JPH0454632B2 - - Google Patents

Info

Publication number
JPH0454632B2
JPH0454632B2 JP59237887A JP23788784A JPH0454632B2 JP H0454632 B2 JPH0454632 B2 JP H0454632B2 JP 59237887 A JP59237887 A JP 59237887A JP 23788784 A JP23788784 A JP 23788784A JP H0454632 B2 JPH0454632 B2 JP H0454632B2
Authority
JP
Japan
Prior art keywords
degreasing
injection molded
ceramic
atmosphere
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59237887A
Other languages
Japanese (ja)
Other versions
JPS61117166A (en
Inventor
Seiji Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59237887A priority Critical patent/JPS61117166A/en
Publication of JPS61117166A publication Critical patent/JPS61117166A/en
Publication of JPH0454632B2 publication Critical patent/JPH0454632B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、熱可塑性樹脂を主体とした有機結
合剤にセラミツク粉末を混合し、流動性の良い状
態で金型に圧入して形状を付与する射出成形によ
つて得られるセラミツク射出成形体から、成形後
に脱樹脂をする方法に関するものである。 従来の技術 複雑形状のセラミツク部品の成形にあたつて
は、均質性のよい成形体が得られ、成形時間が短
く、大量生産に適した射出成形法が適用される。
しかし、その射出成形方によつて得られるセラミ
ツク射出成形体は、熱可塑性樹脂を主成分とする
有機結合剤を含有するので、そのまま焼成するこ
とはできず焼成前に成形体中の有機結合剤を加熱
分解させて除去する脱脂を行なう必要がある。 脱脂は加熱炉中で射出成形体の表面から内部に
有機結合剤の加熱分解を徐々に進行させるもの
で、過度に速く有機結合剤の加熱分解が進行する
と、成形体内部で加熱分解によつて発生したガス
が抜けきれず、成形体に種々の欠陥が生じてしま
う。そこで、従来は加熱炉中をN2ガス等の不活
性ガス雰囲気とすることによつて、有機結合剤の
加熱分解を徐々に進行するようにされていた。 しかし、以上の従来の射出成形体の脱脂方法に
は、次のような問題があつた。 すなわち、以上の従来の方法では、脱脂開始か
ら脱脂終了まで射出成形体は終始不活性ガス雰囲
気中に置かれ、そのため厚肉部分を有する射出成
形体については、厚肉部分の中心部が脱脂されに
くく、そのためその厚肉部分の中心部に残留する
樹脂の影響で焼成後のセラミツク製品にフクレと
いう内部欠陥が発生するという問題があつた。 上述のような問題を解決する脱脂方法として
は、既に特開昭49−74705号公報記載の方法が提
案されている。この提案の方法は、成形体を加熱
初期段階では不活性ガス等の非酸化性雰囲気中で
加熱し、しかる後酸化性雰囲気で加熱するもので
あり、このような方法によれば、厚肉部分を有す
る成形体であつても、残留樹脂を無くして、最終
的に内部欠陥の無いセラミツク焼成体を得ること
ができると考えられる。 発明が解決しようとする課題 前述の特開昭49−74705号公報において提案さ
れている方法では、具体的にはアルミナ系セラミ
ツク成形体、すなわち酸化物系セラミツク成形体
を対象としており、またその脱脂における後期の
酸化雰囲気中での加熱の温度は600℃以上として
いる。確かに酸化物系セラミツク成形体の場合は
後期の酸化性雰囲気中での加熱温度を600℃以上
の高温としても特に関係はないが、窒化珪素など
の非酸化物系セラミツク成形体の場合には、大気
下などの酸化性雰囲気にて600℃以上の高温で加
熱処理すれば、最終的に得られる焼成体の高温強
度が極端に低下することが判明した。 またその原因について検討したところ、非酸化
物系セラミツクの場合は、その成形体を酸化性雰
囲気中にて高温で処理すれば非酸化物の粒子が酸
化してしまうためであることが判明した。すなわ
ち、例えば窒化珪素(Si3N4)系セラミツクの場
合、その成形体を酸化性雰囲気中にて高温で処理
すれば、窒化珪素のSiと雰囲気中の珪素とが結合
(酸化)してSiO2なるガラス層をSi3N4粒子の表
面上に形成し、この傾向は処理温度が高くなるほ
ど顕著となる。そしてこのようなガラス層は、窒
化珪素を焼結した状態で粒界に残り、そのため焼
成体の高温強度を低下させる(すなわち軟化温度
を低下させる)結果となるのである。 この発明は以上の事情を背景としてなされたも
ので、非酸化物系セラミツクの射出成形体を脱脂
するにあたつて、最終的な焼成体の高温強度を低
下させるような事態を招くことなく、厚肉部分を
有する射出成形体でも残留樹脂を無くして内部欠
陥の無い焼成体が得られるようにすることを目的
とするものである。 課題を解決するための手段 前述のように課題を解決するため、この発明で
は、非酸化物系セラミツク射出成形体の脱脂にあ
たり、先ずセラミツク射出成形体を不活性ガス雰
囲気中で加熱して90%以上脱脂した後、雰囲気を
大気雰囲気に切替えて300〜500℃の範囲内の温度
で脱脂することとしている。 作 用 この発明の脱脂方法では、対象となるセラミツ
クは窒化珪素系セラミツクなどの非酸化物系セラ
ミツクである。そしてこの発明の方法では、先ず
第1図に示すように、非酸化物系セラミツク射出
成形体6を不活性ガス雰囲気中で加熱する。 第1図において、加熱炉1内には密閉容器2が
配置され、その密閉容器2には加熱炉1の外部か
ら不活性ガスを導入するためのガス導入管3と、
その密閉容器2内からガスを排出するためのガス
排出管4が取り付けられている。さらに、その密
閉容器2内にはセラミツク粉末5中にセラミツク
射出成形体6を埋め込んで収納する缶7が設置さ
れている。また加熱炉1の一側にはフアン8が設
けられており、そのフアン8によつて密閉容器2
に熱風が送られる。不活性ガスとしてはN2やAr
等を用いることができる。 不活性ガス雰囲気中での加熱は、セラミツク射
出成形体から90%以上脱脂されるまで行なう必要
がある。それ未満で不活性ガスを止めると、それ
以後脱脂が急激に進行し、成形体に悪影響がある
ばかりでなく、有機結合剤の分解ガスが爆発する
危険があるからである。 次にこの発明では、第2図に示すように不活性
ガス雰囲気中で加熱後の成形体の雰囲気を大気雰
囲気に切替える。すなわち第2図に示すように密
閉容器2にガス導入管3を通じてN2等の不活性
ガスを導入するのが停止される。 大気雰囲気中での保持温度は300〜500℃とす
る。300℃未満では脱脂効率が悪く、逆に500℃を
越えると成形体原料組成の酸化が進行し、焼成体
強度に悪影響があるからである。例えば非酸化物
セラミツクとして窒化珪素系セラミツクを用いて
いる場合、大気雰囲気中において500℃を越える
温度に加熱すれば、窒化珪素中のSiが酸化して
SiO2なるガラス層を窒化珪素粒子表面に生成し、
このガラス層が焼成後も粒界に残り、焼成体の強
度、特に高温強度を低下させる。また、大気雰囲
気中での保持時間は2時間以上とするのが良い。
2時間未満では、脱脂が十分でない場合があるか
らである。 実施例 以下にこの発明のセラミツク射出成形体の脱脂
方法の一実施例を記す。 実施例 第1図および第2図に示す装置を用いて、第3
図に示す脱脂パターンで射出成形体6の脱脂を行
なつた。 射出成形体6は、窒化珪素(Si3N4)92wt%、
イツトリア(Y2O3)4wt%、スピネル(MgAl2
O4)4wt%から成るセラミツクス混合粉末と樹脂
17wt%との混練物をターボチヤージ用ロータの
形状に射出成形して得た。それによつて得られた
射出成形体6を、第1図に示すようにセラミツク
粉末5に埋め込み、密閉容器2内にセツトした。
その状態で密閉容器2内にガス導入管3を通じて
N2ガスを10/minの流量で流し、加熱炉1内
を加熱速度を1〜10℃/Hに設定して600℃まで
加熱した。 次に、以上の状態で5時間保ち射出成形体6か
ら90%以上脱脂された時点で、N2ガスの供給を
止め、第2図に示すように射出成形体6を大気雰
囲気中に保持した。保持温度は300〜700℃の範囲
とし、その温度で2時間以上保持した。 最後に、以上のようにして98%以上脱脂した
後、得られた図示しない脱脂体を175℃で5時間
N2ガス加圧雰囲気で焼成した。そのようにして
得られた焼成体を2方向X線撮影し、かつ切断し
て内部欠陥の有無を調べた。 その他に、N2ガスの送給を停止する温度を
種々設定して実施例と同様の脱脂を行ない、焼成
後得られた焼成体について内部欠陥の有無を調べ
た。 以上の結果を第1表に示す。
Industrial Application Field This invention is a ceramic product obtained by injection molding, in which ceramic powder is mixed with an organic binder mainly composed of a thermoplastic resin, and the mixture is press-fitted into a mold in a fluidized state to give it a shape. The present invention relates to a method for removing resin from an injection molded article after molding. BACKGROUND OF THE INVENTION When molding ceramic parts with complex shapes, injection molding is used because it provides a molded product with good homogeneity, requires a short molding time, and is suitable for mass production.
