JPH0454557B2 - - Google Patents
Info
- Publication number
- JPH0454557B2 JPH0454557B2 JP61309778A JP30977886A JPH0454557B2 JP H0454557 B2 JPH0454557 B2 JP H0454557B2 JP 61309778 A JP61309778 A JP 61309778A JP 30977886 A JP30977886 A JP 30977886A JP H0454557 B2 JPH0454557 B2 JP H0454557B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- welding rod
- welding
- rail
- weld metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 claims description 104
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 230000004907 flux Effects 0.000 claims description 20
- 229910052750 molybdenum Inorganic materials 0.000 claims description 17
- 229910052748 manganese Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 229910052758 niobium Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 5
- 239000002893 slag Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 description 67
- 229910052751 metal Inorganic materials 0.000 description 67
- 229910001562 pearlite Inorganic materials 0.000 description 22
- 229910000831 Steel Inorganic materials 0.000 description 21
- 239000010959 steel Substances 0.000 description 21
- 238000005275 alloying Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000010953 base metal Substances 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910000851 Alloy steel Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 210000001015 abdomen Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910001021 Ferroalloy Inorganic materials 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Description
(産業上の利用分野)
本発明は鉄道用またはクレーン用レールを突き
合わせ溶接または肉盛溶接する際に用いられる被
覆アーク溶接棒に関するものである。
(従来の技術)
レールを突き合わせ溶接または肉盛溶接するに
は、接合レール端面を開先加工して逐次多層溶接
する方法、あるいはI型開先で突き合わせた後レ
ール足部を多層溶接した後、腹部と頭部をエンク
ローズ当金材で取囲み、連続的に溶接するエンク
ローズ溶接方法が用いられている。また、レール
の肉盛溶接には突き合わせ溶接部のレール頭表面
を硬化肉盛したり、レールの局部的な表面疵また
は摩耗部分を肉盛補修する方法がある。
レールはその使用目的から、頭表面では車輪と
のころがり接触に対する耐摩耗性と疲労き烈に対
する抵抗力すなわち耐疲労損傷性の大きい性質が
要求されている。一方、足部と腹部では車輪通過
時の衝撃あるいは曲げ荷重に耐え得るだけの静的
強度と疲労強度が必要とされており、さらに溶接
割れ等の溶接欠陥についても皆無または実用的に
差しつかえない程度以下に極力少なくなつていな
ければならない。
現在世界の鉄道用普通レールの化学成分は第1
表に示すように重量%でC:0.40〜0.82%、Si:
0.05〜0.35%、Mn:0.60〜1.25%を含有してお
り、その金属組織はパーライトで、引張り強さは
70Kg/mm2以上である。
(Industrial Application Field) The present invention relates to a coated arc welding rod used for butt welding or overlay welding of rails for railways or cranes. (Prior art) In order to butt weld or overlay weld the rails, there is a method in which the end faces of the joined rails are grooved and sequentially multi-layered welded, or after they are butted together with an I-shaped groove and the rail foot is welded in multiple layers, An enclosure welding method is used in which the abdomen and head are surrounded by enclosure metal material and continuously welded. In addition, there are methods of overlay welding of rails, such as hard overlaying the rail head surface of a butt weld, and overlaying repair of local surface flaws or worn parts of the rail. Due to the intended use of the rail, the head surface is required to have high wear resistance against rolling contact with wheels and resistance to severe fatigue, that is, high fatigue damage resistance. On the other hand, the legs and abdomen must have sufficient static strength and fatigue strength to withstand the impact or bending load caused by passing wheels, and there are no or practically no weld defects such as weld cracks. It must be kept as low as possible. Currently, the chemical composition of ordinary railway rails in the world is the first in the world.
As shown in the table, C: 0.40-0.82%, Si:
Contains 0.05-0.35%, Mn: 0.60-1.25%, its metal structure is pearlite, and its tensile strength is
70Kg/mm2 or more .
【表】
最近、レール使用性能に関する研究は多く、耐
摩耗性と耐疲労損傷性はパーライト組織が最も優
れ、マルテンサイト組織は有害で、同じパーライ
ト組織であれば硬さが大きくC含有量の多い方が
優れていることが明らかにされている。
(発明が解決しようとする問題点)
これらの性能をさらに高めるため前記の普通レ
ールの頭表面または全体を熱処理した硬頭レール
または前記普通レールの成分にSi:1.0%以下、
Mn:1.50%以下まで高め、さらにCr、Mo、V、
Nb、Ni、Cuのうち1種または2種以上でCr:
1.3%以下、MoまたはV:0.3%以下、Nb:0.1%
以下、Cu:0.3%以下添加した合金鋼レールおよ
び両方を併用した合金鋼熱処理レールが実用化さ
れている。
従来、レールを突き合わせ溶接または肉盛溶接
する際に用いられる被覆アーク溶接棒は第2表に
示すようにJISZ3213低合金高張力鋼用被覆アー
ク溶接棒である。これらの溶接棒は通常厚鋼板等
に使用されるため、JIS3503被覆アーク溶接棒心
線用線材またはJISG3505軟鋼線材で定められる
C:0.25%以下、Mn:0.65%以下の線材にNi、
CrおよびMoの1種または2種以上の合金成分剤
を含有するフラツクスを被覆したものである。従
つて、このような溶接棒をレールに適用した場合
に形成される溶接金属はC:0.3%以下で、Si、
Mnの他に、Ni、Cr、Moの1種または2種以上
を0.1%以上含有する。このためレール母材の溶
融境界部近傍に高温割れが発生する。この高温割
れはレール鋼の溶融点が約1470℃であるのに対
し、溶接金属はそれよりも高く約1530℃であるた
めに理論的には避けられない。さらにこの溶融境
界部近傍には溶接のままで多量のマルテンサイト
組織を生成し、疲労強度が著しく低下するので、
通常溶接後710℃以下の温度で焼もどしまたは焼
なましをしなければならない。その結果、溶接金
属の組織は耐摩耗性の低いベイナイトを生成する
ため、前記の溶接棒を用いたレールの溶接部はた
とえ硬さが母材レールと同じでも溶接金属層が局
部的に早期に摩耗する。このような高温割れおよ
び局部摩耗は母材レールが高Cで合金鋼化すなわ
ち高強度化すればする程顕著になり、高強度レー
ルにおいては実際に溶接不能の状態になつてい
た。[Table] Recently, there have been many studies on the performance of rails in use.Pearlite structure has the best wear resistance and fatigue damage resistance, martensite structure is harmful, and pearlite structure has the same hardness and high C content. has been shown to be better. (Problems to be Solved by the Invention) In order to further improve these performances, Si: 1.0% or less is added to the hard-headed rail whose head surface or the whole of the above-mentioned normal rail is heat-treated, or to the component of the above-mentioned normal rail.
