JPH02240040A - Production of 3-keto-1-alcohol - Google Patents

Production of 3-keto-1-alcohol

Info

Publication number
JPH02240040A
JPH02240040A JP1059958A JP5995889A JPH02240040A JP H02240040 A JPH02240040 A JP H02240040A JP 1059958 A JP1059958 A JP 1059958A JP 5995889 A JP5995889 A JP 5995889A JP H02240040 A JPH02240040 A JP H02240040A
Authority
JP
Japan
Prior art keywords
group
reaction
ester
type
keto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1059958A
Other languages
Japanese (ja)
Inventor
Junzo Nogami
野上 潤造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP1059958A priority Critical patent/JPH02240040A/en
Publication of JPH02240040A publication Critical patent/JPH02240040A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the title compound in high yield by carrying out intramolecular or intermolecular aldol type reaction using only beta-ketocarboxylic acid ester having a carbonyl group or the above-mentioned beta-ketocarboxylic acid ester and carbonyl compound as raw materials in the presence of a Pd based catalyst. CONSTITUTION:beta-Ketocarboxylic acid allyl type or propagyl type ester [e.g. 1-(5-oxopentyl)-2-oxocyclopentancarboxylic acid allyl ester] having carbonyl group is subjected to intramolecular aldol type reaction in the presence of a palladium compound catalyst to provide the 3-keto-1-alcohol [e.g. spiro[5,5]decane-7-on-1-ol]. beta-Ketocarboxylic acid allyl type or propagyl type ester is subjected to intermolecular aldol type reaction with a carbonyl compound to provide the 3-keto-1-alcohol. The reaction proceeds without using any acid or base and side reaction with a functional group can be suppressed even when a raw material having the functional group is used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は3−ケト−1−アルコールの製造法に関し、さ
らに詳しくはβ−ケトカルボン酸エステルとパラジウム
化合物触媒を用いたアルドール型反応により3−ケト−
1−アルコールを製造する方法に関する。
[Detailed explanation of the invention] (In industrial use field) The present invention is 3- for more details regarding the method of producing 3 -keto -1 -alcohol, aludol -type reaction using β -ketocarboxylate ester and palladium compound catalyst. Keto
The present invention relates to a method for producing 1-alcohol.

(従来の技術) 従来、カルボニル化合物をチタンやジルコニウムなどの
遷移金属化合物の存在下にアルドール型反応せしめるこ
とにより3−ケト−1−アルコールを製造する方法が知
られている(ジャーナルオγ アメリカン ケミカル 
ソサイアティー1983,105,P1664〜166
5.テトラヘドロン レターズ.1980.虹.  P
3975〜3978など)。しかし、この方法では化学
量論的な量の金属化合物を必要とするため経済的な方法
ではなかった・ これに対し、ロジウム化合物を用いたアルドール型反応
が開発された。例えば、不飽和ケトンや不飽和ゲトンの
トリメチルシリルエノレートとアルデヒドとをロジウム
化合物の存在下にアルドール型反応せしめて3−ケト−
1−アルコールを製造する方法が知られている(ケミス
トリー レターズ,  1 9 8 5.  P187
5〜1878.ジャーナル オブオルガノメタリックケ
ミストリー.1988,352.P223〜238など
)。この方法によればロジウム化合物が触媒量でも反応
が進行するため経済的な方法である。
(Prior Art) Conventionally, a method for producing 3-keto-1-alcohol by subjecting a carbonyl compound to an aldol-type reaction in the presence of a transition metal compound such as titanium or zirconium has been known (Journal of American Chemical).
Society 1983, 105, P1664-166
5. Tetrahedron Letters. 1980. rainbow. P
3975-3978, etc.). However, this method was not economical because it required a stoichiometric amount of the metal compound. In response, an aldol-type reaction using rhodium compounds was developed. For example, trimethylsilyl enolate of an unsaturated ketone or an unsaturated getone is subjected to an aldol-type reaction with an aldehyde in the presence of a rhodium compound to produce a 3-keto-
1-A method for producing alcohol is known (Chemistry Letters, 1985. P187
5-1878. Journal of Organometallic Chemistry. 1988, 352. P223-238 etc.). According to this method, the reaction proceeds even with a catalytic amount of rhodium compound, so it is an economical method.

しかし、この方法では原料及び触媒が前述のものに限ら
れており適用範囲が狭いという問題があった。
However, this method has the problem that the raw materials and catalysts are limited to those mentioned above, and the range of application is narrow.