However, the ceramic injection molded product obtained by this injection molding method contains an organic binder whose main component is a thermoplastic resin, so it cannot be fired as it is, and the organic binder in the molded product must be removed before firing. It is necessary to perform degreasing to remove the oil by thermally decomposing it. Degreasing is a process in which the thermal decomposition of the organic binder is gradually progressed from the surface of the injection molded object to the inside in a heating furnace. The generated gas cannot escape completely, resulting in various defects in the molded product. Therefore, in the past, the thermal decomposition of the organic binder was gradually progressed by creating an inert gas atmosphere such as N 2 gas in the heating furnace. However, the conventional method for degreasing injection molded articles described above has the following problems. That is, in the conventional method described above, the injection molded product is placed in an inert gas atmosphere from the start to the end of degreasing, and therefore, for injection molded products having thick parts, the central part of the thick part is degreased. Therefore, there was a problem in that internal defects such as blistering occurred in the ceramic product after firing due to the influence of the resin remaining in the center of the thick part. As a degreasing method that solves the above-mentioned problems, a method described in Japanese Patent Application Laid-open No. 74705/1983 has already been proposed. In this proposed method, the molded body is heated in a non-oxidizing atmosphere such as an inert gas in the initial stage of heating, and then heated in an oxidizing atmosphere. It is thought that even in the case of a molded body having a molded body, it is possible to eliminate residual resin and finally obtain a fired ceramic body free of internal defects. Problems to be Solved by the Invention The method proposed in the above-mentioned Japanese Patent Application Laid-open No. 49-74705 specifically targets alumina-based ceramic molded bodies, that is, oxide-based ceramic molded bodies, and also degreases them. The temperature of heating in the oxidizing atmosphere in the latter stage is 600°C or higher. It is true that in the case of oxide-based ceramic molded bodies, there is no particular relationship even if the heating temperature in the oxidizing atmosphere in the latter stage is as high as 600°C or higher, but in the case of non-oxide-based ceramic molded bodies such as silicon nitride, It has been found that if heat treatment is performed at a high temperature of 600°C or higher in an oxidizing atmosphere such as air, the high-temperature strength of the final fired product will be extremely reduced. Further, when the cause was investigated, it was found that in the case of non-oxide ceramics, the non-oxide particles would be oxidized if the molded body was treated at high temperature in an oxidizing atmosphere. In other words, for example, in the case of silicon nitride (Si 3 N 4 )-based ceramics, if the molded body is treated at high temperature in an oxidizing atmosphere, the Si in the silicon nitride and the silicon in the atmosphere combine (oxidize) to form SiO. A second glass layer is formed on the surface of the Si 3 N 4 particles, and this tendency becomes more pronounced as the processing temperature increases. Such a glass layer remains at the grain boundaries in the sintered state of silicon nitride, resulting in a decrease in the high temperature strength of the fired body (that is, a decrease in the softening temperature). This invention was made against the background of the above circumstances, and it is possible to degrease an injection molded body of non-oxide ceramic without causing a situation where the high temperature strength of the final fired body is reduced. The purpose of this invention is to eliminate residual resin even in injection molded bodies having thick parts, and to obtain fired bodies free of internal defects. Means for Solving the Problems In order to solve the problems as described above, in the present invention, when degreasing a non-oxide ceramic injection molded article, the ceramic injection molded article is first heated in an inert gas atmosphere to reduce the temperature to 90%. After the above degreasing, the atmosphere is changed to an atmospheric atmosphere and degreasing is carried out at a temperature within the range of 300 to 500°C. Function In the degreasing method of the present invention, the target ceramic is a non-oxide ceramic such as a silicon nitride ceramic. In the method of the present invention, first, as shown in FIG. 1, a non-oxide ceramic injection molded body 6 is heated in an inert gas atmosphere. In FIG. 1, a closed container 2 is arranged in a heating furnace 1, and a gas introduction pipe 3 for introducing an inert gas from outside the heating furnace 1 into the closed container 2,