Mn: increased to 1.50% or less, and further Cr, Mo, V,
Cr with one or more of Nb, Ni, and Cu:
1.3% or less, Mo or V: 0.3% or less, Nb: 0.1%
Below, alloy steel rails containing 0.3% or less of Cu and alloy steel heat-treated rails using a combination of both have been put into practical use. Covered arc welding rods conventionally used for butt welding or overlay welding of rails are JIS Z3213 coated arc welding rods for low-alloy high-strength steel, as shown in Table 2. These welding rods are usually used for thick steel plates, etc., so they contain Ni, Ni, and C: 0.25% or less and Mn: 0.65% or less as defined by JIS3503 coated arc welding rod core wire rods or JISG3505 mild steel wire rods.
It is coated with a flux containing one or more alloy components of Cr and Mo. Therefore, when such a welding rod is applied to a rail, the weld metal formed contains C: 0.3% or less, Si,
In addition to Mn, it contains 0.1% or more of one or more of Ni, Cr, and Mo. As a result, hot cracks occur near the melting boundary of the rail base material. This hot cracking is theoretically unavoidable because the melting point of rail steel is approximately 1470°C, whereas the melting point of weld metal is higher, approximately 1530°C. Furthermore, a large amount of martensitic structure is generated near this fusion boundary while welding, which significantly reduces fatigue strength.
Normally, after welding, it must be tempered or annealed at a temperature below 710℃. As a result, the structure of the weld metal produces bainite, which has low wear resistance, so when welding a rail using the above-mentioned welding rod, the weld metal layer locally forms prematurely even if the hardness is the same as that of the base metal rail. wear out. Such hot cracking and local wear become more pronounced as the base rail is made of alloyed steel with a higher C content, that is, the higher the strength is increased, and in fact, high strength rails have become unweldable.
【表】
また、レールの肉盛溶接法には第2表で示すよ
うなJISZ3251硬化肉盛用被覆アーク溶接棒の
DF2AまたはDF2Bに該当する溶接棒が用いられ
ている。DF2Aに該当する溶接棒は前記低合金高
適力鋼用溶接棒とほとんど変らないので、前記の
問題がそのままあてはまる。DF2Bで形成される
溶接金属は溶接のままではマルテンサイト組織を
生成するので、溶接後焼もどし処理を施さざるを
得ない。このため、溶接金属は焼きもどしマルテ
ンサイト組織となつてパーライト組織が得られな
いだけでなく、熱処理レールではこのような後熱
処理をするとこの熱影響を受ける母材レール頭表
部が軟化し、かえつて摩耗が著しくなるという事
態が発生していた。
本発明は、前記の従来技術における問題点を本
質的に解決するとともに熱処理または合金鋼レー
ルの如き高強度レールにも良好な継手性能を安定
して確保することができる鉄道用レールまたはク
レーンレールに用いる被覆アーク溶接棒を提供す
る。
この目的のために本発明者らは広範囲な研究を
行なつた結果、第2表に示すような従来の被覆ア
ーク溶接棒によつて形成された溶着金属は母材レ
ールと著しく異なつた成分となるため前記の如き
問題が発生することを知見し、溶着金属が従来溶
接には不適当とされてきた母材レールと類似の高
