inlet.

又、絶対速度は、軸方向成分Cx 1と径方向成分C1
11の合成された速度であり、その速度と、周速の合成
速度である相対速度は、当然、軸方向に対し、入射角度
を持つ。
Also, the absolute velocity has an axial component Cx 1 and a radial component C1
11, and the relative velocity, which is the composite velocity of the circumferential velocity, naturally has an incident angle with respect to the axial direction.

本発明による羽根の形状は、軸方向に対し回転方向へ折
り曲がった形状となっている。すなわち、相対速度が軸
方向に対し、入射角度をなしている方向と同方向へ折り
曲げているため、風の相対流れは、羽根にスムーズに入
射するため、羽根に風が衝突する事による損失が少なく
、送風機としての効率がアンプする。
The shape of the blade according to the present invention is bent in the rotational direction with respect to the axial direction. In other words, since the relative velocity is bent in the same direction as the incident angle with respect to the axial direction, the relative flow of the wind enters the blade smoothly, so there is no loss due to the wind colliding with the blade. This increases the efficiency of the blower.

第6図は本発明の他の実施例の羽根の形状と風の流れを
示した斜視図である。
FIG. 6 is a perspective view showing the shape of the blade and the flow of air in another embodiment of the present invention.

羽根車の主板側の羽根が、側板側より回転方向に進んで
いる羽根であり、この羽根についても同様に側板側の羽
根に対し、回転方向へ折り曲げ部を設けたものである。
The blades on the main plate side of the impeller are blades that advance in the rotational direction from the side plate side, and these blades are also provided with bent portions in the rotational direction with respect to the blades on the side plate side.

すなわち、側板側の羽根内外径の羽根の形状は回転方向
へ折り曲がった三次元羽根形状に対し、主板側は、従来
と同様、二次元の羽根形状である。
That is, the shape of the inner and outer diameter of the blade on the side plate side is a three-dimensional blade shape bent in the rotation direction, whereas the blade shape on the main plate side is a two-dimensional blade shape as in the conventional case.

本実施例についての風の流れについて同様に考えてみる
。本実施例についても実施例と同様1羽根内径側で側板
側を軸方向に対し回転方向へ折り曲げた羽根形状となっ
ているため、羽根が回転する事により、側板4の付近の
流線10aは従来流れていた軌跡に比較し、回転中心に
対し、はぼ。
Let's consider the flow of wind in this example in the same way. In this embodiment as well, as in the embodiment, the blade shape is such that the side plate side is bent in the rotation direction with respect to the axial direction on the inner diameter side of one blade, so as the blade rotates, the streamline 10a near the side plate 4 is Compared to the conventional trajectory, the flow is faster with respect to the center of rotation.

垂直な状態となる。これにより、プロツケージ部を低減
でき、性能向上・低騒音となる。
It becomes vertical. This makes it possible to reduce the number of protrusion parts, resulting in improved performance and lower noise.

本発明によると空力性能および騒音面で大きな改良を得
ることができるので、羽根2の折る曲げの度合いについ
て実験的に検討を行った。
According to the present invention, a large improvement can be obtained in terms of aerodynamic performance and noise, so the degree of bending of the blade 2 was experimentally investigated.

折り曲げの度合いを次の様に定義する。The degree of bending is defined as follows.

b2 二羽根幅 Δb:側板側から軸方向へ向って折り曲がった位置 p :羽根のピッチ幅 Δp:回転方向へ折り曲げた寸法 データは無次元化するため、Δb / b 2及びΔp
/pで整理を行った。
b2 Width of the two blades Δb: Position p when bent from the side plate side toward the axial direction: Pitch width of the blade Δp: Dimensional data when bent in the direction of rotation is rendered dimensionless, so Δb / b 2 and Δp
Organized with /p.

第7図は羽根2のΔp/pと多翼送風機の最高効率点η
++aX 、および、最高効率点における比騒音レベル
SLSの関係の実験結果を示す。
Figure 7 shows Δp/p of blade 2 and the highest efficiency point η of the multi-blade blower.
The experimental results of the relationship between ++aX and the specific sound level SLS at the highest efficiency point are shown.