A gas exhaust pipe 4 for exhausting gas from inside the closed container 2 is attached. Further, in the closed container 2, a can 7 is installed in which a ceramic injection molded body 6 is embedded and housed in ceramic powder 5. Further, a fan 8 is provided on one side of the heating furnace 1, and the airtight container 2 is heated by the fan 8.
hot air is sent to N2 and Ar are used as inert gases.
etc. can be used. Heating in an inert gas atmosphere must be carried out until at least 90% of the ceramic injection molded product is degreased. This is because if the inert gas is stopped at a temperature lower than that, degreasing will proceed rapidly thereafter, which will not only have an adverse effect on the molded product, but also pose a danger that the decomposed gas of the organic binder will explode. Next, in this invention, as shown in FIG. 2, the atmosphere of the molded body after heating in the inert gas atmosphere is switched to the atmospheric atmosphere. That is, as shown in FIG. 2, the introduction of inert gas such as N 2 into the closed container 2 through the gas introduction pipe 3 is stopped. The holding temperature in the air atmosphere is 300 to 500°C. This is because if the temperature is lower than 300°C, the degreasing efficiency will be poor, and if it exceeds 500°C, the oxidation of the raw material composition of the molded body will proceed, which will have an adverse effect on the strength of the fired body. For example, when silicon nitride ceramic is used as a non-oxide ceramic, if it is heated to a temperature exceeding 500°C in the air, the Si in the silicon nitride will oxidize.
A glass layer of SiO 2 is generated on the surface of silicon nitride particles,
This glass layer remains at the grain boundaries even after firing, reducing the strength of the fired product, especially the high-temperature strength. Further, the holding time in the air atmosphere is preferably 2 hours or more.
This is because if the time is less than 2 hours, degreasing may not be sufficient. EXAMPLE An example of the method for degreasing a ceramic injection molded article according to the present invention will be described below. Example Using the apparatus shown in FIGS. 1 and 2, the third
The injection molded article 6 was degreased using the degreasing pattern shown in the figure. The injection molded body 6 contains 92wt% silicon nitride (Si 3 N 4 ),
Ittria (Y 2 O 3 ) 4wt%, spinel (MgAl 2
O 4 ) Ceramics mixed powder and resin consisting of 4wt%
A kneaded product of 17 wt% was injection molded into the shape of a turbocharger rotor. The injection molded article 6 thus obtained was embedded in ceramic powder 5 as shown in FIG. 1, and set in a closed container 2.
In that state, pass the gas introduction pipe 3 into the closed container 2.
N 2 gas was flowed at a flow rate of 10/min, and the inside of the heating furnace 1 was heated to 600°C at a heating rate of 1 to 10°C/H. Next, the above condition was maintained for 5 hours, and when 90% or more of the oil was degreased from the injection molded article 6, the supply of N 2 gas was stopped, and the injection molded article 6 was held in the atmospheric atmosphere as shown in FIG. . The holding temperature was in the range of 300 to 700°C, and the temperature was held for 2 hours or more. Finally, after degreasing 98% or more as described above, the resulting degreased body (not shown) was heated at 175°C for 5 hours.
Calcined in a N2 gas pressurized atmosphere. The thus obtained fired body was X-rayed in two directions and cut to examine the presence or absence of internal defects. In addition, degreasing was performed in the same manner as in the example by setting various temperatures at which the supply of N 2 gas was stopped, and the fired bodies obtained after firing were examined for the presence or absence of internal defects. The above results are shown in Table 1.

【表】 第1表に示すように、N2ガスを500℃で止めた
実施例のものをはじめとして、N2ガスを300℃で
止めたものまでは内部欠陥が存在しなかつた。そ
れにより、この発明によれば厚肉の射出成形体で
あつても中心部まで十分に脱脂されていることが
わかる。また、200℃または50℃でN2ガスを止め
たものには内部欠陥が存在し、この発明を実施す
るにあたつては、300℃以上で大気雰囲気中で射
出成形体の加熱を行なうのが好ましいことがわか
る。 さらに、前述のように射出成形体に対して各種
の大気雰囲気中加熱温度(大気中脱脂温度)を適
用して最終的に得られた焼成体について、高温強
度を調べたので、その結果を大気中脱脂温度に対
応して第2表に示す。なお焼成体の高温強度は、
JIS 1601に準じて100℃での4点曲げ温度を測定
した。
[Table] As shown in Table 1, there were no internal defects in the samples in which the N 2 gas was stopped at 500°C, as well as those in which the N 2 gas was stopped at 300°C. This shows that, according to the present invention, even a thick injection molded article can be sufficiently degreased to the center. In addition, internal defects exist in products in which the N2 gas is stopped at 200°C or 50°C, so when carrying out this invention, it is necessary to heat the injection molded product at 300°C or higher in the atmosphere. It turns out that is preferable. Furthermore, as mentioned above, the high temperature strength of the fired bodies finally obtained by applying various atmospheric heating temperatures (atmospheric degreasing temperatures) to the injection molded bodies was investigated. Table 2 shows the corresponding medium degreasing temperatures. The high temperature strength of the fired body is
Four-point bending temperature was measured at 100°C in accordance with JIS 1601.

【表】 第2表から、射出成形体に対する脱脂における
大気中での加熱段階でその加熱温度が500℃を越
えれば、焼成体の高温強度が急激に低下すること
が判る。 したがつて以上の結果から、射出成形体の脱脂
における大気中雰囲気での加熱段階での加熱温度
は300〜500℃の範囲内とする必要があることが明
らかである。 発明の効果 以上のようにこの発明のセラミツク射出成形体
の脱脂方法によれば、窒化珪素などの非酸化物系
セラミツク射出成形体を脱脂するにあたり、セラ
ミツク射出成形体を不活性ガス雰囲気中で加熱し
た後大気雰囲気中で加熱するようにしたことによ
つて、厚肉部分を有するセラミツク射出成形体で
あつても、中心部まで十分に脱脂することがで
き、残留樹脂の影響で焼成後に発生する内部欠陥
を無くすことができ、またこの発明の脱脂方法に
よれば、不活性ガス雰囲気中での加熱段階におい
て脱脂を90%以上行なうことによつてその後の大
気雰囲気中での加熱段階における急激な脱脂の進
行を防止して、成形体の品質に悪影響を及ぼした
りすることを有効に防止することができ、さらに
は大気雰囲気中での加熱段階における加熱温度を
300〜500℃の範囲内とすることによつて、充分な
脱脂を行なうと同時に、焼成体の強度、特に高温
強度が低下することを確実かつ有効に防止して、
高温強度の高い非酸化物系セラミツクの焼成体を
得ることが可能となつた。
[Table] From Table 2, it can be seen that if the heating temperature exceeds 500° C. during the heating step in the air during degreasing of the injection molded product, the high temperature strength of the fired product decreases rapidly. Therefore, from the above results, it is clear that the heating temperature in the heating step in the air during degreasing of the injection molded article needs to be within the range of 300 to 500°C. Effects of the Invention As described above, according to the method for degreasing a ceramic injection molded article of the present invention, when degreasing a non-oxide based ceramic injection molded article such as silicon nitride, the ceramic injection molded article is heated in an inert gas atmosphere. By heating in the air after heating, even if the ceramic injection molded body has a thick part, it can be sufficiently degreased to the center, and the degreasing that occurs after firing due to the influence of residual resin can be done. Internal defects can be eliminated, and according to the degreasing method of the present invention, by degreasing 90% or more in the heating step in an inert gas atmosphere, rapid degreasing in the subsequent heating step in the air atmosphere can be avoided. It is possible to effectively prevent the progress of degreasing and adversely affect the quality of the molded product, and also to reduce the heating temperature during the heating stage in the atmosphere.
By keeping the temperature within the range of 300 to 500°C, sufficient degreasing can be performed, and at the same time, a decrease in the strength of the fired product, especially high-temperature strength, can be reliably and effectively prevented.
It has become possible to obtain a fired non-oxide ceramic body with high high-temperature strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はおよび第2図はこの発明の実施に供す
る加熱炉の概略を示し、第1図は射出成形体の
N2ガス雰囲気中での加熱過程での加熱炉内部を
示す図、第2図は射出成形体を大気雰囲気中に保
持する過程での加熱炉内部を示す図である。第3
図は、この発明の一実施例の脱脂パターンを示す
線図である。 1……加熱炉、2……密閉容器、3……ガス導
入管、4……ガス排出管、6……セラミツク射出
成形体。
FIGS. 1 and 2 schematically show a heating furnace used for carrying out the present invention, and FIG.
FIG. 2 is a diagram showing the inside of the heating furnace during the heating process in an N 2 gas atmosphere, and FIG. 2 is a diagram showing the inside of the heating furnace during the process of holding the injection molded article in the air atmosphere. Third
The figure is a diagram showing a degreasing pattern according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Heating furnace, 2...Airtight container, 3...Gas introduction pipe, 4...Gas discharge pipe, 6...Ceramic injection molded body.

Claims (1)

【特許請求の範囲】[Claims] 1 非酸化物系セラミツク射出成形体の脱脂にあ
たり、先ずセラミツク射出成形体を不活性ガス雰
囲気中で加熱して90%以上脱脂した後、雰囲気を
大気雰囲気に切替えて300〜500℃の範囲内の温度
で脱脂することを特徴とするセラミツク射出成形
体の脱脂方法。
1. When degreasing a non-oxide ceramic injection molded article, first heat the ceramic injection molded article in an inert gas atmosphere to degrease 90% or more, then switch the atmosphere to air and heat it at a temperature within the range of 300 to 500℃. A method for degreasing a ceramic injection molded article, which is characterized by degreasing at temperature.
JP59237887A 1984-11-12 1984-11-12 Method of dewaxing ceramic injection molding Granted JPS61117166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237887A JPS61117166A (en) 1984-11-12 1984-11-12 Method of dewaxing ceramic injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237887A JPS61117166A (en) 1984-11-12 1984-11-12 Method of dewaxing ceramic injection molding

Publications (2)

Publication Number Publication Date
JPS61117166A JPS61117166A (en) 1986-06-04
JPH0454632B2 true JPH0454632B2 (en) 1992-08-31

Family

ID=17021890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237887A Granted JPS61117166A (en) 1984-11-12 1984-11-12 Method of dewaxing ceramic injection molding

Country Status (1)

Country Link
JP (1) JPS61117166A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182262A (en) * 1987-01-20 1988-07-27 株式会社日本製鋼所 Manufacture of oxide base ceramic formed article
JPS645980A (en) * 1987-06-29 1989-01-10 Toshiba Corp Production of nonoxide ceramic sintered body
JP2002139193A (en) * 2000-10-31 2002-05-17 Kyoraku Co Ltd Heat insulating structure member and its component wall molding method
JP5123243B2 (en) * 2002-05-24 2013-01-23 日本通運株式会社 Cooling container for delivery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974705A (en) * 1972-11-20 1974-07-18
JPS60145966A (en) * 1984-01-07 1985-08-01 トヨタ自動車株式会社 Method of dewaxing ceramic injection formed body
JPS6177672A (en) * 1984-09-20 1986-04-21 株式会社豊田中央研究所 Method of dewaxing silicon nitride formed body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974705A (en) * 1972-11-20 1974-07-18
JPS60145966A (en) * 1984-01-07 1985-08-01 トヨタ自動車株式会社 Method of dewaxing ceramic injection formed body
JPS6177672A (en) * 1984-09-20 1986-04-21 株式会社豊田中央研究所 Method of dewaxing silicon nitride formed body

Also Published As

Publication number Publication date
JPS61117166A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
JPH0454632B2 (en)
JPH05117038A (en) Aluminum nitride sintered compact, its production and jig for burning using the same
US2837428A (en) Method of sintering chromium-alumina metal ceramics
RU2778741C1 (en) METHOD FOR PREPARATION OF CHARGE FOR OBTAINING TEMPERATURE-RESISTANT MATERIALS AND COATINGS BASED ON THE Si-B4C-ZrB2 SYSTEM
JPH0579625B2 (en)
JPS61201673A (en) Method of dewaxing injection formed body of ceramic powder or metal powder
JPH01317672A (en) Stoke for low pressure casting
JPS631273B2 (en)
JPH055795B2 (en)
JPS63182262A (en) Manufacture of oxide base ceramic formed article
JPS62113773A (en) Method of dewaxing ceramic formed body
JPH03237008A (en) Treatment of silicon nitride powder
JPH037633B2 (en)
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPS6169405A (en) Manufacture of complicate form ceramic part
JP2606719B2 (en) Manufacturing method of ceramic sintered body
JPS6230679A (en) Structural ceramics
JPS62252388A (en) Silicon nitride sintered body
JPS63239143A (en) Forming material for ceramic injection forming
JPH0416562A (en) Production of silicon nitride sintered body
JPS62108778A (en) Method of dewaxing ceramic formed body
JPH01172272A (en) Production of aln ceramic
JPH05149112A (en) Manufacture of ceramic valve
JP2000128644A (en) Silicon nitride-based member and its production
JPS6335460A (en) Manufacture of ceramic formed body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees