JPH0454878B2 - - Google Patents

Info

Publication number
JPH0454878B2
JPH0454878B2 JP62017267A JP1726787A JPH0454878B2 JP H0454878 B2 JPH0454878 B2 JP H0454878B2 JP 62017267 A JP62017267 A JP 62017267A JP 1726787 A JP1726787 A JP 1726787A JP H0454878 B2 JPH0454878 B2 JP H0454878B2
Authority
JP
Japan
Prior art keywords
tube
heat exchange
corrosion
inner tube
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62017267A
Other languages
Japanese (ja)
Other versions
JPS63187099A (en
Inventor
Kyoshi Nosetani
Iwao Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP1726787A priority Critical patent/JPS63187099A/en
Publication of JPS63187099A publication Critical patent/JPS63187099A/en
Publication of JPH0454878B2 publication Critical patent/JPH0454878B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は熱交換管の腐食内面にフイラーを介
して耐食性内管を密着せしめた補修された熱交換
管及び補修方法に関するものである。 [従来の技術] 熱交換用管の材質には熱伝導性の良い銅合金系
が広く使用されている。しかし、銅合金系の管
は、作動流体として海水等の腐食性の流体を使用
する場合、それと接触する管内面に腐食を受け、
その進行につれ肉厚が減少し、この減肉が一定限
度を越えると管を交換することが必要となる。 この場合、耐食性金属管、たとえばチタン管を
使用することも考えられるが、これは銅合金系に
くらべて非常に高価であるため、その使用にあた
つてはもとのに管より肉厚を薄くせざるを得な
い。そうした場合、もとの管を支持していた管支
持板の間隔はそのままであるため、これと新管は
適合しないことになり、振動により破損する懸念
があるため、結局このような管との交換はできな
い。 そこで、通常はもとの管と同材質の銅合金系の
新管と交換してきた。 [発明が解決しようとする問題点] しかしながら、このような従来の保守では管が
腐食を受ける状況には変りがないので、一定の使
用期間の経過後には再び新管と交換することが必
要となる。そこで、このような人手を要する保守
作業を省力化するため、海水等の腐食性作動流体
を使用しても、その腐食環境に耐え、半永久的な
使用を可能とし、かつ良好な伝熱性能を保持し、
かつ安価に補修できることが望まれていた。 この発明は、こうした技術課題を解決するもの
である。 問題点を解決するための手段] 第一の発明の補修された熱交換管は、第1図に
模式的に示すように熱交換管1の腐食内面1aに
易融性フイラー3を介して耐食性内管2を密着せ
しめた熱交換用二重管である。 熱交換管1は銅合金系の熱交換用として従来か
ら使用されている材質によるものであり、使用中
に内面に腐食を受けているものである。易融性フ
イラー3は、外管内面の腐食により形成された凹
部に充填されて外管と内管との接触を良好にさ
せ、伝熱性を高めるという作用を有するものであ
る。このような易融性フイラーとしては、易融合
金フイラーが油脂性フイラーが挙げられる。易融
性合金フイラーとしてはたとえばウツド、リポヴ
イツツ、ニユートン、ダルセ等の低融点の合金を
用いることができる。又、油脂性フイラーとして
は、たとえば潤滑用グリース、接触熱伝導率を良
好とするためカーボンや金属微粉末などの熱伝導
材料を含有する熱伝導性グリース、バター等を挙
げることができる。 耐食性内管2は使用条件によつて適当な公知の
耐食性金属製のものから選択されるが、好ましく
はチタン製であり、溶接管、抽伸管のいずれでも
よいがとくにチタン溶接管が好ましい。 次に第2の発明である補修方法について第2〜
5図について説明する。 第2図は、この発明によつて熱交換管を、熱交
換装置内において直接補修する態様を示すもので
ある。 (1) 供用中の熱交換管1の内面をカーボランダム
ボール洗浄、サンドブラスト、ジエツト水洗
浄、化学洗浄等、あるいはこれらの組合せによ
り洗浄して、内面に付着している腐食生成物を
極力除去する。洗浄後、管内の水分はエアパー
ジ、フエルト打ち等により取除く。 (2) 第3図並びに第4図に示すように耐食性内管
2の外面軸方向の溶接部4に沿つて設けた凹部
5に易融性フイラー3を取付ける。この易融性
フイラー3は外管内面の腐食凹部に満たされる
ものであるから、その使用量は外管となる熱交
換管1の腐食状態によつて異なるが、およそ内
管円周外面に平均0.3mmt以下となるようにす
るのが好ましい。 このようにして用意したフイラー付き耐食性
内管2を前記の洗浄した熱交換管1内に挿入す
る。 この際、もともと耐食性内管2の外径は外管
となる熱交換管1の内径より若干、たとえば
1.0〜1.5mm程度小さくしてあるが、前記したよ
うに内管軸方向に凹部が形成されているから、
有効外径はさらに小さくなり、挿入作業は一層
容易となる。 (3) 熱媒をポンプ6を通じて耐食性内管2内を循
環させて、易融性フイラー3を融解させる。 (4) バルブ7を閉じて、プランジヤー8により耐
食性内管2の内面を加圧して、熱交換管1の内
面と密着させる。(なお、この液圧拡管法につ
いてはたとえば特公昭61−47616号公報に記載
されている。) この場合の加圧曲線は第5図のようになる。第
5図においてA〜B間では耐食性内管2が膨脹し
ており、B点において耐食性内管2がフイラー3
を介して外管となる熱交換管1と接する。加圧は
B点を少し越えたところで停止し、この圧力を維
持した後、圧力を解放する。 内外管の密着は、上記の液圧拡管法による他、
熱媒の使用によつて内外管のわずかな膨脹差によ
り密着力を高めることができる。 [実施例] 実施例 1 中程度の汚染海水を冷却水とする熱交換装置か
ら抜管されたアルミニウム黄銅管(住友軽金属工
業製アルブラツク管)25、4φ×1.25t×2200mm
の内面をサンドブラストによつて清掃した。一
方、0.3mmtのチタン溶接管にその溶接部に沿つ
て凹部を設け、そこに平均0.15mmtとなる量のウ
ツド合金フイラーを取付けて、前記アルミニウム
黄銅管(住友軽金属工業製アルブラツク管)に挿
入した。このアルミニウム黄銅管(住友軽金属工
業製アルブラツク管)の内面はミクロ的には粒界
腐食を受けていたが、マクロ的にはあばた状の汚
染海水腐食を受けていた。内管内に90℃の温水を
通し加圧した。 このようにして製造した各種二重管の伝熱性能
を低圧蒸気を凝縮させるテスト装置によつて測定
し、アルミニウム黄銅新管(住友軽金属工業製ア
ルブラツク新管)を基準として比較した。その結
果を表1に示す。
[Industrial Application Field] The present invention relates to a repaired heat exchange tube in which a corrosion-resistant inner tube is closely attached to the corroded inner surface of the heat exchange tube via a filler, and a repair method. [Prior Art] Copper alloys with good thermal conductivity are widely used as materials for heat exchange tubes. However, when copper alloy pipes are used with corrosive fluids such as seawater as working fluids, the inner surface of the pipes that comes into contact with it corrodes.
As it progresses, the wall thickness decreases, and when this thinning exceeds a certain limit, it becomes necessary to replace the tube. In this case, it may be possible to use a corrosion-resistant metal tube, such as a titanium tube, but this is much more expensive than a copper alloy tube, so when using it, it is necessary to make the wall thicker than the tube. I have no choice but to make it thinner. In such a case, the spacing between the tube support plates that supported the original tube will remain the same, so the new tube will not be compatible with the new tube, and there is a risk of damage due to vibration. It cannot be exchanged. Therefore, the pipe is usually replaced with a new copper alloy pipe made of the same material as the original pipe. [Problems to be solved by the invention] However, such conventional maintenance does not change the situation in which the pipes are subject to corrosion, so it is necessary to replace the pipes with new ones after a certain period of use. Become. Therefore, in order to save labor on maintenance work that requires such manual labor, we developed a system that can withstand the corrosive environment even when using corrosive working fluids such as seawater, enables semi-permanent use, and has good heat transfer performance. hold,
It was also desired that it could be repaired at low cost. This invention solves these technical problems. Means for Solving the Problems] As schematically shown in FIG. This is a double tube for heat exchange in which the inner tube 2 is brought into close contact with the inner tube 2. The heat exchange tube 1 is made of a material conventionally used for heat exchange such as a copper alloy, and its inner surface is corroded during use. The easily fusible filler 3 fills the recesses formed by corrosion on the inner surface of the outer tube, improves the contact between the outer tube and the inner tube, and has the effect of increasing heat transfer. Examples of such easily meltable fillers include easily meltable metal fillers and oil-based fillers. As the easily meltable alloy filler, low melting point alloys such as Wood, Lipovitz, Newton, and Dulce can be used. Examples of the oil-based filler include lubricating grease, thermally conductive grease containing a thermally conductive material such as carbon or fine metal powder to improve contact thermal conductivity, and butter. The corrosion-resistant inner tube 2 is selected from suitable known corrosion-resistant metals depending on the conditions of use, but is preferably made of titanium, and may be either a welded tube or a drawn tube, but a welded titanium tube is particularly preferred. Next, we will discuss the repair method which is the second invention.
Figure 5 will be explained. FIG. 2 shows an embodiment in which heat exchange tubes are repaired directly within a heat exchange device according to the present invention. (1) Clean the inner surface of the heat exchange tube 1 in service using carborundum ball cleaning, sandblasting, jet water cleaning, chemical cleaning, etc., or a combination thereof, to remove as much corrosion products as possible from the inner surface. . After cleaning, remove moisture inside the pipe by air purge, felt hammering, etc. (2) As shown in FIGS. 3 and 4, the easily fusible filler 3 is attached to the recess 5 provided along the welded portion 4 in the axial direction of the outer surface of the corrosion-resistant inner tube 2. Since this easily fusible filler 3 fills the corroded recesses on the inner surface of the outer tube, the amount used varies depending on the corrosion state of the heat exchange tube 1, which is the outer tube, but it is distributed on the average around the circumferential outer surface of the inner tube. It is preferable to set it to 0.3 mmt or less. The corrosion-resistant inner tube 2 with the filler thus prepared is inserted into the cleaned heat exchange tube 1. At this time, the outer diameter of the corrosion-resistant inner tube 2 is originally slightly smaller than the inner diameter of the heat exchange tube 1, which is the outer tube, for example.
Although it is made smaller by about 1.0 to 1.5 mm, as mentioned above, the recess is formed in the axial direction of the inner tube, so
The effective outer diameter becomes smaller and the insertion process becomes easier. (3) The heat medium is circulated through the corrosion-resistant inner tube 2 through the pump 6 to melt the easily meltable filler 3. (4) Close the valve 7 and pressurize the inner surface of the corrosion-resistant inner tube 2 with the plunger 8 to bring it into close contact with the inner surface of the heat exchange tube 1. (This hydraulic pressure pipe expansion method is described, for example, in Japanese Patent Publication No. 47616/1983.) The pressurization curve in this case is as shown in FIG. In FIG. 5, the corrosion-resistant inner tube 2 expands between A and B, and at point B, the corrosion-resistant inner tube 2 expands to the filler 3.
It comes in contact with the heat exchange tube 1, which becomes the outer tube, through the tube. Pressurization is stopped slightly beyond point B, and after maintaining this pressure, the pressure is released. In addition to the hydraulic pipe expansion method described above, the inner and outer pipes are brought into close contact with each other.
By using a heating medium, the adhesion can be increased due to the slight difference in expansion between the inner and outer tubes. [Example] Example 1 Aluminum brass tube (Albrac tube manufactured by Sumitomo Light Metal Industries) 25, 4φ x 1.25t x 2200mm removed from a heat exchange device that uses moderately contaminated seawater as cooling water
The inner surface was cleaned by sandblasting. On the other hand, a 0.3 mmt titanium welded pipe was made with a recessed part along the welded part, and an amount of wood alloy filler with an average thickness of 0.15 mmt was attached thereto and inserted into the aluminum brass pipe (Albrak pipe manufactured by Sumitomo Light Metal Industries). . The inner surface of this aluminum brass tube (Albrac tube manufactured by Sumitomo Light Metal Industries) was microscopically affected by intergranular corrosion, but macroscopically it was affected by pock-like contaminated seawater corrosion. Warm water at 90°C was passed through the inner tube and pressurized. The heat transfer performance of the various double-walled pipes manufactured in this way was measured using a test device that condenses low-pressure steam, and compared with new aluminum brass pipes (Albrak new pipes manufactured by Sumitomo Light Metal Industries) as a standard. The results are shown in Table 1.

【表】 実施例 2 中程度の汚染海水を冷却水とする熱交換装置か
ら抜管されたアルミニウム黄銅管25、4φ×1.25t
×2200mmの内面をサンドブラストによつて清掃
した。一方、0.3mmtのチタン溶接管にその溶接
部に沿つて凹部を設け、そこに平均0.15mmtとな
る量の銅微粉末を含有する潤滑用グリースを置い
て前記アルミニウム黄銅管に挿入した。このアル
ミニウム黄銅管の内面はミクロ的には粒界腐食を
受けていたが、マクロ的にはあばた状の汚染海水
腐食を受けていた。内管内に90℃の温水を通し加
圧した。 このようにして製造した各種二重管の伝熱性能
を低圧蒸気を凝縮させるテスト装置によつて測定
し、アルミニウム黄銅新管を基準として比較し
た。その結果を表1に示す。
[Table] Example 2 Aluminum brass tube 25, 4φ x 1.25t extracted from a heat exchange device that uses moderately contaminated seawater as cooling water
The inner surface of ×2200 mm was cleaned by sandblasting. On the other hand, a 0.3 mmt titanium welded tube was provided with a recessed portion along the welded portion, and lubricating grease containing fine copper powder in an average amount of 0.15 mmt was placed in the recessed portion and inserted into the aluminum brass tube. The inner surface of this aluminum brass tube was microscopically affected by intergranular corrosion, but macroscopically it was affected by pock-like contaminated seawater corrosion. Warm water at 90°C was passed through the inner tube and pressurized. The heat transfer performance of the various double-walled pipes manufactured in this way was measured using a test device that condenses low-pressure steam, and compared with new aluminum-brass pipes as a standard. The results are shown in Table 1.

【表】 [発明の効果] この発明における補修された熱交換用二重管
は、内管に耐食性金属管を用いることにより単に
使用可能期間が延長して保守作業の省力化が可能
となるのみならず、表1および表2から明らかな
ように耐食性内管外面に有する易溶性フイラーに
より、内管と腐食内面をもつ外管との空間が埋め
られ、両者の接触が良好となつて伝熱性も改善さ
れる。また、補修方法において熱媒を用いること
により、内管と外管との熱膨脹差により両者の密
着力を高めることができる等顕著な効果を奏する
ものである。
[Table] [Effects of the invention] By using a corrosion-resistant metal pipe for the inner pipe of the repaired double heat exchange pipe of this invention, the usable period is simply extended and maintenance work can be saved. As is clear from Tables 1 and 2, the easily soluble filler on the outer surface of the corrosion-resistant inner tube fills the space between the inner tube and the outer tube with a corroded inner surface, improving the contact between the two and improving heat transfer. will also be improved. Further, by using a heating medium in the repair method, remarkable effects such as being able to increase the adhesion between the inner tube and the outer tube due to the difference in thermal expansion between the two can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の補修された熱交換管を示
す図、第2図はこの発明の熱交換管の補修法の一
例を示す図、第3図は腐食性内管へ易融合金フイ
ラーの取付け方を示す正面図、第4図は同A−A
断面図、第5図は加圧曲線を示す図である。 1…熱交換管、1a…腐食内面、2…耐食性内
管、3…易融性フイラー、4…溶接部、5…凹
部、6…ポンプ、7…バルブ、8…プランジヤ
ー。
FIG. 1 is a diagram showing a repaired heat exchange tube of the present invention, FIG. 2 is a diagram showing an example of a method for repairing a heat exchange tube of the present invention, and FIG. 3 is a diagram showing an example of a method for repairing a heat exchange tube of the present invention. FIG. 4 is a front view showing how to install the same A-A.
The cross-sectional view, FIG. 5, is a diagram showing a pressurization curve. DESCRIPTION OF SYMBOLS 1... Heat exchange tube, 1a... Corroded inner surface, 2... Corrosion-resistant inner tube, 3... Easily fusible filler, 4... Welded part, 5... Recessed part, 6... Pump, 7... Valve, 8... Plunger.

Claims (1)

【特許請求の範囲】 1 熱交換管の腐食内面に、耐食性金属からなる
内管を、該内管の外周面に有する易融性フイラー
を介して密着せしめたことを特徴とする補修され
た熱交換管。 2 腐食内面を有する熱交換管に、耐食性金属か
らなり、かつ外面に設けた凹部に易融性フイラー
を有する内管を挿入し、該内管を加熱媒体により
加熱して該フイラーを融解せしめ、次いで該加熱
媒体を加圧して該耐食性内管を該熱交換管に密着
せしめることを特徴とする熱交換管の補修方法。
[Scope of Claims] 1. A repaired heat exchanger tube characterized in that an inner tube made of a corrosion-resistant metal is brought into close contact with the corroded inner surface of a heat exchange tube via a fusible filler provided on the outer peripheral surface of the inner tube. exchange tube. 2. Inserting an inner tube made of a corrosion-resistant metal and having an easily meltable filler into a recess provided on the outer surface of the heat exchange tube having a corroded inner surface, heating the inner tube with a heating medium to melt the filler, A method for repairing a heat exchange tube, comprising: then pressurizing the heating medium to bring the corrosion-resistant inner tube into close contact with the heat exchange tube.
JP1726787A 1987-01-29 1987-01-29 Repaired heat exchanging pipe and its repairing method Granted JPS63187099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1726787A JPS63187099A (en) 1987-01-29 1987-01-29 Repaired heat exchanging pipe and its repairing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1726787A JPS63187099A (en) 1987-01-29 1987-01-29 Repaired heat exchanging pipe and its repairing method

Publications (2)

Publication Number Publication Date
JPS63187099A JPS63187099A (en) 1988-08-02
JPH0454878B2 true JPH0454878B2 (en) 1992-09-01

Family

ID=11939193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1726787A Granted JPS63187099A (en) 1987-01-29 1987-01-29 Repaired heat exchanging pipe and its repairing method

Country Status (1)

Country Link
JP (1) JPS63187099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566864A (en) * 2012-08-06 2014-02-12 河南省中原大化集团有限责任公司 Device for improving heat transfer efficiency and working method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168097A (en) * 1980-05-30 1981-12-24 Matsushita Electric Ind Co Ltd Double tube heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168097A (en) * 1980-05-30 1981-12-24 Matsushita Electric Ind Co Ltd Double tube heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566864A (en) * 2012-08-06 2014-02-12 河南省中原大化集团有限责任公司 Device for improving heat transfer efficiency and working method thereof

Also Published As

Publication number Publication date
JPS63187099A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
EP2413083B1 (en) Method of repairing a tubular member of an apparatus
US2735698A (en) Header plate-tube joint for heat-
Yokell Expanded, and welded-and-expanded tube-to-tubesheet joints
JP4210518B2 (en) Manufacturing method of furnace cooling device
DK166466B1 (en) METHOD OF PREPARING A HEAT EXCHANGE
CN102039520B (en) Manufacturing method of aluminium alloy heat exchanger for gas water heater
CN101992331B (en) Vacuum brazing process for super-Ni laminated material and Cr18-Ni8 stainless steel
JPH0454878B2 (en)
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
EP1669150B1 (en) Braze bar carrier system comprising a braze bar having a pair of pins and an insert formed of dense graphit material
JP2555454B2 (en) Pipe-on-sheet heat exchanger and manufacturing method thereof
TWI225143B (en) Method for preventing electrolytic corrosion of heat exchanger
CN104204710A (en) Surface treatment for corrosion resistance of aluminum
ES2109617T3 (en) MANUFACTURE METHOD OF A SET OF PIPES FOR HEAT EXCHANGER.
JPH11156520A (en) Die cooling structure
JPH0648148B2 (en) Heat exchanger
CN108679885B (en) A kind of low-temperature corrosion protection evaporator
Hbbani et al. Tube expansion and hybrid friction diffusion bonding of Cu-Ni and ASTM A516 G70 tube-to-tubesheet joints
CA2157224A1 (en) Brazing of aluminum-beryllium alloy
CN110864581A (en) Preparation process of fin for efficient heat exchanger
CN218994158U (en) Sealing strip for plate-fin heat exchanger
JP3844626B2 (en) Method of manufacturing heat exchanger tube for heat exchanger and heat exchanger tube for heat exchanger obtained thereby
JPH1110264A (en) Method for linking thin metallic tube by hydraulic expansion onto inner surface of existing heat transfer tube of multi-tube type heat exchanger and apparatus therefor and thin titanium tube used for lining by hydraulic expansion
JP2507754B2 (en) Flux for brazing aluminum parts
CN112570979B (en) Repairing method of fixed tube-plate type heat exchanger