ここで、Δp/p=1.0  とは、丁度−ピッチ分回
転方向へ、折り曲げた形状である。
Here, Δp/p=1.0 means a shape bent in the rotation direction by exactly -pitch.

Δp/p=0.5,1.0.1.5  の多翼送風機の
実験結果である。第7図より、最高効率点η、□は、Δ
p/p=0.5 附近で最も高く、また、比騒音レベル
SLSも、Δp/p=0.5 附近で良好な結果が得ら
れた。又、逆にΔp/pが1,5では、従来の羽根車の
場合(ΔP/P=0’  すなわち折り曲げ部がない場
合)よりファン効率は低下し、比騒音レベルも上がった
結果となった。
These are experimental results for a multi-blade blower with Δp/p=0.5, 1.0.1.5. From Figure 7, the highest efficiency point η, □ is Δ
The specific noise level SLS was highest near p/p=0.5, and good results were also obtained near Δp/p=0.5. Conversely, when Δp/p is 1.5, the fan efficiency is lower and the specific noise level is higher than in the case of a conventional impeller (ΔP/P = 0', i.e., there is no bent part). .

以上の効果から、従来の羽根車Δp/p=oより少し折
り曲げ部を設けることにより、送風機の同一回転数にお
ける同一風量時の全圧が上昇し、ファン効率が、上昇す
る。又、その時に於ける、騒音レベルも低下し、有効な
手段である。
From the above effects, by providing the impeller with a slightly bent portion compared to the conventional impeller Δp/p=o, the total pressure at the same air flow rate at the same rotation speed of the blower increases, and the fan efficiency increases. Moreover, the noise level at that time is also reduced, making it an effective means.

Δp / p o = 0 、5に於ける時が、ファン
効率及び比騒音レベルが最高点となり、この時の折り曲
げ角度と、風の流れが良く一致するためである。
This is because the fan efficiency and specific noise level are at their highest when Δp/po = 0, 5, and the bending angle at this time matches well with the air flow.

これ以上折り曲げ部の角度が大きくなると、逆に風の流
れが、折り曲げ部よりずれ、効率孔騒音とも悪い方向へ
移行する。Δp/po=1.5附近で従来の羽根車(Δ
p/p=o)とほぼ同等か、逆に悪くなる。
If the angle of the bent portion becomes larger than this, the wind flow will be shifted from the bent portion, and the efficiency and hole noise will be adversely affected. At around Δp/po=1.5, the conventional impeller (Δ
p/p=o), or worse.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、羽根側板附近の羽根車が仕事をしない
死領域(ブロツケージ領域)が減少し、更に、羽根車出
口の速度Cm2の分布は羽根幅b2にわたりほぼ均一な
分布を示し、これによって羽根車出口におけるCヨ2の
速度差による混合損失、さらに、スクロール内における
旋回と混合損失もツノ1さくなる。
According to the present invention, the dead area (blockage area) where the impeller does not work near the blade side plate is reduced, and furthermore, the distribution of the speed Cm2 at the impeller outlet shows a substantially uniform distribution over the blade width b2, thereby The mixing loss due to the speed difference of C-Y2 at the impeller exit, and furthermore, the swirling and mixing loss in the scroll become sharper.

この結果、本発明の多翼送風機の特性は、従来の特性に
比べて高い性能と騒音の大幅な低減を得る効果がある。
As a result, the characteristics of the multi-blade blower of the present invention are effective in obtaining higher performance and significantly reduced noise compared to conventional characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図は第1図の
ll−n−4矢視断面図、第3図は本発明の羽根の斜視
図、第4図は本発明の羽根車の斜視図、第5図は本発明
の羽根の流九ベクトル図、第6図は本発明の他の実施例
の羽根車の斜視図、第7図は本発明の多翼送風機の実験
結果の説明図である。 1・・・羽根車、2・・・羽根、3・・・主板、4・・
・側板、10 a 、 10 b 、 10 c−風の
流れ、20−・・スクロール、21・・・サクションコ
ーン、30・・・モータ。
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along arrow ll-n-4 in FIG. 1, FIG. 3 is a perspective view of a blade of the present invention, and FIG. 5 is a flow diagram of the impeller of the present invention, FIG. 6 is a perspective view of an impeller of another embodiment of the present invention, and FIG. 7 is a perspective view of the multi-blade blower of the present invention. FIG. 2 is an explanatory diagram of experimental results. 1... impeller, 2... impeller, 3... main plate, 4...
- Side plate, 10a, 10b, 10c - wind flow, 20 - scroll, 21 - suction cone, 30 - motor.

Claims (1)

【特許請求の範囲】[Claims] 1.羽根形状が前向きな複数の羽根と主板と側板より構
成される羽根車を備えた多翼送風機に於いて、 前記羽根車の前記側板側の前記羽根を軸方向に対し、回
転方向へ折り曲げ部を設けた羽根を備えたことを特徴と
する多翼送風機。
1. In a multi-blade blower equipped with an impeller composed of a plurality of forward-facing blades, a main plate, and a side plate, the blades on the side plate side of the impeller are bent in the rotational direction with respect to the axial direction. A multi-blade blower characterized by having provided blades.
JP10314290A 1990-04-20 1990-04-20 Multiple blade blower Pending JPH045500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10314290A JPH045500A (en) 1990-04-20 1990-04-20 Multiple blade blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10314290A JPH045500A (en) 1990-04-20 1990-04-20 Multiple blade blower

Publications (1)

Publication Number Publication Date
JPH045500A true JPH045500A (en) 1992-01-09

Family

ID=14346276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10314290A Pending JPH045500A (en) 1990-04-20 1990-04-20 Multiple blade blower

Country Status (1)

Country Link
JP (1) JPH045500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281897B2 (en) 2004-12-24 2007-10-16 Denso Corporation Multi-blade centrifugal blower
JP2008064044A (en) * 2006-09-08 2008-03-21 Topre Corp Centrifugal fan impeller
WO2014064284A1 (en) * 2012-10-27 2014-05-01 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan having a fan wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281897B2 (en) 2004-12-24 2007-10-16 Denso Corporation Multi-blade centrifugal blower
JP2008064044A (en) * 2006-09-08 2008-03-21 Topre Corp Centrifugal fan impeller
WO2014064284A1 (en) * 2012-10-27 2014-05-01 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan having a fan wheel

Similar Documents

Publication Publication Date Title
US5064346A (en) Impeller of multiblade blower
EP0557239B1 (en) Axial flow fan and fan orifice
US4531890A (en) Centrifugal fan impeller
US4165950A (en) Fan having forward-curved blades
JP3507758B2 (en) Multi-wing fan
JPS5990797A (en) Centrifugal compressor and compression method
KR20030044076A (en) High-efficiency, inflow-adapted, axial-flow fan
JP2001271790A (en) Centrifugal impeller and air cleaner
JPH07500647A (en) axial fan
US3363832A (en) Fans
JP3516909B2 (en) Centrifugal blower
JPH10122188A (en) Centrifugal blower
EP1210264B1 (en) Centrifugal impeller with high blade camber
US4757587A (en) Propeller construction of an electric fan
JP3366265B2 (en) Centrifugal blower
JP3461661B2 (en) Blower
JPH045500A (en) Multiple blade blower
JP3391199B2 (en) Centrifugal fan
CN110566500A (en) Impeller of centrifugal ventilator
JP2702755B2 (en) Axial fan
JP2730344B2 (en) Blower impeller
JP3304243B2 (en) Blast impeller
CN110608194B (en) Centrifugal fan turns to spiral case
JP2730268B2 (en) Centrifugal impeller
JPH04143499A (en) Diffuser of centrifugal fluid machine