(発明が解決しようとする課a) 本発明者はこれらの従来技術とは異なる新規な反応を開
発すべく鋭意研究の結果、原料としてカルボニル基を有
するβ−ケトカルボン酸エステルを単独で用いるか、又
はβ−ケトカルボン酸エステルとカルボニル化合物を組
み合わせて用い、これらをパラジウム化合物触媒の存在
下に分子内又は分子間アルドール型反応せしめることに
より、3−ケト−1−アルコールが得られることを見い
出し、この知見に基づいて本発明を完成するに到った。
(Problem to be Solved by the Invention a) As a result of intensive research to develop a new reaction different from these conventional techniques, the present inventors have found that either a β-ketocarboxylic acid ester having a carbonyl group is used alone as a raw material, or Alternatively, they discovered that 3-keto-1-alcohol can be obtained by using a combination of β-ketocarboxylic acid ester and a carbonyl compound and causing an intramolecular or intermolecular aldol-type reaction between them in the presence of a palladium compound catalyst. The present invention was completed based on the findings.

(課題を解決するための手段) かくして本発明によれば、第1の発明としてカルボニル
基を有するβ−ケトカルボン酸の了りル型又はプロパル
ギル型エステルをパラジウム化合物触媒の存在下に分子
内アルドール型反応せしめることを特徴とする3−ケト
−1−アルコールの製造法が、第2の発明としてβ−ケ
1・カルボン酸のアリル型又はプロパルギル型エステル
とカルボニル化合物とをパラジウム化合物触媒の存在下
に分子間アルドール型反応せしめることを特徴とする3
−ケ゜トー1−アルコールの製造法が提供される。
(Means for Solving the Problems) According to the present invention, as a first invention, a ryoryl-type or propargyl-type ester of a β-ketocarboxylic acid having a carbonyl group is converted into an intramolecular aldol-type ester in the presence of a palladium compound catalyst. A second invention provides a method for producing 3-keto-1-alcohol, which is characterized by reacting an allyl or propargyl ester of β-ke1 carboxylic acid with a carbonyl compound in the presence of a palladium compound catalyst. 3 characterized by causing an intermolecular aldol type reaction
- A method for producing keto-1-alcohol is provided.

本発明においては第1の発明、すなわち分子内アルドー
ル型反応を行なう場合はカルボニル基を有するβ−ケト
カルボン酸のアリル型又はブロバギル型エステルが原料
として用いられる。ががるβ−ケトカルボン酸エステル
は下記一般式(1)又は(n)で表わされる。
In the present invention, when performing the first invention, that is, an intramolecular aldol type reaction, an allyl type or brobagyl type ester of β-ketocarboxylic acid having a carbonyl group is used as a raw material. Gagaru β-ketocarboxylic acid ester is represented by the following general formula (1) or (n).

R3 R . − C=0 丸 は鎖状であっても任意の組合わせで環を形成していても
よい。) 一a式(1)においてR1はメチル基、エチル基、プロ
ビル基、ベンチル基などのごときアルキル基やR2又は
R,と結合してシクロベンクン環、シクロヘキサン環、
シクロオクタン環、シクロドデカン環などのごとき環を
形成しているアルキレン基をさし、更にこれらアルキレ
ン基にベンゼン環などの芳香環が結合しているものなど
が例示される。
R3 R. - C=0 circles may be chain-like or may form a ring in any combination. ) In formula (1), R1 is bonded to an alkyl group such as a methyl group, ethyl group, probyl group, or bentyl group, or R2 or R to form a cyclobencune ring, a cyclohexane ring,
It refers to an alkylene group forming a ring such as a cyclooctane ring or a cyclododecane ring, and examples include those in which an aromatic ring such as a benzene ring is bonded to these alkylene groups.

R2は水素原子、R+ と同様のアルキル基、アルキレ
ン基などが例示される。
Examples of R2 include a hydrogen atom, an alkyl group similar to R+, and an alkylene group.

R3はメチレン基、エチレン基、ベンチレン基などのア
ルキレン基や、R1又はR!と結合して環を形成してい
るR,と同様のアルキレン基などが例示される。
R3 is an alkylene group such as a methylene group, ethylene group, or bentylene group, or R1 or R! An example is an alkylene group similar to R, which is bonded with R to form a ring.

R4はメチレン基、エチレン基、プロピレン基、ベンチ
レン基などのごときアルキレン基が例示される。
Examples of R4 include alkylene groups such as methylene group, ethylene group, propylene group, and bentylene group.

以上のR,〜4はアルコキシカルボニル基やシアン基な
どのごとき官能基を有するものであってもよい. 基、シンナミル基、プロノ准ル基などが挙げられと同様
のアルキレン基、R2又はR31と結合して環を形成し
ている一般弐(1)のR1と同様のアルキレン基などが
例示される。
The above R and ~4 may have a functional group such as an alkoxycarbonyl group or a cyan group. Examples include the same alkylene groups as R2 or R31, and the same alkylene groups as R1 in General 2 (1) which form a ring by bonding with R2 or R31.

R8は一般式(1)のR2と同様のものが挙げられる。Examples of R8 include the same ones as R2 in general formula (1).

R,lは一般式(1)のR,と同様のアルキル基やR 
, l又はRtと結合して環を形成している前記R,と
同様のアルキレン基などが挙げられる。
R and l are the same alkyl groups as R in general formula (1) or R
, l or Rt to form a ring and the same alkylene group as above R.

R4は一般式(1)のR4と同様のものが挙げられる。Examples of R4 include the same ones as R4 in general formula (1).

以上のRIZ  Rt *  R3Z  R4はアルコ
キシカルポニル基やシアノ基などのごとき官能基を有す
られる。
The above RIZ Rt*R3Z R4 has a functional group such as an alkoxycarbonyl group or a cyano group.

これらの化合物の合成は常法に従って行えばよく、例え
ば1−ブタナール−2−オキソシクロベンタンカルボン
酸アリルエステルを例にとると、アジピン酸ジアリルエ
ステルをディークマン縮合して2−オキソシクロペンク
ンカルボン酸アリルに環化せしめたのち、4−テトラヒ
ドロピラニルオキシブチルヨードを炭酸カリウムの存在
下に反応させ、4−テトラヒドロビラニルオキシブチル
基を2−オキソーシクロペンタンの1位に導入せしめ、
次いで酢酸中で加熱あるいはアルコール中で酸触媒を用
いて加水分解してテトラヒドロビラニル基を除去しブタ
ノール基に形成せしめ、Swern酸化法やクロム酸酸
化法などによりブタナール基に酸化することにより合成
される。
These compounds can be synthesized according to conventional methods. For example, taking 1-butanal-2-oxocyclobentanecarboxylic acid allyl ester, Dieckmann condensation of adipic acid diallyl ester yields 2-oxocyclopencunecarboxylic acid. After cyclization to allyl acid, 4-tetrahydropyranyloxybutyl iodo is reacted in the presence of potassium carbonate to introduce a 4-tetrahydrobyranyloxybutyl group into the 1-position of 2-oxocyclopentane,
It is then heated in acetic acid or hydrolyzed in alcohol using an acid catalyst to remove the tetrahydrobilanyl group and form a butanol group, which is then oxidized to a butanal group by a Swern oxidation method or a chromic acid oxidation method. Ru.

一方、本発明において第2の発明、すなわち分カルボニ
ル化合物とが原料として用いられる。かかるβ−ケトカ
ルボン酸エステルは下記一般式(III>で示されるも
のである。
On the other hand, in the present invention, the second invention, that is, a carbonyl compound is used as a raw material. Such β-ketocarboxylic acid ester is represented by the following general formula (III>).

(式中、Rt,Rs,Rqは鎖状であっても任意の組合
わせで環を形成していてもよい。)一般式(I[[)に
おいてR7は前記一般式(f)のRl と同様のアルキ
ル基やRf又はR9と結合して環を形成している前記R
,と同様のアルキレン基をさし、更にこれらアルキレン
基にベンゼン環など゜の芳香環が結合しているものなど
が例示される. R雲及びR9は水素原子又はR7と同様のアルキル碁、
アルキレン基が例示される。
(In the formula, Rt, Rs, and Rq may be chain-like or may form a ring in any combination.) In the general formula (I[[), R7 is the same as Rl in the general formula (f) above. The above R bonded to a similar alkyl group, Rf or R9 to form a ring
, refers to alkylene groups similar to , and examples include those in which an aromatic ring such as a benzene ring is bonded to these alkylene groups. R cloud and R9 are hydrogen atoms or alkyl similar to R7,
An example is an alkylene group.

以上のR7〜9はアルコキシカルボニル基やシアン基な
どのごとき官能基を有するものであってもよい。
The above R7 to R9 may have a functional group such as an alkoxycarbonyl group or a cyan group.

これらの化合物の合成は常法に従って行えばよく、例え
ば2−オキソシクロペンタンカルボン酸アリルエステル
を例にとると、アジビン酸ジアリルエステルをディーク
マン縮合することにより合成することができる。
These compounds may be synthesized by conventional methods; for example, 2-oxocyclopentanecarboxylic acid allyl ester can be synthesized by Dieckmann condensation of adivic acid diallyl ester.

又、カルボニル化合物はカルボニル基を有するものであ
り、下記一般式(IV)で示されるものである。
Further, the carbonyl compound has a carbonyl group and is represented by the following general formula (IV).

(式中、RI1はメチル基、エチル基、プロピル碁、ペ
ンチル基などのごときアルキル基、ビニル基、アリル基
、メタリル基、クロチル碁などのどときアルケニル基、
エチニル基、プロビニル基などのどときアルキニル基、
フェニル基、ベンジル基な?のごとき芳香族炭化水素残
基、さらにエステル基やケトン基などの官能基を存する
これらの基などが例示される. R■はR+1と同様の置換基又は水素原子が挙げられる
. カルボニル化合物の使用量はβ−ケトカルボン酸のアリ
ル型又はプロバギル型エステル1モルに対して1〜10
モル、好ましくは1〜6モル、さらに好ましくは2〜4
モルとなる範囲で適宜選択される. 本発明においては反応に際してパラジウム化合物触媒が
用いられる。ここでパラジウム化合物触媒とは、パラジ
ウム化合物そのもの、又はパラジウム化合物と配位子と
から成るものをいう。
(In the formula, RI1 is an alkyl group such as a methyl group, ethyl group, propyl group, pentyl group, etc., an alkenyl group such as a vinyl group, allyl group, methallyl group, crotyl group,
Alkynyl groups such as ethynyl group and provinyl group,
A phenyl group or a benzyl group? Examples include aromatic hydrocarbon residues such as ester groups, and groups containing functional groups such as ester groups and ketone groups. Examples of R■ include the same substituent as R+1 or a hydrogen atom. The amount of carbonyl compound used is 1 to 10 per mole of allylic or probagyl ester of β-ketocarboxylic acid.
mol, preferably 1 to 6 mol, more preferably 2 to 4 mol
It is selected as appropriate within the range of moles. In the present invention, a palladium compound catalyst is used in the reaction. Here, the palladium compound catalyst refers to a palladium compound itself or one consisting of a palladium compound and a ligand.

パラジウム化合物はパラジウムの塩又は錯体であり、そ
の具体例として、テトラキストリフェニルホスフィンパ
ラジウム、併脊曽トリス(ジベンジリデンアセトン)ニ
パラジウム(0)、}リス(トリベンジリデンアセチル
アセトン)三パラジウム(0)、酢酸パラジウム、ブロ
ビオン酸パラジウム、酪酸パラジウム、安息香酸パラジ
ウム、バラジウムアセチルアセトナート、硝酸パラジウ
ム、硫酸パラジウム、塩化パラジウムなどが挙げられ、
なかでも0価のパラジウム化合物が賞用される. また用いられる配位子は配位原子として周期律表第■族
元素、すなわち窒素、リン、ヒ素またはアンチモンを有
する単座または多座の電子供与性化合物であり、その具
体例として、例えばピリジン、トリメチルアミン、α.
α′−ジビリジル、1.lO−フエナントロリンなどの
含窒素化合物;トリエチルホスフィン、トリフェニルホ
スフィン、トリフェニルホスファイト、トリフエニルチ
オホスファイト、α.β一エチレンジ(ジフェニル)ホ
スフィンなどのごとき含リン化合物;トリエチルヒ素の
ごとき含ヒ素化合物:トリブロビルアンチモンのごとき
含アンチモン化合物などが挙げられる。なかでも含リン
化合物が反応の活性、選択性、経済性などの面で賞用さ
れる。
The palladium compound is a palladium salt or complex, and specific examples thereof include tetrakistriphenylphosphinepalladium, tris(dibenzylideneacetone)nipalladium(0), tris(tribenzylideneacetylacetone)tripalladium(0), Palladium acetate, palladium blobionate, palladium butyrate, palladium benzoate, palladium acetylacetonate, palladium nitrate, palladium sulfate, palladium chloride, etc.
Among them, zero-valent palladium compounds are prized. The ligand used is a monodentate or polydentate electron-donating compound having a Group I element of the periodic table, that is, nitrogen, phosphorus, arsenic, or antimony, as a coordination atom, such as pyridine, trimethylamine, etc. , α.
α'-Diviridyl, 1. Nitrogen-containing compounds such as lO-phenanthroline; triethylphosphine, triphenylphosphine, triphenylphosphite, triphenylthiophosphite, α. Examples include phosphorus-containing compounds such as β-ethylene di(diphenyl)phosphine; arsenic-containing compounds such as triethyl arsenic; and antimony-containing compounds such as tribrovir antimony. Among these, phosphorus-containing compounds are preferred in terms of reaction activity, selectivity, economic efficiency, etc.

かかる配位子は触媒成分として必ずしも必須ではないが
、適量使用することによって触媒の安定性を大巾に向上
させることができる。配位子の使用量はその種類によっ
て必ずしも一定ではないが、通常パラジウム化合物1モ
ル当り50モル以下、好ましくは1〜20モルである。
Although such a ligand is not necessarily essential as a catalyst component, by using an appropriate amount, the stability of the catalyst can be greatly improved. The amount of the ligand used is not necessarily constant depending on the type, but is usually 50 mol or less, preferably 1 to 20 mol, per mol of palladium compound.

本発明における触媒の使用量は適宜選択されるが、通常
は原料のカルボニル基を有するβ−ケトカルボン酸エス
テル又はβ−ケトカルボン酸エステル100モルに対し
0.01〜10モル、好ましくは0.1〜8モル、さら
に好ましくは1〜6モルとなるような範囲で使用される
The amount of the catalyst to be used in the present invention is appropriately selected, but is usually 0.01 to 10 mol, preferably 0.1 to 10 mol, per 100 mol of the β-ketocarboxylic acid ester or β-ketocarboxylic ester having a carbonyl group as the raw material. It is used in an amount of 8 mol, more preferably 1 to 6 mol.

またパラジウム化合物と配位子は予め反応させておいて
もよいが、通常は反応系中で各成分を接触せしめること
により触媒が調製される。
Although the palladium compound and the ligand may be reacted in advance, the catalyst is usually prepared by bringing each component into contact with each other in a reaction system.

本発明の反応は触媒の存在下に実施される。The reaction of the invention is carried out in the presence of a catalyst.

その具体例として、例えばアセトニトリル、ブロビオニ
トリル、ペンゾニトリルなどのごときニトリル類;ジメ
チルホルムアミド、ジメチルアセトアミド、N−メチル
ピロリドンなどのごときアミド類;テトラヒド口フラン
、ジオキサン、ジブチルエーテル、エチレングリコール
ジメチルエーテルなどのごときエーテル類;アセトン、
メチルエチルケトンなどのごときヶトン類;酢酸エチル
、ブロピオン酸エチルなどのごときエステル類;エタノ
ール、プロパノール、エチレングリコールなどのごとき
アルコール類;ジメチルスルホキシドのごときスルホキ
シド頻;n−ヘキサン、シクロヘキサン、ベンゼン、ト
ルエン、キシレンなどのごとき炭化水素類などが例示さ
れ、なかでもニトリル類、エーテル類が賞用される。ま
た水を適宜共存させることもできる。
Specific examples include nitriles such as acetonitrile, brobionitrile, and penzonitrile; amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; and tetrahydrofuran, dioxane, dibutyl ether, and ethylene glycol dimethyl ether. Ethers; acetone,
Carbons such as methyl ethyl ketone; Esters such as ethyl acetate and ethyl propionate; Alcohols such as ethanol, propanol, and ethylene glycol; Frequent sulfoxides such as dimethyl sulfoxide; n-hexane, cyclohexane, benzene, toluene, xylene, etc. Examples include hydrocarbons such as, among others, nitriles and ethers. Moreover, water can also be made to coexist as appropriate.

これらの溶媒は通常、β−ケトカルボン酸エステルに対
し1〜500倍モル、好まし《は5〜100倍モルとな
る範囲で用いられる。
These solvents are usually used in an amount of 1 to 500 times, preferably 5 to 100 times, the amount of the β-ketocarboxylic acid ester.

その他の反応条件は適宜選択しうるが、反応温度は通常
O〜100℃、好ましくは10〜60℃、反応時間は通
常1〜100時間、好ましくは1〜50時間である。
Although other reaction conditions can be selected as appropriate, the reaction temperature is usually 0 to 100°C, preferably 10 to 60°C, and the reaction time is usually 1 to 100 hours, preferably 1 to 50 hours.

反応終了後は反応液から常法に従って目的物を分離する
ことによって高純度の3−ケト−l−アルコールを得る
ことができる。分離、精製は常法に従って行なえばよく
、例えばカラムクロマトグラフィーによる方法、減圧蒸
留による方法などが挙げられる。
After the reaction is completed, highly pure 3-keto-l-alcohol can be obtained by separating the target product from the reaction solution according to a conventional method. Separation and purification may be carried out according to conventional methods, such as column chromatography and vacuum distillation.

かくして得られる3−ケト−1−アルコールは原料のβ
−ケ1・カルボン酸エステルの種類により異なる。例え
ば前記一触弐N)で示されるβ−ケトカルボン酸エステ
ルを用いて分子内アルドール型反応を行なった場合は下
記一般式(V)で示される3−ケト−1−アルコールが
得られる。
The 3-keto-1-alcohol obtained in this way is
-Ke1: Varies depending on the type of carboxylic acid ester. For example, when an intramolecular aldol type reaction is carried out using a β-ketocarboxylic acid ester represented by the above-mentioned formula (N), a 3-keto-1-alcohol represented by the following general formula (V) is obtained.

又、一般式(n)で示されるβ−ケトカルボン酸エステ
ルを用いて分子内アルドール型反応を行なった場合は下
記一般式(Vl)で示される3−ケト−1−アルコール
が得られる。
Further, when an intramolecular aldol type reaction is performed using a β-ketocarboxylic acid ester represented by the general formula (n), a 3-keto-1-alcohol represented by the following general formula (Vl) is obtained.

一方、一般式(DI)で示されるβ−ケトヵルボン酸エ
ステルを用いて分子間アルドール型反応を行なった場合
は下記一般式(■)で示される3一ケトー1−アルコー
ルが得られる。
On the other hand, when an intermolecular aldol type reaction is carried out using a β-ketocarboxylic acid ester represented by the general formula (DI), a 3-keto-1-alcohol represented by the following general formula (■) is obtained.

(前記各弐中、R l +  RIZ  Rt +  
R3 +  R3ZR4,R,〜9及びRI+4は前述
と同じものを示す。)かくして得られる3−ケト−1−
アルコールは香料、テルベン系生理活性物質、医薬品な
どの合成中間体などに有効である。
(Each of the above, R l + RIZ Rt +
R3 + R3ZR4, R, ~9 and RI+4 are the same as described above. ) 3-keto-1- thus obtained
Alcohol is effective as a synthetic intermediate for fragrances, terbenes, physiologically active substances, and pharmaceuticals.

(発明の効果) かくして本発明によれば従来技術で用いられていなかっ
た原料及び触媒を用いてアルドール型反応を行なうこと
により高収率で3一ケトー1−アルコールが得られる。
(Effects of the Invention) Thus, according to the present invention, 31-keto-1-alcohol can be obtained in high yield by carrying out an aldol-type reaction using raw materials and catalysts that have not been used in the prior art.

特に、分子内アルドール型反応を行なう場合は高選択的
にかつ高収率で目的物が得られ、ビシクロ型やスピロ型
などの構造をした目的物を容易に合成することができる
In particular, when performing an intramolecular aldol type reaction, the target product can be obtained with high selectivity and high yield, and target products with structures such as bicyclo type and spiro type can be easily synthesized.

又、酸や塩基を用いないでも反応が進行するため官能基
を有する原料を使用した場合でも該官能基に対する副反
応を抑えることができる。
Further, since the reaction proceeds without using an acid or a base, even when a raw material having a functional group is used, side reactions to the functional group can be suppressed.

(実施例) 以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例中の部及び%はとくに断りのないかぎり
重量基準である。
(Example) The present invention will be described in more detail with reference to Examples below. In addition, parts and percentages in the examples are based on weight unless otherwise specified.

実施例1 窒素雰囲気下、酢酸パラジウム0.013 mmolと
トリフエニルホスフィン0.027 mmolを含むア
セトニトリノレf$t& 0. 5 m lを1−(5
−オキソペンチノレ)−2−オキソーシク口ペンタンカ
ルボン酸アリルエステノレ0. 2 4 mmolを含
乙゛アセトニトリルを容?夜0.3ml中に滴下し、2
0℃で5時間撹拌した。
Example 1 Under a nitrogen atmosphere, acetonitrile f$t&0.0 containing 0.013 mmol of palladium acetate and 0.027 mmol of triphenylphosphine was prepared. 5ml to 1-(5
-Oxopentyl)-2-Oxopentanecarboxylic acid allyl ester Contains 2 to 4 mmol of acetonitrile? Drop into 0.3ml at night, 2
The mixture was stirred at 0°C for 5 hours.

反応終了後、塩化メチレンで抽出し、シリカゲルクロマ
トグラフィーで精製したところ、スビロ(5.5 )デ
カンー7−オン−1−オールが93%の収率で得らーれ
た。
After the reaction was completed, the mixture was extracted with methylene chloride and purified by silica gel chromatography to obtain subiro (5.5) decan-7-one-1-ol in a yield of 93%.

このもののエリスロ体/スレオ体の割合をガスクロマト
グラフィーを用いて分析したところ1/1であった。
The erythro form/threo form ratio of this product was analyzed using gas chromatography and was found to be 1/1.

以下に物性値を示す。The physical property values are shown below.

Rf=0.61 and 0.51(ethyl ac
etate/hexane=1/1).less po
lar isomer:IR(neat)3500.1
730 cm−’;”CNMR (CDC l :+)
δ18.8(t), 19.8(t), 21.0(t
).27.Ht), 29.0(t). 32.8(t
), 38.5(t), 51.8(s)71.0(d
),220(s); HR?IS(ET)for CI
OHl602(M″),calcd 168.1150
+ found 168.1173. polar i
somer: IR(r+eat)3470. 172
0cm−’: ”C NMR (CDCj2z)619
.2(t). 21.2(t), 24.4(t), 
26.4(t), 31.6(2xt),38.9(t
). 55.5(s), 72.5(dL 223.8
(s);’ +IRMS(El)for C+oLaO
z(M”)+ calcd 168.115Q, Fo
und 168.1148. 実施例2 窒素雰囲気下、酢酸パラジウム0.024 mno+と
トリフエニルホスフィン0. 0 5 mmolを含む
アセトニトリル溶液1 mlを3−オキソー2−メチル
−2−(3−ホルミルブロビル)酪酸アリルエステル0
、44mmolを含むアセトニトリル溶液0.5ml2
中に滴下し、20℃で29時間攪拌した。反応終了後、
実施例1と同様に処理したところ2−アセチルー2−メ
チルシクロペンクン−1−オールが82%の収率で得ら
れた。
Rf=0.61 and 0.51(ethyl ac
etate/hexane=1/1). less po
lar isomer:IR(neat)3500.1
730 cm-';”CNMR (CDCl:+)
δ18.8(t), 19.8(t), 21.0(t
). 27. Ht), 29.0(t). 32.8(t
), 38.5 (t), 51.8 (s) 71.0 (d
), 220(s); HR? IS(ET) for CI
OHl602(M″), calcd 168.1150
+found 168.1173. polar i
somer: IR(r+eat)3470. 172
0cm-': ”C NMR (CDCj2z)619
.. 2(t). 21.2(t), 24.4(t),
26.4(t), 31.6(2xt), 38.9(t
). 55.5 (s), 72.5 (dL 223.8
(s);' +IRMS(El)for C+oLaO
z(M”)+ calcd 168.115Q, Fo
und 168.1148. Example 2 Palladium acetate 0.024 mno+ and triphenylphosphine 0.024 mno+ under nitrogen atmosphere. 1 ml of an acetonitrile solution containing 0 5 mmol of 3-oxo-2-methyl-2-(3-formylbrobyl)butyric acid allyl ester 0
, 0.5 ml of acetonitrile solution containing 44 mmol
and stirred at 20° C. for 29 hours. After the reaction is complete,
When treated in the same manner as in Example 1, 2-acetyl-2-methylcyclopencun-1-ol was obtained with a yield of 82%.

このもののエリスロ体/スレオ体の割合は1/5であっ
た。
The ratio of erythro form/threo form in this product was 1/5.

実施例3 第1表に示す原料を用い、所定の反応温度及び反応時間
とすること以外は実施例lと同様にして実験を行なった
ところ、生成物が第1表に示す収率で得られた。
Example 3 An experiment was conducted in the same manner as in Example 1 except that the raw materials shown in Table 1 were used and the reaction temperature and reaction time were specified, and the product was obtained in the yield shown in Table 1. Ta.

但し、酢酸パラジウム、トリフエニルホスフィンの使用
量は原料に対してそれぞれ5mo1%、10mo1 %
とした。
However, the amounts of palladium acetate and triphenylphosphine used are 5 mo1% and 10 mo1%, respectively, based on the raw materials.
And so.

実施例4 窒素雰囲気下、テトラキストリフエニルホスフィンパラ
ジウム0.017 mmolを1−(5−オキソベンチ
ル)−2−オキソーシクロペンクンカルボン酸アリルエ
ステルQ, 5 9 mmolを含むアセトニトリル溶
液2信β中に加え、20℃で5時間撹拌した。
Example 4 Under a nitrogen atmosphere, 0.017 mmol of tetrakistriphenylphosphine palladium was added to two acetonitrile solutions containing 59 mmol of 1-(5-oxobentyl)-2-oxocyclopencune carboxylic acid allyl ester Q. The mixture was added and stirred at 20°C for 5 hours.

反応終了後、実施例lと同様に処理したところスピロ(
5;5 )デカンー7−オン−1−オールが85%の収
率で得られた。
After the reaction was completed, the same treatment as in Example 1 resulted in spiro (
5;5) Decane-7-one-1-ol was obtained with a yield of 85%.

実施例5 テトラヒド口フランの98%水溶液1 mji中に原料
のβ−ケトカルボン酸エステルl mmoLヘキサナー
ル3 mnol、酢酸パラジウム0. 0 5 mmo
l及びトリフエニルホスフィン0. 1 mmolを添
加し、20℃で所定の時間攪拌した。反応終了後は実施
例1と同様に処理したところ3−メチル−4−ヒドロキ
シノナン−2−オンが第2表に示す収率で得られた。
Example 5 In 1 mji of 98% aqueous solution of tetrahydrofuran, raw material β-ketocarboxylic acid ester l mmol hexanal 3 mnol, palladium acetate 0. 0 5 mm
1 and triphenylphosphine 0. 1 mmol was added and stirred at 20°C for a predetermined time. After the reaction was completed, the same treatment as in Example 1 was carried out, and 3-methyl-4-hydroxynonan-2-one was obtained in the yield shown in Table 2.

第2表 実施例6 アセトニトリル1mβ中に2−オキソシクロベンタンカ
ルボン酸アリルエステルl mmolsヘキサナール3
mmols酢酸パラジウム0.05mmol及びトリフ
ェニルホスフィンQ, l mmolを添加L、20℃
で2時間攪拌した。反応終了後は実施例1と操作したと
ころ2−(1’−ヒドロキシヘキシル)シクロベンクン
−1−オンが53%の収率で得られた。
Table 2 Example 6 2-oxocyclobentanecarboxylic acid allyl ester 1 mmols hexanal 3 in 1 mβ acetonitrile
Add 0.05 mmol of palladium acetate and 1 mmol of triphenylphosphine Q, 20 °C.
The mixture was stirred for 2 hours. After the reaction was completed, the procedure was carried out as in Example 1, and 2-(1'-hydroxyhexyl)cyclobencun-1-one was obtained in a yield of 53%.

又、副生成物として2−(2’−ブロペニル)シクロベ
ンクン−1−オンが41%の収率で得られた。
Furthermore, 2-(2'-bropenyl)cyclobencun-1-one was obtained as a by-product in a yield of 41%.

実施例7 テトラヒドロフランの98%水溶液1 ml中に2−メ
チルアセト酢酸−1’,1’−ジメチルアリルエステル
1. 0 8 mmol,ヘキサナール1. 6 nm
ol,テトラキストリフェニルホスフィンパラジウム0
. 0 2 7 mmolを加え20゜Cで2時間攪拌
した。反応終了後は実施例1と同様に処理したところ3
一メチル−4−ヒドロキシノナン−2−オンが50%の
収率で得られた。
Example 7 2-Methylacetoacetic acid-1',1'-dimethylallyl ester 1. 0 8 mmol, hexanal 1. 6 nm
ol, tetrakistriphenylphosphine palladium 0
.. 0.27 mmol was added and stirred at 20°C for 2 hours. After the reaction was completed, the same treatment as in Example 1 was carried out.
Monomethyl-4-hydroxynonan-2-one was obtained with a yield of 50%.

特許出願人 日本ゼオン株式会社 手続補正書(自釦 平成1年3月29日Patent applicant: Zeon Corporation Procedural amendment (self-button) March 29, 1999

Claims (1)

【特許請求の範囲】 1、カルボニル基を有するβ−ケトカルボン酸のアリル
型又はプロパルギル型エステルをパラジウム化合物触媒
の存在下に分子内アルドール型反応せしめることを特徴
とする3−ケト−1−アルコールの製造法。 2、β−ケトカルボン酸のアリル型又はプロパルギル型
エステルとカルボニル化合物とをパラジウム化合物触媒
の存在下に分子間アルドール型反応せしめることを特徴
とする3−ケト−1−アルコールの製造法。
[Scope of Claims] 1. A 3-keto-1-alcohol, which is characterized by subjecting an allyl or propargyl ester of a β-ketocarboxylic acid having a carbonyl group to an intramolecular aldol reaction in the presence of a palladium compound catalyst. Manufacturing method. 2. A method for producing 3-keto-1-alcohol, which comprises subjecting an allyl or propargyl ester of β-ketocarboxylic acid to an intermolecular aldol reaction with a carbonyl compound in the presence of a palladium compound catalyst.
JP1059958A 1989-03-13 1989-03-13 Production of 3-keto-1-alcohol Pending JPH02240040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059958A JPH02240040A (en) 1989-03-13 1989-03-13 Production of 3-keto-1-alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059958A JPH02240040A (en) 1989-03-13 1989-03-13 Production of 3-keto-1-alcohol

Publications (1)

Publication Number Publication Date
JPH02240040A true JPH02240040A (en) 1990-09-25

Family

ID=13128174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059958A Pending JPH02240040A (en) 1989-03-13 1989-03-13 Production of 3-keto-1-alcohol

Country Status (1)

Country Link
JP (1) JPH02240040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232535A (en) * 1989-06-22 1991-10-16 Rhone Poulenc Sante Novel catalyst based on palladium and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594331A (en) * 1979-01-10 1980-07-17 Basf Ag Manufacture of aliphatic carbonyl compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594331A (en) * 1979-01-10 1980-07-17 Basf Ag Manufacture of aliphatic carbonyl compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232535A (en) * 1989-06-22 1991-10-16 Rhone Poulenc Sante Novel catalyst based on palladium and use thereof

Similar Documents

Publication Publication Date Title
JP3281920B2 (en) Method for producing allylfuran compound
EP2953920B1 (en) Process for the isomerisation of an exo double bond
JPH1180068A (en) Production of tricyclodecane dialdehyde
US4370504A (en) Process for producing perfluorocarbon group-containing aldehydes
JPH02240040A (en) Production of 3-keto-1-alcohol
JPS643177B2 (en)
JP3072314B2 (en) Method for producing γ-alkylidene-γ-butyrolactone derivative
JP3529876B2 (en) 3-methyl-3-methoxybutanoic acid.
JP4156857B2 (en) 3-chloro-3-butenoic acid ester derivative and method for producing the same
JP3756537B2 (en) Dimethyldecandial and process for producing the same
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
JPH03167148A (en) Novel compound
JPS644503B2 (en)
JP3497876B2 (en) Method for producing 9Z-β-ionylidene acetate and intermediate compound useful for the method
US5118863A (en) Process for producing an α,β-unsaturated carbonyl compound
JPS6036435A (en) Production of alpha, beta-unsaturated carbonyl compound
JPS6032743A (en) Production of alpha,beta-unsaturated ketone
JP2507519B2 (en) Diastereoselective preparation of 3-substituted-1-cyclopentenol derivatives
EP0404497B1 (en) A process for producing an alpha,beta-unsaturated carbonyl compound
JPH0354650B2 (en)
JPH0764778B2 (en) Method for producing α, β-unsaturated carbonyl compound
JP4171345B2 (en) Method for producing labdenic acid
JPS59186938A (en) Preparation of alpha,beta-unsaturated carbonyl compound
JPS6212744A (en) Novel allenecarboxylic acid ester and production thereof
JPS6233134A (en) Production of trans-3,7-dimethyl-5,7-octadien-1-yl ester