C型パーライト組織となる全く新しいレール用被
覆アーク溶接棒を発明した。
(問題点を解決するための手段)
本発明の要旨は、重量%で、C:1.0%以下、
Si:1.0%以下、Mn:1.6%以下、残部がFeおよ
び不可避的不純物からなる溶接心線に、スラグ形
成剤またはこれと合金成分剤からなるフラツクス
を被覆したアーク溶接棒において、溶接棒全体に
含有される前記合金成分を溶接棒全重量%で、
C:0.4〜3.0%、Si:0.1〜10.0%、Mn:0.6〜3.0
%に調整したことを特徴とするレール用被覆アー
ク溶接棒、および、重量%で、C:1.0%以下、
Si:1.0%以下、Mn:1.6%以下、さらにCr:1.3
%以下、Mo:0.3%以下、V:0.3%以下、Nb:
0.1%以下、Ni:2.0%以下、Cu:0.3%以下の1
種または2種以上を含有し、残部がFeおよび不
可避的不純物からなる溶接心線に、スラグ形成剤
またはこれと合金成分剤からなるフラツクスを被
覆したアーク溶接棒において、溶接棒全体に含有
される前記合金成分を溶接棒全重量%で、C:
0.4〜3.0%以下、Si:0.1〜10.0%以下、Mn:0.6
〜3.0%で、Cr:1.3%以下、Mo:0.3%以下、
V:0.3%以下、Nb:0.1%以下、Ni:2.0%以下、
Cu:0.3%以下に調整したことを特徴とするレー
ル用被覆アーク溶接棒である。
(作 用)
本発明の溶接棒で得られる溶着金属はC:0.4
〜0.9%以下、Si:0.1〜1.0%、Mn:0.6〜1.5%、
あるいはさらにCr:1.3%以下、Mo:0.3%以下、
V:0.3%以下、Nb:0.1%以下、Ni:2.0%以下、
Cu:0.3%以下の1種または2種以上を含み、残
部がFeおよび不可避的不純物となるために、そ
の成分は母材レールと類似の高C鋼で母材レール
の溶融境界層に高温割れの発生がなく、適切な後
熱処理を施すことにより、母材レールと類似のパ
ーライト組織、硬さ、引張り強さ、および耐食性
等の継手性能が得られる。
以下に本発明について詳細に説明する。
被覆アーク溶接の溶着金属における合金成分は
溶接心線またはフラツクスの合金成分剤あるいは
この両方から添加することができる。従つて本発
明の被覆アーク溶接棒における溶接心線またはフ
ラツクスの合金成分剤および溶接棒全体に添加す
る合金成分量は溶接棒の溶着金属に対する歩留を
勘案して決定する。
本発明者等の知見によると溶着金属の合金成分
は溶接心線から添加する場合歩留が最も大きくな
り、C、Si、Mn、では90%以上、Cr、Mo、V、
Nb、Cu、Niではほぼ100%が見込める。従つて
本発明の溶接棒における溶接心線の合金成分は前
記溶着金属の上限値を歩留が最小の場合に相当す
る。すなわち本発明の溶接心線はC:1.0%以下、
Si:1.0%以下、Mn:1.6%以下、またはさらに
Cr:1.3%以下、Mo:0.3%以下、V:0.3%以下、
Nb:0.1%以下、Ni:2.0%以下のうち1種また
は2種以上を含む軟鋼、硬鋼、または特殊鋼線材
を用いることができる。
一方、溶接心線に被覆するフラツクスの合金成
分剤は溶接心線の合金成分量および合金供給物質
の溶着金属に対する歩留に応じて添加量を調整す
る。この歩留は各々の合金元素、合金供給物質の
種類および溶接条件によつて異なるので、溶接棒
全体に含有される合金成分の限定値は各々の合金
元素毎にこの歩留の最大値すなわち100%および
最小値から決定する。
以下に本発明のレール用被覆アーク溶接棒にお
ける各合金成分の添加理由とその限定値について
説明する。
Cは溶着金属にレール鋼と類似のパーライト組
織を生成させるための必須成分であると同時に、
溶着金属を高C鋼、すなわちC:0.4〜0.9%に調
整して、この凝固温度をレール鋼とほぼ同等にす
ることによつて従来技術で発生していた母材レー
ルの溶融境界層における高温液化割れを防止する
もので本発明の最大の特徴をなすものである。さ
らに溶着金属のC含有量が増加するに従い継手引
張り強さおよび硬さが増大するため溶接金属の耐
摩耗性および耐疲労損傷性を向上させることがで
きる。
溶着金属のC量は溶接心線に含有されるC成分
またはフラツクスの合金成分剤に黒鉛、C合金
鉄、鋳鉄およびC化合物等のC供給物質あるいは
これらの両方から添加する。従つて溶接棒全体に
おけるC量の上限値はC供給物質の溶着金属への
歩留が最小となる場合から決定される。すなわち
C成分をほとんど含有しない軟鋼心線を用いて、
フラツクスの合金成分剤に溶着金属への歩留が最
も低い30%の黒鉛粉末だけから添加した場合、前
記溶着金属を得るためには溶接棒全体におけるC
含有量は最大3.0%になる。これに対して溶接棒
全体におけるC含有量の下限値は溶接心線または
フラツクスの合金成分剤における溶着金属への歩
留が最大すなわち100%の場合に相当し、最小0.4
%となる。従つて、本発明における溶接棒全体に
含有されるC量は溶接棒全重量%で0.4〜3.0%と
した。
溶接棒のC含有量が0.4%未満では溶着金属の
C量が0.4未満となる場合が生じ、母材レールの
溶融境界層に高温割れが発生すると共に溶着金属
のパーライト組織が少なくなり、継手引張り強さ
の70Kg/mm2以上が得られない。溶接棒のC含有量
が3.0%超では溶着金属のC量が0.9%超となり、
溶着金属に初析セメンタイトが析出し、溶着金属
が著しく脆化する。
Siは通常溶着金属の脱酸剤として被覆アーク溶
接棒のフラツクスにおける合金成分剤には必ず含
有されるもので、合金鉄から添加される。レール
鋼のSi含有量は通常0.1%以上であり、Siはパー
ライト組織においてフエライトを強化して強度を
上昇させると同時に耐疲労損傷性を向上させ、さ
らにパーライト変態の開始時間、温度に及ぼす影
響が小さいため、溶着金属のSi量をレール鋼より
多く含有しても1.0%以下であれば有害にならな
