JPH0454654B2 - - Google Patents

Info

Publication number
JPH0454654B2
JPH0454654B2 JP58141490A JP14149083A JPH0454654B2 JP H0454654 B2 JPH0454654 B2 JP H0454654B2 JP 58141490 A JP58141490 A JP 58141490A JP 14149083 A JP14149083 A JP 14149083A JP H0454654 B2 JPH0454654 B2 JP H0454654B2
Authority
JP
Japan
Prior art keywords
palladium
reaction
ester
catalyst
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58141490A
Other languages
Japanese (ja)
Other versions
JPS6032745A (en
Inventor
Hideaki Kataoka
Toshiro Yamada
Kuniaki Goto
Jiro Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP58141490A priority Critical patent/JPS6032745A/en
Publication of JPS6032745A publication Critical patent/JPS6032745A/en
Publication of JPH0454654B2 publication Critical patent/JPH0454654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はα,β−不飽和カルボニル化合物の新
規な製造法に関し、さらに詳しくは、アリル型炭
酸エステルを出発原料とする新規な反応によつて
α,β−不飽和カルボニル化合物を製造する方法
に関する。 シクロペンテノン誘導体、シクロヘキセノン誘
導体、シクロドデセノン誘導体などのごとき不飽
和ケトンは香料、医薬、化学薬品などの分野で有
用な化学物質である。 かかる不飽和カルボニル化合物の新規な合成法
として、近時、炭素のアリルアルケニルエステル
をパラジウムとα,ω−アルキレンジ(ジ置換)
ホスフインとから本質的に成る触媒で処理する方
法が報告されている(テトラヘドロンレターズ、
第24巻、第17号、第1797〜1800号、1983年発行)。 而してこの報告によれば、触媒を構成する特定
な二座配位子が反応によつて本質的なものとさ
れ、トリフエニルホスフインのような汎用的な配
位子を用いる場合には選択性に劣ることが記載さ
れている。 そのため、かかる従来技術では使用可能な配位
子が特殊な構造をもつ高価な化合物に制約されて
おり、また触媒の活性、反応の選択性の点でも必
ずしも満足しうるものとは云えなかつた。 そこで本発明者らはかかる従来技術の欠点を改
良すべく鋭意検討を進めた結果、意外にも前記報
告では必須の触媒成分とされていたα,ω−アル
キレンジ(ジ置換)ホスフインを用いずにパラジ
ウム化合物を単独で使用することが有効であり、
また特定範囲内で単座配位子を併用する場合には
触媒の活性及び安定性がさらに改善されることを
見い出し、本発明を完成するに到つた。 かくして本発明によれば、下記一般式〔〕で
表わされる炭酸ジエステルをパラジウム化合物と
所望により該化合物1モル当り1.5モル以下の単
座配位子とから本質的に成る触媒と接触せしめる
ことを特徴とする下記一般式〔〕で表わされる
α,β−不飽和カルボニル化合物の製造法が提供
される。 (前記式中、R1、R2、R3、R4、R5、R6、R7及び
R8は水素または炭化水素残基を表わし、R1、R2
R3、R4は鎖状であつてもまたはそれぞれが任意
の組合せで環を形成していてもよい。) 本発明においては、出発原料として前記一般式
〔〕で表わされるアリル型炭酸エステルが使用
される。式中、R1水素原子のほかメチル基、エ
チル基、プロピル基、ペンチル基などのごときア
ルキル基やR2、R3またはR4と結合してシクロペ
ンタン環、シクロヘキサン環、シクロドデカン環
などのごとき環を形成しているアルキレン基をさ
し、またR2、R3及びR4は水素原子またはR1と同
様のアルキル基、アルキレン基を意味し、さら
R5、R6、R7及びR8は水素またはアルキル基を意
味する。上記各置換基のうちR1、R2R3及びR4
それぞれが任意の組合せで環で形成していてもよ
い。 かかる化合物の具体的な例として、例えば炭酸
アリル(1−シクロヘキセニル)エステル、炭酸
アリル(1−シクロペンテニル)エステル、炭酸
アリル(2−メチル−1−シクロヘキセニル)エ
ステル、炭酸アリル(6−メチル−1−シクロヘ
キセニル)エステル、炭酸アリル(1−シクロド
デセニル)エステル、炭酸アリル(シクロヘキシ
リデン)エステル、炭酸クロチル(1−シクロヘ
キセニル)エステル、炭酸−2−ペンテニル(1
−シクロヘキセニル)エステル、炭酸アリル(2
−プロピル−1−シクロヘキセニル)エステル、
炭酸アリル(2−ペンチル−1−シクロヘキセニ
ル)エステル、炭酸アリル(2−ペンチル−1−
シクロペンテニル)エステル、炭酸アリル(2−
ペンテニル−1−シクロペンテニル)エステル、
炭酸アリル(2−ペンチニル−1−シクロペンテ
ニル)エステル、炭酸アリル(1−プロペニル)
エステル、炭酸アリル(1−ヘキセニル)エステ
ル、炭酸アリル(2−メチル−1−ブテニル)エ
ステル、炭酸アリル(3−メチル−1−ブテニ
ル)エステルなどが例示される。 これらの化合物の合成は常法に従つて行えばよ
く、例えば炭酸アリル(1−シクロヘキセニル)
エステルを例にとると、シクロヘキサノンとクロ
ル蟻酸アリルを反応せしめる方法によつて容易に
合成することができる。 本発明においては、反応に際してパラジウム化
合物または該化合物と単座配位子とから本質的に
成る触媒が用いられる。パラジウム化合物はパラ
ジウムの塩または錯体であり、その具体例とし
て、例えばトリス(ジベンジリデンアセトン)二
パラジウム(0)、トリス(トリジベジリデンア
セチルアセトン)三パラジウム(0)、酢酸パラ
ジウム、プロピオン酸パラジウム、酪酸パラジウ
ム、安息香酸パラジウム、パラジウムアセチルア
セトナート、硝酸パラジウム、硫酸パラジウム、
塩化パラジウムなどが挙げられる。これらの化合
物中、無機強酸塩を用いる場合には酢酸カリウ
ム、ナトリウムアルコラート、第三級アミンなど
の塩基を共存させることが望ましい。またパラジ
ウム化合物のなかでは0価のオレフイン錯体また
は二価の有機化合物を用いるのが好適である。 また用いられる単座配位子は配位原子として周
期律表第V族元素、すなわち窒素、リン、ヒ素ま
たはアンチモンを有する電子供与性化合物であ
り、その具体例としてピリジン、キノリン、トリ
メチルアミン、トリエチルアミン、トリブチルア
ミンなどのごとき含窒素化合物;トリエチルホス
フイン、トリ−n−ブチルホスフイン、トリ−n
−ドデシルホスフイン、トリフエニルホスフイ
ン、トリ−o−トリルホスフイン、トリ−p−ビ
フエニルスホスフイン、トリ−o−メトキシフエ
ニルホスフイン、フエニルジフエノキシホスフイ
ン、トリエチルホスフアイト、トリ−n−ブチル
ホスフアイト、トリ−n−ヘキシルホスフアイ
ト、トリフエニルホスフアイト、トリ−o−トリ
ルホスフアイト、トリフエニルチオホスフアイト
などのごとき含リン化合物;トリエチルヒ素、ト
リブチルヒ素、トリフエニルヒ素などのごとき含
ヒ素化合物;トリプロピルアンチモン、トリフエ
ニルアンチモンなどのごとき含アンチモン化合物
などが挙げられる。なかでも含窒素化合物及び含
リン化合物が反応の活性、選択性、経済性などの
面で好ましい。 かかる単座配位子は触媒成分として必ずしも必
須ではないが、適量使用することによつて触媒の
安定性を大巾に向上させることができ、また触媒