い。しかし1.1%を超える過剰な含有は、レール
を突合わせ多層溶接した場合、溶着金属の成分が
高Siになるにしたがい溶着金属が凝固割れ感受性
を高めまた凝固割れを起こし、レールの使用寿命
を著しく短命化する問題がある。フラツクスの合
金鉄に含有されるSiの歩留は溶接心線の脱酸状態
または溶接条件によつて異なり、本発明者等の知
見によると溶接心線のSi含有量が少いときSiの歩
留は低くなり、最小10%になる。従つて前記溶着
金属のSi含有量を得るためには溶接棒全体に含有
されるSi量は溶接棒全重量%で0.1〜10.0%にな
る。溶接棒のSi量が0.1%未満では溶着金属の脱
酸が充分行なわれなくなり、溶着金属に酸化介在
物が増加する。溶接棒のSi量が10.0%超になる
と、溶着金属に高温凝固割れが発生するだけでな
く、スラグの流動性が低下し、溶接が困難とな
る。
MnはSi同様溶着金属の脱酸剤として被覆アー
ク溶接棒のフラツクスにおける合金成分剤に含有
されるもので、合金鉄または金属Mnから添加さ
れる。レール鋼のMn含有量が0.6%以上であり、
Mnはパーライト変態を遅滞させる元素であつて
添加量によりパーライト変態の開始が変化し強度
も変化するので溶着金属のMn含有量はレール鋼
とほぼ対応したものでなければならない。
Mnの歩留は溶接棒のCおよびSi量によつて変
化し、C、Si量が低いとMnの歩留が低下し最小
50%になる。従つて前記溶着金属のMn量を得る
ための溶接棒全体に含有されるMn量は溶接棒全
重量%で、0.6〜3.0%になる。溶接棒のMn量が
0.6%未満では溶着金属のMn量が低くなり、溶着
金属の引張り強さまたは伸びすなわち延性が低下
する。溶着金属のMn量が3.0%超では溶着金属の
Mn量が増加し、溶着金属中に析出したマルテン
サイトをパーライトに変態させる後熱処理が著し
く困難となる。
母材レールが前記C、Si、Mnの他にCr、Mo、
V、Nb、Ni、Cuのうち1種または2種以上含有
する場合には、溶着金属にもこれらの合金成分を
母剤レールと同等もしくはそれ以下の量だけ含有
しなければならない場合がある。すなわちCr、
Mo、VはMn同様パーライト変態を遅滞させる
元素であつて、添加量によりパーライト変態の開
始が変化し、強度も変化するので、母剤レールが
これらの合金成分を含有する合金鋼である場合に
は少なくともレール頭頂面に用いる溶接棒にもこ
れらの合金成分を含有していないと溶接のままま
たは溶接後の熱処理によつて母剤レールと類似の
金属組織硬さおよび継手引張り強度が得られな
い。従つて溶着金属のCr、Mo、V含有量はCr:
1.3%以下、Mo、V:0.3%以下にする。
Nbはパーライト変態の終了時間を大巾に短縮
させる元素であるため、溶接後の冷却中に生成す
る有害なマルテンサイトを防止する効果がある。
しかし溶着金属のNb含有量が0.1%を超えると巨
大な炭・窒化物を生じ靭性・疲労強度を低下させ
るので、溶着金属のNb含有量は0.1%以下とす
る。
Cuはレール鋼の耐食性を向上するのに効果の
ある合金成分であり、耐食性レールには0.3%以
下含有される。従つて耐食性レールの溶接には溶
着金属にも0.3%以下のCuを含有しないと母材レ
ールと同様の耐食性が得られない。しかし溶着金
属のCu含有量が0.3%超では熱間脆性を起こし表
面疵が発生するので溶着金属のCu含有量は0.3以
下とする。
Niはレール鋼の延性または靭性を向上する合
金成分であるが、レール鋼はもともと延性または
靭性の低い鋼材であるため、レールに添加する場
合は少ない。しかし溶着金属に2%以下含有する
とこの延性または靭性が向上するので、溶接金属
にNiを添加する必要のある場合がある。しかし
溶着金属がNiを2.0%超含有すると、溶着金属に
高温凝固割れが発生し易くなるので、溶着金属の
Ni含有量は2.0%以下とする。
溶着金属にCr、Mo、V、Nb、Ni、Cuの1種
または2種以上でCr:1.3%以下、Mo:0.3%以
下、V:0.3%以下、Nb:0.1%以下、Ni:2.0%
以下、Cu:0.3%以下含有する場合には、これら
の合金成分剤をフラツクスから添加しても歩留は
ほぼ100%が見込めるので、溶接棒全体に含有さ
れる前記合金成分量は溶接棒全重量%でCr:1.3
%以下、Mo:0.3%以下、V:0.3%以下、Nb:
0.1%以下、Ni:2.0%以下、Cu:0.3%以下とす
る。
本発明によるレール用被覆アーク溶接棒は溶接
心線の線径、フラツクスの被覆率、およびフラツ
クス構成物質の配合等を適正に選択することによ
り、通常の溶接条件でレールに溶接しても高温割
れ等の溶接欠陥が発生することなく施工でき、溶
接後適切な後熱処理を組み合わせることにより有
害組織がなく母材レールと同等の硬さとパーライ
ト組織を有する溶接継手を得ることができる。
以下に実施例によつて本発明の効果をさらに具
体的に説明する。
(実施例)
実施例 1
突き合わせ多層溶接
第3表の溶接心線に第4表の如く調整したフラ
ツクスを被覆したアーク溶接棒を用いて、第5表
の普通レールに突き合わせ溶接をした。溶接施工
はレール接合端面に特殊形状の開先加工を施し、
400〜500℃に予熱した後、足部は下向き、腹部は
立向き、頭部は下向きで多層溶接し、溶接後レー
ル断面全周を均等に加熱する多孔ノズルバーナー
を用いて900〜1000℃に加熱し放冷した。
第6表に溶接金属の化学成分、硬さおよび溶接
継手の引張試験結果を示す。溶接金属はパーライ
ト組織で、高温割れは全く見当らなかつた。[Table] In addition, for the rail overlay welding method, JIS Z3251 hard overlay covered arc welding rods as shown in Table 2 are used.
A welding rod corresponding to DF2A or DF2B is used. Since the welding rod corresponding to DF2A is almost the same as the welding rod for low-alloy high strength steel, the above-mentioned problem still applies. The weld metal formed by DF2B will generate a martensitic structure if it is left unwelded, so it must be tempered after welding. For this reason, not only does the weld metal become a tempered martensitic structure and a pearlite structure cannot be obtained, but also when heat-treated rails are subjected to such post-heat treatment, the head surface of the base metal rail, which is affected by this heat, becomes soft and changes. A situation occurred in which wear became significant. The present invention essentially solves the problems in the prior art described above, and provides a rail or crane rail that can stably ensure good joint performance even for high-strength rails such as heat-treated or alloy steel rails. Provides a coated arc welding rod for use in the present invention. For this purpose, the inventors conducted extensive research and found that the deposited metal formed by the conventional coated arc welding rod has a composition significantly different from that of the base metal rail, as shown in Table 2. As a result, we discovered that the above-mentioned problems would occur, and invented a completely new coated arc welding rod for rails in which the weld metal has a high C-type pearlite structure similar to that of the base material rail, which was conventionally considered unsuitable for welding. did. (Means for solving the problems) The gist of the present invention is that C: 1.0% or less in weight %,
In an arc welding rod in which a welding core consisting of Si: 1.0% or less, Mn: 1.6% or less, and the balance consisting of Fe and unavoidable impurities is coated with a flux consisting of a slag forming agent or an alloying agent, the entire welding rod is The alloy components contained in the welding rod total weight%,
C: 0.4-3.0%, Si: 0.1-10.0%, Mn: 0.6-3.0
% C: 1.0% or less,
Si: 1.0% or less, Mn: 1.6% or less, and Cr: 1.3
% or less, Mo: 0.3% or less, V: 0.3% or less, Nb:
0.1% or less, Ni: 2.0% or less, Cu: 0.3% or less1
In an arc welding rod, the welding core is coated with a flux consisting of a slag forming agent or an alloying agent containing the slag forming agent or an alloying agent, and the remainder is Fe and unavoidable impurities. The alloy components are C:
0.4-3.0% or less, Si: 0.1-10.0% or less, Mn: 0.6
~3.0%, Cr: 1.3% or less, Mo: 0.3% or less,
V: 0.3% or less, Nb: 0.1% or less, Ni: 2.0% or less,
This is a coated arc welding rod for rails that is characterized by having a Cu content of 0.3% or less. (Function) The weld metal obtained with the welding rod of the present invention has a C: 0.4
~0.9% or less, Si: 0.1-1.0%, Mn: 0.6-1.5%,
Or further Cr: 1.3% or less, Mo: 0.3% or less,
V: 0.3% or less, Nb: 0.1% or less, Ni: 2.0% or less,
Cu: Contains one or more types at 0.3% or less, and the remainder is Fe and unavoidable impurities, so the composition is high C steel similar to the base rail, and hot cracking occurs in the molten boundary layer of the base rail. By performing appropriate post-heat treatment, joint performance such as pearlite structure, hardness, tensile strength, and corrosion resistance similar to that of the base rail can be obtained. The present invention will be explained in detail below. The alloying components in the deposited metal of coated arc welding can be added from the welding core, the alloying component of the flux, or both. Therefore, in the coated arc welding rod of the present invention, the alloying component of the welding core or flux and the amount of the alloying component added to the entire welding rod are determined in consideration of the yield of the welding rod to the deposited metal. According to the findings of the present inventors, the yield is highest when the alloying components of the weld metal are added from the weld core, with C, Si, and Mn at over 90%, and Cr, Mo, V, and
Almost 100% can be expected for Nb, Cu, and Ni. Therefore, the alloy composition of the weld core wire in the welding rod of the present invention corresponds to the upper limit of the deposited metal when the yield is minimum. That is, the weld core wire of the present invention has C: 1.0% or less,
Si: 1.0% or less, Mn: 1.6% or less, or further
Cr: 1.3% or less, Mo: 0.3% or less, V: 0.3% or less,
Mild steel, hard steel, or special steel wire containing one or more of Nb: 0.1% or less and Ni: 2.0% or less can be used. On the other hand, the amount of alloying agent added to the flux coated on the weld core is adjusted depending on the amount of the alloy component in the weld core and the yield of the alloy supply substance relative to the deposited metal. Since this yield differs depending on each alloying element, the type of alloy supply material, and welding conditions, the limiting value of the alloying components contained in the entire welding rod is the maximum value of this yield for each alloying element, that is, 100%. Determine from % and minimum value. The reason for adding each alloy component in the coated arc welding rod for rails of the present invention and its limiting values will be explained below. C is an essential component for producing a pearlite structure in the weld metal similar to that of rail steel, and at the same time,
By adjusting the weld metal to high C steel, that is, C: 0.4 to 0.9%, and making the solidification temperature almost the same as that of rail steel, the high temperature in the molten boundary layer of the base rail that occurs in the conventional technology can be reduced. This prevents liquefaction cracking and is the most distinctive feature of the present invention. Furthermore, as the C content of the weld metal increases, the joint tensile strength and hardness increase, so the wear resistance and fatigue damage resistance of the weld metal can be improved. The amount of C in the weld metal is added to the C component contained in the weld core or the alloying component of flux from a C supply material such as graphite, C alloy iron, cast iron, C compound, or both. Therefore, the upper limit of the amount of C in the entire welding rod is determined from the case where the yield of the C supply material to the deposited metal is minimized. In other words, using a mild steel core wire containing almost no C component,
If only 30% of graphite powder with the lowest yield to weld metal is added to the flux alloying agent, in order to obtain the above-mentioned weld metal, the C in the entire welding rod must be
The content will be up to 3.0%. On the other hand, the lower limit of the C content in the entire welding rod corresponds to the case where the yield of the alloy component of the weld core or flux to the deposited metal is maximum, that is, 100%, and the minimum value is 0.4
%. Therefore, the amount of C contained in the entire welding rod in the present invention was set to 0.4 to 3.0% by total weight of the welding rod. If the C content of the welding rod is less than 0.4%, the C content of the weld metal may be less than 0.4, causing hot cracks to occur in the molten boundary layer of the base metal rail and reducing the pearlite structure of the weld metal, resulting in joint tensile stress. A strength of 70Kg/mm 2 or more cannot be obtained. If the C content of the welding rod exceeds 3.0%, the C content of the weld metal will exceed 0.9%,
Pro-eutectoid cementite precipitates on the weld metal, making the weld metal extremely brittle. Si is normally included as a deoxidizing agent for the deposited metal in the alloy component of the flux of coated arc welding rods, and is added to the ferroalloy. The Si content of rail steel is usually 0.1% or more, and Si strengthens ferrite in the pearlite structure, increasing strength and improving fatigue damage resistance. Furthermore, it has an effect on the onset time and temperature of pearlite transformation. Because it is small, even if the weld metal contains more Si than the rail steel, it will not be harmful as long as it is 1.0% or less. However, if the content exceeds 1.1%, when rails are butt-welded in multiple layers, as the composition of the weld metal becomes high in Si, the weld metal becomes susceptible to solidification cracking and solidification cracking occurs, significantly shortening the service life of the rail. There is a problem of shortening the lifespan. The yield of Si contained in the ferroalloy of flux varies depending on the deoxidation state of the weld core or the welding conditions, and according to the findings of the present inventors, the yield of Si contained in the weld core is low when the Si content is low. The retention rate will be low, reaching a minimum of 10%. Therefore, in order to obtain the Si content of the weld metal, the amount of Si contained in the entire welding rod should be 0.1 to 10.0% in terms of the total weight of the welding rod. If the amount of Si in the welding rod is less than 0.1%, the weld metal will not be sufficiently deoxidized, and oxidized inclusions will increase in the weld metal. If the amount of Si in the welding rod exceeds 10.0%, not only will high-temperature solidification cracks occur in the weld metal, but the fluidity of the slag will decrease, making welding difficult. Like Si, Mn is contained in the alloy component in the flux of a coated arc welding rod as a deoxidizing agent for the deposited metal, and is added from the ferroalloy or metal Mn. The Mn content of the rail steel is 0.6% or more,
Mn is an element that retards pearlite transformation, and the start of pearlite transformation changes depending on the amount added, and the strength also changes, so the Mn content of the weld metal must roughly correspond to that of the rail steel. The yield of Mn changes depending on the amount of C and Si in the welding rod, and when the amount of C and Si is low, the yield of Mn decreases and reaches a minimum.
It will be 50%. Therefore, the amount of Mn contained in the entire welding rod to obtain the amount of Mn in the weld metal is 0.6 to 3.0% in terms of the total weight of the welding rod. The amount of Mn in the welding rod is
If it is less than 0.6%, the amount of Mn in the weld metal becomes low, and the tensile strength or elongation, that is, ductility, of the weld metal decreases. If the Mn content of the weld metal exceeds 3.0%, the weld metal
As the amount of Mn increases, post-heat treatment to transform martensite precipitated in the weld metal into pearlite becomes extremely difficult. In addition to the above-mentioned C, Si, and Mn, the base material rail is Cr, Mo,
When one or more of V, Nb, Ni, and Cu are contained, the weld metal may also have to contain these alloy components in an amount equal to or less than that of the base metal rail. i.e. Cr,
Like Mn, Mo and V are elements that retard pearlite transformation, and depending on the amount added, the start of pearlite transformation changes and the strength also changes, so when the base rail is alloy steel containing these alloy components, If the welding rod used for the top surface of the rail does not contain these alloy components, metallographic hardness and joint tensile strength similar to those of the base rail cannot be obtained as welded or by heat treatment after welding. . Therefore, the Cr, Mo, and V contents of the weld metal are Cr:
1.3% or less, Mo, V: 0.3% or less. Nb is an element that significantly shortens the completion time of pearlite transformation, so it has the effect of preventing harmful martensite generated during cooling after welding.
However, if the Nb content of the weld metal exceeds 0.1%, huge carbon and nitrides will be formed, reducing toughness and fatigue strength, so the Nb content of the weld metal should be 0.1% or less. Cu is an alloy component that is effective in improving the corrosion resistance of rail steel, and is contained in corrosion-resistant rails at 0.3% or less. Therefore, when welding corrosion-resistant rails, the same corrosion resistance as the base metal rail cannot be obtained unless the weld metal also contains 0.3% or less of Cu. However, if the Cu content of the weld metal exceeds 0.3%, hot embrittlement will occur and surface flaws will occur, so the Cu content of the weld metal should be 0.3 or less. Ni is an alloy component that improves the ductility or toughness of rail steel, but since rail steel is originally a steel material with low ductility or toughness, it is rarely added to rails. However, if the weld metal contains 2% or less of Ni, the ductility or toughness will improve, so it may be necessary to add Ni to the weld metal. However, if the weld metal contains more than 2.0% Ni, high-temperature solidification cracking is likely to occur in the weld metal.
Ni content shall be 2.0% or less. One or more of Cr, Mo, V, Nb, Ni, and Cu in the weld metal, Cr: 1.3% or less, Mo: 0.3% or less, V: 0.3% or less, Nb: 0.1% or less, Ni: 2.0%
Below, if Cu: 0.3% or less is contained, the yield can be expected to be almost 100% even if these alloying components are added from the flux, so the amount of the alloying components contained in the entire welding rod is Cr in weight%: 1.3
% or less, Mo: 0.3% or less, V: 0.3% or less, Nb:
0.1% or less, Ni: 2.0% or less, Cu: 0.3% or less. The coated arc welding rod for rails according to the present invention can crack hot cracks even when welded to rails under normal welding conditions by appropriately selecting the wire diameter of the welding core, flux coverage, and composition of flux constituent materials. By combining appropriate post-welding heat treatment after welding, it is possible to obtain a welded joint that is free of harmful structures and has the same hardness and pearlite structure as the base metal rail. The effects of the present invention will be explained in more detail below using Examples. (Examples) Example 1 Multilayer butt welding Using an arc welding rod in which the weld core wires in Table 3 were coated with the flux adjusted as shown in Table 4, butt welding was performed on the ordinary rails shown in Table 5. For welding, a specially shaped bevel is applied to the end surface of the rail joint.
After preheating to 400-500℃, multi-layer welding is performed with the feet facing downward, the abdomen facing upright, and the head facing downward. After welding, we use a multi-hole nozzle burner to evenly heat the entire rail cross section to 900-1000℃. It was heated and allowed to cool. Table 6 shows the chemical composition and hardness of the weld metal and the results of the tensile test of the welded joint. The weld metal had a pearlite structure, and no hot cracks were observed.
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 2
エンクローズアーク溶接
第7表の溶接心線に第8表の如く調整したフラ
ツクスを被覆したアーク溶接棒を用いて第9表の
高C鋼、低合金鋼レールにエンクローズアーク溶
接をした。溶接施工はI型開先にて400〜500℃に
予熱した後、足部は下向きで多層溶接し、腹部か
ら頭部にかけてエンクローズ裏当金で連続溶接
し、溶接後レール断面全周を均等に加熱する多孔
ノズルバーナーを用いて800〜1000℃に加熱し放
冷した。
第10表に溶接金属の化学成分、硬さおよび溶接
継手の引張り試験結果を示す。溶接金属はパーラ
イト組織で高温われは全く見当らなかつた。[Table] Example 2 Enclosed arc welding Using an arc welding rod coated with the flux adjusted as shown in Table 8 to the weld core wire shown in Table 7, we enclosed the high C steel and low alloy steel rails shown in Table 9. I did arc welding. The welding process is performed by preheating to 400-500℃ using an I-shaped groove, then welding the legs in multiple layers facing downwards, and continuous welding from the abdomen to the head with an enclosure backing metal.After welding, weld the entire rail cross section evenly. The mixture was heated to 800-1000°C using a multi-hole nozzle burner and allowed to cool. Table 10 shows the chemical composition and hardness of the weld metal and the results of the tensile test of the welded joint. The weld metal had a pearlite structure and no high-temperature cracks were observed.
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 3
肉盛溶接
第11表の代表的な合金鋼レール頭部に底部の角
度が60゜で深さ20mmのV型の横溝を作り、そこに
第12表の如くレール鋼から製作した溶接心線に第
13表の如きフラツクスを第14表の如き調整して被
覆したアーク溶接棒を用いて、肉盛溶接した。溶
接施工は母材レールを400〜500℃に予熱した後多
層溶接し、溶接後、800〜1000℃に加熱し放冷し
た。
第15表に溶接金属の化学成分、硬さおよび溶接
継手の引張り試験結果を示す。溶接金属はパーラ
イト組織で高温われは全く見当らなかつた。[Table] Example 3 Overlay Welding A V-shaped horizontal groove with a bottom angle of 60° and a depth of 20 mm is made on the head of the typical alloy steel rail shown in Table 11, and then a V-shaped horizontal groove with a depth of 20 mm is made from the rail steel as shown in Table 12. The fabricated weld core wire is
Overlay welding was carried out using an arc welding rod coated with a flux as shown in Table 13 and adjusted as shown in Table 14. In the welding process, the base material rail was preheated to 400-500℃, then multi-layer welding was performed, and after welding, it was heated to 800-1000℃ and allowed to cool. Table 15 shows the chemical composition and hardness of the weld metal and the results of the tensile test of the welded joint. The weld metal had a pearlite structure and no high-temperature cracks were observed.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
(発明の効果)
本発明の被覆アーク溶接棒を用いてレールを突
き合わせ溶接または肉盛溶接すれば、溶接部には
前記の如き従来の溶接棒では避けることができな
かつた高温割れの発生が防止できるだけでなく、
溶接金属は溶接のまままたは溶接後空気焼き入れ
等の後熱処理によつて母材レールと類似のパーラ
イト組織、硬さおよび継手強度が得られる。すな
わち、本発明は前記の如き母材レールと類似の高
C型パーライト組織で、引張り強さが70Kg/mm2以
上の溶着金属を得ることによつて従来の溶接棒の
致命的な欠点を排除して高強度レールにも適用可
能なレール用被覆アーク溶接棒である。[Table] (Effects of the invention) If rails are butt welded or built-up welded using the coated arc welding rod of the present invention, the welded part will suffer from hot cracking that could not be avoided with the conventional welding rods as described above. Not only can you prevent the occurrence of
The weld metal can be as welded or subjected to post-heat treatment such as air hardening after welding to obtain a pearlite structure, hardness, and joint strength similar to that of the base metal rail. That is, the present invention eliminates the fatal drawbacks of conventional welding rods by obtaining a weld metal with a high C-type pearlite structure similar to that of the base rail as described above and a tensile strength of 70 kg/mm 2 or more. This is a coated arc welding rod for rails that can also be applied to high-strength rails.