の使用量を減少させることができる。しかし、そ
の使用量が過度に大きくなると、既知のアリル化
反応が主反応となるので、その量はパラジウム化
合物1モル当り1.5モル以下にする必要があり、
とくに0.1〜1.3モル、さらには0.3〜1.2モルとす
るのが好ましい。 本発明における触媒の使用量は適宜選択される
が、通常は原料100モル当りパラジウム化合物が
通常0.01〜10モル、好ましくは0.1〜5モルとな
るような割合で使用される。またパラジウム化合
物と単座配位子は予め反応させておいてもよい
が、通常は反応系中で両成分を接触せしめること
により触媒が調製される。 本発明の反応は出発原料を触媒と接触せしめる
ことにより下記反応式に従つて進行する。反応温
度は通常20℃以上、好ましくは50〜150℃であり、
反応時間は通常5分〜10時間である。 また反応に際して、希釈剤を存在させることが
でき、その具体例として、例えばアセトニトリ
ル、プロピオニトリル、ブチロニトリル、ベンゾ
ニトリルなどのごときニトリル類;ジメチルホル
ムアミド、ジエチルホルムアミド、ジメチルアセ
トアミド、ジメチルプロピオアミド、N−メチル
ピロリドンなどのごときアミド類;テトラヒドロ
フラン、ジオキサン、ジブチルエーテル、エチレ
ングリコールジメチルエーテルなどのごときエー
テル類;アセトン、メチルエチルケトン、メチル
イソブチルケトン、シクロヘキサノンなどのごと
きケトン類;酢酸メチル、酢酸エチル、酢酸プロ
ピル、プロピオン酸エチルなどのごときエステル
類;エタノール、プロパノール、ter−ブタノー
ル、エチレングリコール、ジエチレングリコール
モノエチルエーテルなどのごときアルコール類;
ジメチルスルホキシド、ジエチルスルホキシドな
どのごときスルホキシド類;n−ヘキサン、シク
ロヘキサン、ベンゼン、トルエン、キシレンなど
のごとき炭化水素類などが例示され、なかでも非
プロトン性極性溶剤、とくにニトリル類、アミド
類、エーテル類、ケトン類、エステル類が賞用さ
れる。 これらの希釈剤は通常、出発原料の濃度が1〜
50重量%となるような割合で使用され、その使用
によつて反応の活性、選択性、触媒の安定性を向
上させることができる。とくに触媒成分中に単座
配位子を含まない場合には触媒が不安定になるた
め希釈剤を用いることが適切であり、なかでもニ
トリル類を用いることが好ましい。 反応終了後、反応液から常法に従つて目的物を
分離することによつて高純度のα,β−不飽和カ
ルボニル化合物、すなわちα,β−不飽和ケトン
またはα,β−不飽和アルデヒドが得られる。か
かる不飽和カルボニル化合物は種々の有用な化合
物の合成中間体、とくに香料、医薬などの中間体
として用いられる。 かくして本発明によれば、入手の容易な化合物
を触媒として使用することができ、しかも従来法
に比較して高活性かつ高選択率で目的とするα,
β−不飽和カルボニル化合物を選造することがで
きる。 以下に実施例を挙げて本発明をさらに具体的に
説明する。 実施例 1 容器中に炭酸アリル(2−メチル−1−シクロ
ヘキセニル)エステル
The present invention relates to a novel method for producing α,β-unsaturated carbonyl compounds, and more particularly, to a method for producing α,β-unsaturated carbonyl compounds by a novel reaction using allyl carbonate as a starting material. . Unsaturated ketones such as cyclopentenone derivatives, cyclohexenone derivatives, cyclododecenone derivatives, etc. are useful chemical substances in the fields of perfumery, medicine, chemicals, etc. Recently, as a new method for synthesizing such unsaturated carbonyl compounds, carbon allyl alkenyl esters are combined with palladium and α,ω-alkylene di(disubstituted)
A method of treatment with a catalyst consisting essentially of phosphine has been reported (tetrahedron letters,
Volume 24, No. 17, Nos. 1797-1800, published 1983). According to this report, the specific bidentate ligands that make up the catalyst are made essential by the reaction, and when a general-purpose ligand such as triphenylphosphine is used, It is described that the selectivity is poor. Therefore, in such conventional techniques, usable ligands are limited to expensive compounds with special structures, and the catalyst activity and reaction selectivity are not necessarily satisfactory. Therefore, the present inventors carried out intensive studies to improve the drawbacks of the conventional technology, and as a result, surprisingly, they did not use α,ω-alkylene di(disubstituted) phosphine, which was considered to be an essential catalyst component in the above report. It is effective to use palladium compounds alone in
Furthermore, the inventors have discovered that the activity and stability of the catalyst are further improved when a monodentate ligand is used within a specific range, and the present invention has been completed. Thus, according to the present invention, a carbonic acid diester represented by the following general formula [] is brought into contact with a catalyst consisting essentially of a palladium compound and optionally 1.5 mol or less of a monodentate ligand per mol of said compound. A method for producing an α,β-unsaturated carbonyl compound represented by the following general formula [] is provided. (In the above formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and
R 8 represents hydrogen or a hydrocarbon residue, R 1 , R 2 ,
R 3 and R 4 may be chain-like or each may form a ring in any combination. ) In the present invention, an allyl type carbonate ester represented by the above general formula [] is used as a starting material. In the formula, in addition to R 1 hydrogen atom, alkyl groups such as methyl group, ethyl group, propyl group, pentyl group, etc., or R 2 , R 3 or R 4 are bonded to form a cyclopentane ring, cyclohexane ring, cyclododecane ring, etc. It refers to an alkylene group forming a ring such as R 2 , R 3 and R 4 mean a hydrogen atom or an alkyl group or an alkylene group similar to R 1 , and
R 5 , R 6 , R 7 and R 8 represent hydrogen or an alkyl group. Among the above-mentioned substituents, R 1 , R 2 R 3 and R 4 may each be formed into a ring in any combination. Specific examples of such compounds include allyl carbonate (1-cyclohexenyl) ester, allyl carbonate (1-cyclopentenyl) ester, allyl carbonate (2-methyl-1-cyclohexenyl) ester, and allyl carbonate (6-methyl) ester. -1-cyclohexenyl) ester, allyl carbonate (1-cyclododecenyl) ester, allyl carbonate (cyclohexylidene) ester, crotyl carbonate (1-cyclohexenyl) ester, -2-pentenyl carbonate (1-cyclohexenyl) ester,
-cyclohexenyl) ester, allyl carbonate (2
-propyl-1-cyclohexenyl) ester,
Allyl carbonate (2-pentyl-1-cyclohexenyl) ester, Allyl carbonate (2-pentyl-1-
cyclopentenyl) ester, allyl carbonate (2-
pentenyl-1-cyclopentenyl) ester,
Allyl carbonate (2-pentynyl-1-cyclopentenyl) ester, allyl carbonate (1-propenyl)
Examples include ester, allyl carbonate (1-hexenyl) ester, allyl carbonate (2-methyl-1-butenyl) ester, and allyl carbonate (3-methyl-1-butenyl) ester. These compounds can be synthesized according to conventional methods, for example, allyl carbonate (1-cyclohexenyl)
Taking ester as an example, it can be easily synthesized by a method of reacting cyclohexanone and allyl chloroformate. In the present invention, a palladium compound or a catalyst consisting essentially of the palladium compound and a monodentate ligand is used in the reaction. The palladium compound is a palladium salt or complex, and specific examples include tris(dibenzylideneacetone)dipalladium(0), tris(tridibezylideneacetylacetone)tripalladium(0), palladium acetate, palladium propionate, butyric acid. Palladium, palladium benzoate, palladium acetylacetonate, palladium nitrate, palladium sulfate,
Examples include palladium chloride. When using a strong inorganic acid salt among these compounds, it is desirable to coexist a base such as potassium acetate, sodium alcoholate, or tertiary amine. Among the palladium compounds, it is preferable to use a zero-valent olefin complex or a divalent organic compound. The monodentate ligand used is an electron-donating compound having a Group V element of the periodic table, that is, nitrogen, phosphorus, arsenic, or antimony, as a coordination atom, and specific examples thereof include pyridine, quinoline, trimethylamine, triethylamine, and Nitrogen-containing compounds such as butylamine; triethylphosphine, tri-n-butylphosphine, tri-n
-dodecylphosphine, triphenylphosphine, tri-o-tolylphosphine, tri-p-biphenylsphosphine, tri-o-methoxyphenylphosphine, phenyldiphenoxyphosphine, triethylphosphine, Phosphorus-containing compounds such as tri-n-butylphosphite, tri-n-hexylphosphite, triphenylphosphite, tri-o-tolylphosphite, triphenylthiophosphite; triethyl arsenic, tributyl arsenic, triphenyl arsenic, etc. Examples include arsenic-containing compounds such as; antimony-containing compounds such as tripropylantimony and triphenylantimony. Among these, nitrogen-containing compounds and phosphorus-containing compounds are preferred in terms of reaction activity, selectivity, economy, and the like. Although such a monodentate ligand is not necessarily essential as a catalyst component, by using an appropriate amount, the stability of the catalyst can be greatly improved and the amount of catalyst used can be reduced. However, if the amount used is too large, the known allylation reaction will become the main reaction, so the amount needs to be 1.5 mol or less per 1 mol of palladium compound.
In particular, it is preferably 0.1 to 1.3 mol, more preferably 0.3 to 1.2 mol. The amount of the catalyst to be used in the present invention is appropriately selected, but it is usually used in a ratio such that the palladium compound is usually 0.01 to 10 moles, preferably 0.1 to 5 moles, per 100 moles of the raw material. Although the palladium compound and the monodentate ligand may be reacted in advance, the catalyst is usually prepared by bringing both components into contact in a reaction system. The reaction of the present invention proceeds according to the following reaction formula by bringing the starting material into contact with a catalyst. The reaction temperature is usually 20°C or higher, preferably 50 to 150°C,
The reaction time is usually 5 minutes to 10 hours. In addition, a diluent can be present during the reaction, and specific examples thereof include nitriles such as acetonitrile, propionitrile, butyronitrile, and benzonitrile; dimethylformamide, diethylformamide, dimethylacetamide, dimethylpropionamide, N -Amides such as methylpyrrolidone; ethers such as tetrahydrofuran, dioxane, dibutyl ether, ethylene glycol dimethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methyl acetate, ethyl acetate, propyl acetate, propion Esters such as ethyl acid; alcohols such as ethanol, propanol, ter-butanol, ethylene glycol, diethylene glycol monoethyl ether;
Examples include sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide; hydrocarbons such as n-hexane, cyclohexane, benzene, toluene, xylene, etc. Among them, aprotic polar solvents, especially nitriles, amides, and ethers. , ketones, and esters. These diluents typically have a starting material concentration of 1 to
It is used in a proportion of 50% by weight, and its use can improve reaction activity, selectivity, and catalyst stability. In particular, when the catalyst component does not contain a monodentate ligand, the catalyst becomes unstable, so it is appropriate to use a diluent, and among them, it is preferable to use a nitrile. After the reaction is complete, a highly purified α,β-unsaturated carbonyl compound, i.e., α,β-unsaturated ketone or α,β-unsaturated aldehyde, is obtained by separating the target product from the reaction solution using a conventional method. can get. Such unsaturated carbonyl compounds are used as intermediates for the synthesis of various useful compounds, particularly for perfumes, medicines, and the like. Thus, according to the present invention, easily available compounds can be used as catalysts, and the desired α,
β-unsaturated carbonyl compounds can be selected. The present invention will be explained in more detail with reference to Examples below. Example 1 Allyl (2-methyl-1-cyclohexenyl) carbonate ester in a container

【式】1モルに対 してアセトニトリル20モル及び酢酸パラジウム
0.05モルの割合で仕込み、室温で速やかに撹拌し
たのち溶媒の沸点まで昇温してアルゴン雰囲気下
で還流化に1時間反応を行つた。反応終了後、常
法に従つて生成物を減圧蒸留した結果、2−メチ
ル−2−シクロヘキセン−1−オン(以下、
MCHと称する)が98%の収率で得られた。な
お、これらの化合物の同定はIR,NMR及びマス
スペクトルを用いることによつて行われた。 また反応中及び反応後の系内の状態を観察した
ところ、反応の過程でパラジウムの沈澱が発生し
始め、反応終了後にはより激しい沈澱の発生が認
められた。 実施例 2 酢酸パラジウムに加えて所定量のトリフエニル
ホスフインを使用すること以外は実施例1と同様
にして実験を行つた。結果を第1表に示す。な
お、いずれの場合においても反応中におけるパラ
ジウムの沈澱はほとんど認められなかつた。
[Formula] 20 mol of acetonitrile and palladium acetate per 1 mol
The mixture was charged in a proportion of 0.05 mol, stirred rapidly at room temperature, heated to the boiling point of the solvent, and reacted under argon atmosphere for 1 hour under reflux. After the reaction was completed, the product was distilled under reduced pressure according to a conventional method, resulting in 2-methyl-2-cyclohexen-1-one (hereinafter referred to as
MCH) was obtained in 98% yield. Note that these compounds were identified using IR, NMR, and mass spectra. Furthermore, when the conditions inside the system were observed during and after the reaction, palladium precipitation began to occur during the reaction process, and more severe precipitation was observed after the reaction was completed. Example 2 An experiment was conducted in the same manner as in Example 1 except that a predetermined amount of triphenylphosphine was used in addition to palladium acetate. The results are shown in Table 1. In any case, almost no precipitation of palladium was observed during the reaction.

【表】 この結果から、トリフエニルホスフインの使用
量が一定の範囲内にあれば触媒の安定性、収率の
いずれの面でも良好な結果を示すことがわかる。 実施例 3 トリフエニルホスフインに代えて第2表に示す
ごとき配位子を使用すること以外は実施例2の実
験番号2と同様にして実験を行つた。結果を第2
表に示す。この結果から、二座配位子よりも単座
配位子の方が好ましいことがわかる。
[Table] From the results, it can be seen that if the amount of triphenylphosphine used is within a certain range, good results can be obtained in terms of catalyst stability and yield. Example 3 An experiment was conducted in the same manner as Experiment No. 2 of Example 2, except that the ligands shown in Table 2 were used in place of triphenylphosphine. Second result
Shown in the table. This result shows that monodentate ligands are preferable to bidentate ligands.

【表】 実施例 4 アセトニトリルに代えて第3表に示すごとき溶
材を20モル使用すること以外は実施例2の実験番
号2と同様にして実験を行つた。結果を第3表に
示す。
[Table] Example 4 An experiment was conducted in the same manner as in Experiment No. 2 of Example 2, except that 20 moles of the solvent shown in Table 3 was used in place of acetonitrile. The results are shown in Table 3.

【表】 実施例 5 出発原料として第4表に示すごとき化合物を用
いること以外は実施例2の実験番号2と同様して
反応を行つた。結果を第4表に示す。
[Table] Example 5 The reaction was carried out in the same manner as in Experiment No. 2 of Example 2, except that the compounds shown in Table 4 were used as starting materials. The results are shown in Table 4.

【表】【table】

【表】 実施例 6 酢酸パラジウムに代えてパラジウムアセチルア
セトナートを用いること以外は実施例2の実験番
号2に準じで反応を行つたところ、MCHの収率
は95%であつた。 実施例 7 酢酸パラジウムに代えてトリス(ジベンジリデ
ンアセトン)二パラジウム(0)を用いること以
外は実施例2の実験番号2に準じて反応を行つた
ところ、MCHの収率は96%であつた。
[Table] Example 6 The reaction was carried out according to Experiment No. 2 of Example 2, except that palladium acetylacetonate was used instead of palladium acetate, and the yield of MCH was 95%. Example 7 The reaction was carried out according to Experiment No. 2 of Example 2, except that tris(dibenzylideneacetone) dipalladium (0) was used in place of palladium acetate, and the yield of MCH was 96%. .

Claims (1)

【特許請求の範囲】 1 一般式[] (式中、R1、R2、R3、R4、R5、R6、R7及びR8
は水素または炭化水素残基を表わし、R1、R2
R3及びR4は鎖状であつてもまたはそれぞれが任
意の組合せで環を形成していてもよい)で表され
る炭酸ジエステルを配位子を含まないパラジウム
化合物触媒と接触せしめることを特徴とする一般
式[] (式中、R1、R2、R3及びR4は前記と同じ)で表
わされるα、β−不飽和カルボニル化合物の製造
方法。 2 一般式[] (式中、R1、R2、R3、R4、R5、R6、R7及びR8
は水素または炭化水素残基を表わし、R1、R2
R3及びR4は鎖状であつてもまたはそれぞれが任
意の組合せで環を形成していてもよい)で表され
る炭酸ジエステルを(a)パラジウム化合物と該化合
物1モル当り1.5モル以下の(b)単座配位子とから
本質的に成る触媒と接触せしめることを特徴とす
る一般式[] 式中、R1、R2、R3及びR4は前記と同じ)で表さ
れるα、β−不飽和カルボニル化合物の製造方
法。
[Claims] 1. General formula [] (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8
represents a hydrogen or hydrocarbon residue, R 1 , R 2 ,
R 3 and R 4 may be chain-like or each may form a ring in any combination) is brought into contact with a palladium compound catalyst containing no ligand. The general formula [] A method for producing an α,β-unsaturated carbonyl compound represented by the formula (wherein R 1 , R 2 , R 3 and R 4 are the same as above). 2 General formula [] (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8
represents a hydrogen or hydrocarbon residue, R 1 , R 2 ,
R 3 and R 4 may be chain-like or each may form a ring in any combination. (b) A general formula characterized by contacting with a catalyst consisting essentially of a monodentate ligand [] A method for producing an α,β-unsaturated carbonyl compound represented by the formula (wherein R 1 , R 2 , R 3 and R 4 are the same as above).
JP58141490A 1983-08-02 1983-08-02 Production of alpha,beta-unsaturated carbonyl compound Granted JPS6032745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141490A JPS6032745A (en) 1983-08-02 1983-08-02 Production of alpha,beta-unsaturated carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141490A JPS6032745A (en) 1983-08-02 1983-08-02 Production of alpha,beta-unsaturated carbonyl compound

Publications (2)

Publication Number Publication Date
JPS6032745A JPS6032745A (en) 1985-02-19
JPH0454654B2 true JPH0454654B2 (en) 1992-08-31

Family

ID=15293124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141490A Granted JPS6032745A (en) 1983-08-02 1983-08-02 Production of alpha,beta-unsaturated carbonyl compound

Country Status (1)

Country Link
JP (1) JPS6032745A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118863A (en) * 1989-06-22 1992-06-02 Nippon Zeon Co., Ltd. Process for producing an α,β-unsaturated carbonyl compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183581A (en) * 1981-05-07 1982-11-11 Mitsubishi Electric Corp Coolant compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183581A (en) * 1981-05-07 1982-11-11 Mitsubishi Electric Corp Coolant compressor

Also Published As

Publication number Publication date
JPS6032745A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
EP0133548B1 (en) Process for producing alpha,beta-unsaturated ketones
JPH0454654B2 (en)
US4370504A (en) Process for producing perfluorocarbon group-containing aldehydes
JPH0454653B2 (en)
JPH0354650B2 (en)
JPS643177B2 (en)
JPS644502B2 (en)
JP2022021915A (en) 3,3-dimethyl-1-butene-1,4-dicarboxylate compounds and 1,3,3-trimethyl-1-butene-1,4-dicarboxylate compounds, and processes for preparing 5,5-dimethyl-2-oxo-3-cyclopentene-1-carboxylate compounds and 3,5,5-trimethyl-2-oxo-3-cyclopentene-1-carboxylate compounds using the same
JPS644503B2 (en)
JPH03855B2 (en)
EP0404497B1 (en) A process for producing an alpha,beta-unsaturated carbonyl compound
JPH05271142A (en) Production of carbonyl compound
JPH046695B2 (en)
US5118863A (en) Process for producing an α,β-unsaturated carbonyl compound
JPS637532B2 (en)
JPH0455407B2 (en)
JPS6212744A (en) Novel allenecarboxylic acid ester and production thereof
JPH05255295A (en) Production of gamma-alkylidene-gamma-butylolactone
JP3156301B2 (en) Method for producing 2-hexene-1,6-dial
JP3634874B2 (en) Trifluoromethylacetylene derivative, method for producing the same, and method for producing the intermediate
JPS6361300B2 (en)
JPH0584292B2 (en)
JPH02240040A (en) Production of 3-keto-1-alcohol
JP2003292475A (en) 3-chloro-3-butenoic ester derivative and method for producing the same
JPH0764778B2 (en) Method for producing α, β-unsaturated carbonyl compound