Claims (1)
心線に、スラグ形成剤またはこれと合金成分剤か
らなるフラツクスを被覆したアーク溶接棒におい
て、溶接棒全体に含有される前記合金成分を溶接
棒全重量%で、 C:0.4〜3.0%、 Si:0.1〜10.0%、 Mn:0.6〜3.0% に調整したことを特徴とするレール用被覆アーク
溶接棒。 2 重量%で、 C:1.0%以下、 Si:1.0%以下、 Mn:1.6%以下、 さらに Cr:1.3%以下、 Mo:0.3%以下、 V:0.3%以下、 Nb:0.1%以下、 Ni:2.0%以下、 Cu:0.3%以下 の1種または2種以上を含有し、残部がFeおよ
び不可避的不純物からなる溶接心線に、スラグ形
成剤またはこれと合金成分剤からなるフラツクス
を被覆したアーク溶接棒において、溶接棒全体に
含有される前記合金成分を溶接棒全重量%で、 C:0.4〜3.0%、 Si:0.1〜10.0%、 Mn:0.6〜3.0% で、 Cr:1.3%以下、 Mo:0.3%以下、 V:0.3%以下、 Nb:0.1%以下、 Ni:2.0%以下、 Cu:0.3%以下 に調整したことを特徴とするレール用被覆アーク
溶接棒。[Claims] 1% by weight, C: 1.0% or less, Si: 1.0% or less, Mn: 1.6% or less, the balance being Fe and unavoidable impurities. In an arc welding rod coated with a flux consisting of component agents, the alloy components contained in the entire welding rod in terms of the total weight of the welding rod are: C: 0.4 to 3.0%, Si: 0.1 to 10.0%, Mn: 0.6 to 3.0 A coated arc welding rod for rails, which is characterized by being adjusted to %. 2% by weight: C: 1.0% or less, Si: 1.0% or less, Mn: 1.6% or less, Cr: 1.3% or less, Mo: 0.3% or less, V: 0.3% or less, Nb: 0.1% or less, Ni: An arc in which a welding core containing one or more of Cu: 0.3% or less and the remainder consisting of Fe and unavoidable impurities is coated with a slag forming agent or a flux consisting of this and an alloy component. In the welding rod, the alloy components contained in the entire welding rod are as follows: C: 0.4 to 3.0%, Si: 0.1 to 10.0%, Mn: 0.6 to 3.0%, Cr: 1.3% or less, A coated arc welding rod for rails, characterized in that Mo: 0.3% or less, V: 0.3% or less, Nb: 0.1% or less, Ni: 2.0% or less, and Cu: 0.3% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30977886A JPS63160799A (en) | 1986-12-24 | 1986-12-24 | Coated electrode for rail |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30977886A JPS63160799A (en) | 1986-12-24 | 1986-12-24 | Coated electrode for rail |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63160799A JPS63160799A (en) | 1988-07-04 |
JPH0454557B2 true JPH0454557B2 (en) | 1992-08-31 |
Family
ID=17997137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30977886A Granted JPS63160799A (en) | 1986-12-24 | 1986-12-24 | Coated electrode for rail |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63160799A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011009443B3 (en) * | 2011-01-26 | 2012-03-29 | Daimler Ag | Wire-shaped spray material |
JP5549782B2 (en) | 2011-05-25 | 2014-07-16 | 新日鐵住金株式会社 | Reheating method for rail welds |
CN102658442B (en) * | 2012-05-08 | 2014-04-30 | 上海电力修造总厂有限公司 | Low-alloy steel welding electrode with Cr control capacity and FAC resisting capacity of weld metal of basic slag system |
WO2015156243A1 (en) | 2014-04-08 | 2015-10-15 | 新日鐵住金株式会社 | Heat treatment device, heat treatment method, and rail steel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4916184A (en) * | 1972-04-19 | 1974-02-13 | ||
JPS56151195A (en) * | 1980-04-24 | 1981-11-24 | Nippon Steel Corp | Low-hydrogen type coated arc welding rod for hardening and building-up |
-
1986
- 1986-12-24 JP JP30977886A patent/JPS63160799A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4916184A (en) * | 1972-04-19 | 1974-02-13 | ||
JPS56151195A (en) * | 1980-04-24 | 1981-11-24 | Nippon Steel Corp | Low-hydrogen type coated arc welding rod for hardening and building-up |
Also Published As
Publication number | Publication date |
---|---|
JPS63160799A (en) | 1988-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007296535A (en) | Gas-shielded arc welding flux-cored wire and welding method | |
JP2007289965A (en) | Flux-cored wire for gas shielded arc welding and welding method | |
JPH09316598A (en) | Pearlitic rail, excellent in wear resistance and weldability, and its production | |
JPH08246100A (en) | Pearlitic rail excellent in wear resistance and its production | |
JPS60158995A (en) | Mig welding wire for high-tension steel | |
KR100723201B1 (en) | High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same | |
JPH0454557B2 (en) | ||
JP4948710B2 (en) | Welding method of high-tensile thick plate | |
JPS5919173B2 (en) | Manufacturing method of weldable low-alloy heat-treated hard-headed rail | |
JPH02258192A (en) | Coated electrode for enclosed arc welding of rail | |
JPH08276293A (en) | Cored wire for rail welding | |
JP4424484B2 (en) | Welded joints with excellent cold cracking resistance and steel for welding materials | |
JPH0451275B2 (en) | ||
JP3272845B2 (en) | Covered arc welding rod for Cr-Mo system rail | |
JPH0455793B2 (en) | ||
JP4220088B2 (en) | Welded joint for steel structure and method for producing the same | |
JP3281097B2 (en) | Arc welding of opposing rails | |
JPH02258193A (en) | Coated electrode for enclosed arc welding of rail | |
JP3853482B2 (en) | Welding material for welding joint between spheroidal graphite cast iron and mild steel, welding joining method, welding material for welding repair of spheroidal graphite cast iron, and welding repair method | |
JPH0451277B2 (en) | ||
JP3327128B2 (en) | Welding material | |
JP2687008B2 (en) | Coated arc welding rod for enclosed arc welding of rails | |
JPH10280098A (en) | High toughness rail excellent in wear resistance | |
JP2601742B2 (en) | Manufacturing method of welding crossings | |
JP2988607B2 (en) | Rail butt welding method and welding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |