JPS5919173B2 - Manufacturing method of weldable low-alloy heat-treated hard-headed rail - Google Patents

Manufacturing method of weldable low-alloy heat-treated hard-headed rail

Info

Publication number
JPS5919173B2
JPS5919173B2 JP3141879A JP3141879A JPS5919173B2 JP S5919173 B2 JPS5919173 B2 JP S5919173B2 JP 3141879 A JP3141879 A JP 3141879A JP 3141879 A JP3141879 A JP 3141879A JP S5919173 B2 JPS5919173 B2 JP S5919173B2
Authority
JP
Japan
Prior art keywords
rail
cooling
strength
head
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3141879A
Other languages
Japanese (ja)
Other versions
JPS55125231A (en
Inventor
弘毅 桝本
和男 杉野
英明 影山
博人 浜橋
昊 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3141879A priority Critical patent/JPS5919173B2/en
Publication of JPS55125231A publication Critical patent/JPS55125231A/en
Publication of JPS5919173B2 publication Critical patent/JPS5919173B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails

Description

【発明の詳細な説明】 本発明は溶接性のすぐれた低合金熱処理硬頭レールの製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a low-alloy heat-treated hard-headed rail with excellent weldability.

近年鉄道輸送は高速化、高荷重化が指向されており、前
者の例として日本における新幹線が、後者の例として海
外の鉱山鉄道があげられる。
In recent years, railway transportation has become faster and heavier, with the Shinkansen in Japan being an example of the former, and mining railways overseas being an example of the latter.

これらの鉄道ではそれぞれレール頭頂部に発生する損傷
、レール頭側部の摩耗が重要な問題となっておシ、荷酷
な使用条件に耐える高強度レールが要求されている。一
方レール継目部の破損防止、レール保守費用の軽減のた
め、現在ほとんどの鉄道ではレールは溶接によりロング
レール化されて使用されておシ、高強度レールについて
も良好な溶接接合性と溶接部材質の均質性が必須要件と
なっている。し力)しながら現在までに製造、使用され
ている高強度レールは、その化学成分、製造方法を強度
を向上させる観点からのみ検討されたものであって、溶
接性即ちレール溶接熱影響部の硬化、脆化あるいは軟化
と云う溶接による材質特性劣化防止まで考慮されておら
ず溶接性が良好でなかった。ところで珊在提案されてい
る高強度レールは、圧延まま合金鋼レールと熱処理炭素
鋼硬頭レールに二犬別出来るが、前者について述べると
、これは普通炭素鋼レールにSi,Mn,Cr,MO,
V等の合金元素を添加した鋼をレールに熱間圧延した後
、自然冷却させてパーライト変態させ、100〜120
kj1mm2の引張強さを与えたもので、圧延後、オー
ステナイト状態から空冷するというかなり遅い冷却速度
で高強度を得るため多量の合金元素を添加する必要があ
った。このレールをロングレール化するために溶接した
場合、溶接接合部および熱影響部の冷却速度は熱間圧延
後の冷却速度にくらべてかなり早いため、部分的にマル
テンサイトを生成し、母材レールにくらべて著るしい硬
化、脆化をもたらし、溶接部におけるレールの折損、不
均等摩耗、道床の劣化を起し、実用上大きな問題トなっ
ている。また、このマルテンサイトの生成の防止、ある
いは消去のため溶接接徐冷、または後熱する等の処理も
行なわれているが、これは溶接能率を著るしく低下させ
るため実用的とは云い難い。さらにレール溶接で多く行
われているフラッシュバット溶接、ガス圧接では溶融接
合でないため接合端面において、合金元素が酸化し、そ
のため充分な継手強度が得られず、溶接後運搬中に折損
するなどの問題も生じている。次に後者の熱処理硬頭レ
ールについて述べると、該レールはレール頭部の焼入焼
戻し、あるいはスラツククエンチ等の熱処理によシ、レ
ール頭部表面層を硬化させ高強度を与えたもので、その
引張強さは約120kg//ILm”以上となっている
In these railways, damage to the top of the rail head and wear on the side of the rail head are important problems, and high-strength rails that can withstand harsh loading conditions are required. On the other hand, in order to prevent damage to rail joints and reduce rail maintenance costs, most railways currently use long rails by welding, and even high-strength rails have good welding properties and welded part quality. Homogeneity is an essential requirement. However, the high-strength rails manufactured and used to date have been studied only from the viewpoint of improving their chemical composition and manufacturing method, and have not been studied solely from the perspective of improving weldability, that is, the heat-affected zone of the rail weld. Weldability was poor because no consideration was given to preventing deterioration of material properties due to welding, such as hardening, embrittlement, or softening. By the way, the proposed high-strength rails can be divided into as-rolled alloy steel rails and heat-treated carbon steel hard-headed rails. ,
After hot-rolling steel to which alloying elements such as V are added into rails, it is naturally cooled to undergo pearlite transformation, resulting in a 100 to 120
It gave a tensile strength of kj1 mm2, and it was necessary to add a large amount of alloying elements in order to obtain high strength at a fairly slow cooling rate of air cooling from the austenite state after rolling. When this rail is welded to make a long rail, the cooling rate of the weld joint and heat-affected zone is much faster than the cooling rate after hot rolling, so martensite is partially generated and the base metal rail This results in significant hardening and embrittlement compared to the conventional method, causing breakage of the rail at welded parts, uneven wear, and deterioration of the trackbed, which is a major problem in practice. Furthermore, in order to prevent or eliminate the formation of martensite, treatments such as slow cooling during welding or post-heating have been carried out, but these methods significantly reduce welding efficiency and are therefore not practical. . Furthermore, since flash butt welding and gas pressure welding, which are often performed in rail welding, do not involve fusion welding, the alloying elements oxidize at the joint end faces, resulting in insufficient joint strength and problems such as breakage during transportation after welding. is also occurring. Next, referring to the latter heat-treated hard-headed rail, the rail head is hardened by heat treatment such as quenching and tempering or slack quenching to harden the rail head surface layer, giving it high strength. Its tensile strength is approximately 120 kg//ILm" or more.

しかしこれらのレールは現在普通に用いられている圧延
まま高炭素鋼レール(因みにその引張強さは70〜90
kg/RIL一である)を、オーステナイト状態に加熱
した後、きわめて急速に冷却して、焼入、あるいはスラ
ツククエンチを行うため、これらのレールを溶接した場
合、溶接部の冷却速度が熱処理時の冷却速度にくらべて
遅いため溶接部の軟化が避けられず、軟化部におけるレ
ールの局部的な変形や摩耗、その結果として生ずる道床
の劣化が重要な問題となっている。またこの軟化を防止
するため溶接後直ちに、1たは溶接部を再加熱した後急
冷する方法がとられているが、これも溶接能率を低下さ
せ実用的であるとは云い難い。以上述べたように現行の
高強度レールは、母材については確かに高強度で良好な
性質を示すとはいうものの、現在の鉄道に不可欠なレー
ル溶接部の母材(非溶接部)に対する強度、組織の劣化
防止対策が全ぐ講じられていないことから、該高強度レ
ールを溶接した際その溶接部の特性は、母材レールに対
して硬化、脆化、あるいは軟化するという欠点を有し、
溶接施工上、実用上、レール保守上多くの問題が残され
ている。
However, these rails are different from the currently commonly used as-rolled high carbon steel rails (which, by the way, have a tensile strength of 70 to 90
kg/RIL) is heated to an austenitic state and then cooled very rapidly for quenching or slack quenching. Because the cooling rate is slow compared to the cooling rate of the weld, softening of the welded part is unavoidable, and local deformation and wear of the rail at the softened part, resulting in deterioration of the track bed, have become important problems. In order to prevent this softening, a method has been adopted in which the welded part is immediately reheated or rapidly cooled after welding, but this also reduces welding efficiency and is hardly practical. As mentioned above, although the current high-strength rails do have high strength and good properties for the base material, the strength of the welded parts of the rails relative to the base material (non-welded parts), which is essential for modern railways, is Since no measures have been taken to prevent the deterioration of the structure, when the high-strength rail is welded, the welded part has the disadvantage of hardening, embrittlement, or softening compared to the base material rail. ,
Many problems remain in terms of welding work, practical use, and rail maintenance.

即ち圧延まま合金鋼レールは、熱間圧延後の自然冷却時
の冷却速度を基準として合金元素を選択し、一方熱処理
炭素鋼硬頭レールは、現行高炭素鋼の成分を基準として
熱処理時の冷却速度を選定したため、いずれも溶接上多
くの問題を生ずることになったものである。本発明は、
上述した現行高強度レールの問題点を解決するため、高
炭素鋼に強度付与とレール溶接による溶接部の材質劣化
防止の観点から選択された合金元素を添加するとともに
、レールの最重要部たるレール頭部を熱処理するにあた
って、その冷却条件をレール溶接時の栓却速度と等価と
することによシ、溶接接合が容易で、溶接能率が高く、
しかも溶接ままでも該溶接部の強度、組織等の材質特性
が母材のそれと大差のない溶接部性質の得られる、溶接
性のすぐれた低合金硬頭熱処理レールを提供するもので
ある。
That is, for as-rolled alloy steel rails, alloying elements are selected based on the cooling rate during natural cooling after hot rolling, while for heat-treated carbon steel hard-headed rails, alloying elements are selected based on the cooling rate during heat treatment based on the components of current high carbon steel. Due to the selected speed, many problems occurred in both cases in welding. The present invention
In order to solve the above-mentioned problems with current high-strength rails, we added alloying elements selected from the viewpoint of adding strength to high-carbon steel and preventing material deterioration of the welded parts during rail welding. When heat treating the head, by making the cooling conditions equivalent to the plug cooling speed during rail welding, welding is easy and welding efficiency is high.
Furthermore, the present invention provides a low-alloy hard-head heat-treated rail with excellent weldability, in which the strength, structure, and other material properties of the welded part are not significantly different from those of the base metal even as welded.

即ち本発明はC:0.55〜0.85%,Si:0.5
0〜1.20%,Mn: 0.80〜1.50%,Al
:0.005〜0.050%あるいは、鋼塊の犬型化な
いしはレール断面が大型化した場合でもレール頭部の熱
処理時あるいはレール溶接した際に微細パーライト組織
となるように、前記C,Sj,Alの他にMn:0.5
0〜1.20%, Cr: 0−20〜O−90%,N
b: 0.004〜0.010未満、さらにMn+Cr
”1.60%以下を含有し、残部が鉄および不可避的不
純物から成る鋼をレール圧延したレールの頭部表層部を
温度850℃以上に加熱してオーステナイト化した後、
気体もしくは気液体冷却で800℃から550℃の間を
50秒ないし400秒の間で急速冷却することにより、
該頭部表層部の好1しくは頭部表面から10mff1の
深さまでの組織を微細パーライト化し、常温に於ける引
張強さを120k9/Mm”以上1たレール頭頂部の表
面硬さをHB33O以上とした溶接性のすぐれた低合金
熱処理硬頭レールの製造法である。以下、本発明につい
て詳細に説明する。
That is, in the present invention, C: 0.55 to 0.85%, Si: 0.5%
0-1.20%, Mn: 0.80-1.50%, Al
: 0.005 to 0.050% or the above C, Sj so that even if the steel ingot becomes dog-shaped or the rail cross section becomes large, a fine pearlite structure will be formed when the rail head is heat treated or the rail is welded. , Mn: 0.5 in addition to Al
0~1.20%, Cr: 0-20~O-90%, N
b: 0.004 to less than 0.010, further Mn+Cr
``After rolling a steel containing 1.60% or less and the balance consisting of iron and unavoidable impurities, the head surface layer of the rail is heated to a temperature of 850°C or higher to austenite,
By rapidly cooling between 800°C and 550°C for 50 to 400 seconds with gas or gas-liquid cooling,
Preferably, the structure of the surface layer of the head part up to a depth of 10 mff1 from the head surface is made into fine pearlite, and the tensile strength at room temperature is 120k9/Mm" or more, and the surface hardness of the top of the rail head is HB33O or more. This is a method for manufacturing a low-alloy heat-treated hard-headed rail with excellent weldability.The present invention will be described in detail below.

転炉、電気炉等で溶製した上記成分組成の低合金鋼をレ
ール圧延する。
Low-alloy steel having the above-mentioned composition is melted in a converter, electric furnace, etc. and is rail-rolled.

それら化学成分の内Cは高強度化および、パーライト組
織生成のための必須成分であシ、1た耐摩耗性を向上さ
せる元素であるが、0.55%未満では熱処理時に低炭
素ベーナイトを生成して耐摩耗性を低下させ、0.85
%超ではオーステナイト粒界に初析セメンタイトを生成
、あるいは熱処理層お溶接部の微小偏析部にマルチンサ
イトを生成して硬化、脆化させるため0.55〜0.8
5%に限定した。Siはパーライト鋼においてもフエラ
イトを強化して強度を上昇させると同時に、耐損傷性が
増大させ、さらにパーライト変態の開始時間、温度に対
する影響が小さく、蝋処理および溶接を考えた場合、冷
却速度制御を極めて容易にする元素であるが、0。50
%未満では効果が小さく、1.20%超では、脆化を生
じ、溶接接合性を低下させるので0.50〜1.20楚
に限定した。
Among these chemical components, C is an essential component for high strength and pearlite structure formation, and is an element that improves wear resistance, but if it is less than 0.55%, it will produce low carbon bainite during heat treatment. to reduce wear resistance, 0.85
If it exceeds 0.55% to 0.8%, pro-eutectoid cementite is generated at the austenite grain boundaries, or martinsite is generated in the micro-segregation areas of the welded part of the heat-treated layer, resulting in hardening and embrittlement.
It was limited to 5%. Si also strengthens the ferrite in pearlitic steel, increasing its strength, and at the same time increasing its damage resistance. Furthermore, it has a small effect on the start time and temperature of pearlitic transformation, and when considering waxing and welding, it is effective in controlling the cooling rate. Although it is an element that makes it extremely easy to
If it is less than 1.2%, the effect will be small, and if it exceeds 1.20%, it will cause embrittlement and reduce weld bondability, so it was limited to 0.50 to 1.20 so.

Mnはパーライト変態を遅滞させる元素であって、添加
量を変化させることによりパーライト変態の開始を制御
し、強度を制御することが可能となるがCr,Nbを併
用しない場合、0.80%未満では効果が小さ<1.5
0%超では水素脆化、偏析によるマルテンサイト生成を
起しやすくするため0.80〜1.50%に限定した。
A7は脱酸のために添加され鋼質の均質化、疲労強度を
低下させるシリケート系介在物の生成防止の効果を有す
るが、(1005%未満では効果がなく、0.050%
超では脆化を生ずるためO−005%〜0.050%に
限定した。CrおよびNbの添加理由と範囲限定理由は
次のとおシである。
Mn is an element that retards pearlite transformation, and by changing the amount added, it is possible to control the start of pearlite transformation and control the strength, but if Cr and Nb are not used together, it is less than 0.80%. Then the effect is small <1.5
If it exceeds 0%, it tends to cause hydrogen embrittlement and martensite formation due to segregation, so it is limited to 0.80 to 1.50%.
A7 is added for deoxidation and has the effect of homogenizing the steel quality and preventing the formation of silicate inclusions that reduce fatigue strength.
O-005% to 0.050% was limited because O-005% to 0.050% would cause embrittlement if the content exceeded O-005%. The reason for adding Cr and Nb and the reason for limiting the range are as follows.

MnをCr,Nbと併用しない場合、鋼塊あるいはレー
ル断面が大型化するにつれて、Mnのミクロ的偏析が強
くなりレール頭部の熱処理時、あるいは溶接時にその熱
影響部に微細なマルテンサイトが生成し、脆化を生ずる
。従ってこの場合にはMnを減じ、代シにCrを添加し
てMn減による強度低下を補い、ざらにNbにより鋳造
時および熱処理時の結晶粒を微細化して、ミクロ的偏析
によるマルテンサイトの生成を防止することが有効であ
る。CrはMnを減する場合Mnに代ってパーライト変
態を制御し、強度を制御することが出来、しかもミクロ
ン偏析せず微細マルテンキイトの生成を防止し得るが、
0.20%未満では十分な効果が得られず、また0.9
0%を超えると、溶接時の接合性が劣化するため、0.
20〜0.90%に現定した。この場合、Mnは添加量
を減するため0.50%〜1.20%に限定し、さらに
Mn+Crが1.60%を超えるとMnを減じていても
溶接部に於て微細マルテンサイトが生成するため、Mn
+Crの上限を1.60%とした。MnとCrを併用す
る場合Nbの添加がさらに有効であって、Nbは鋼塊凝
固時における結晶粒を微細化してMnのミクロ偏析を防
止し、さらにオーステナイト域加熱時にオーステナイト
粒の成長を抑制し延性の向上にも有効である。又、他の
効果は、パーライト変態終了時間を大巾に短縮させるこ
とであり、これは熱処理あるいは溶接時の冷却中の有害
なマルテンサイトの生成を防止することに有効であり、
さらに本レールの熱処理硬化部が溶接される場合その冷
却時間が本発明の限定範囲内にあれば、硬さ変化を極め
て小さくする効果を有する。これらの効果は本レール鋼
中に析出する微細なNb炭化物に基づくものであるが、
その含有量が0.004%未満では有効々量の炭化物が
得られず、また0.010%以上では巨大な炭化物を生
じ靭性、疲労強度を低下させるため、0.004〜0.
010%未満に限定した。以上述べたように、Mnを減
じCr,Nbを添加することば鋼塊断面、あるいはレー
ル断面が大きい場合に有効であシ、逆に鋼塊断面が小さ
い、あるいは鋳片が急速に冷却される連続鋳造の場合に
はCr,Nbを添加する必要は々いが、これらの限定は
別に本レール鋼の鋳造方法を限定するものではない。
When Mn is not used in combination with Cr and Nb, as the steel ingot or rail cross section becomes larger, the microscopic segregation of Mn becomes stronger and fine martensite is generated in the heat affected zone during heat treatment of the rail head or during welding. and causes embrittlement. Therefore, in this case, reduce Mn, add Cr to compensate for the decrease in strength due to the decrease in Mn, and use Nb to refine the crystal grains during casting and heat treatment to generate martensite due to micro segregation. It is effective to prevent this. When reducing Mn, Cr can control pearlite transformation and strength in place of Mn, and can prevent the formation of fine martenquite without micron segregation.
If it is less than 0.20%, sufficient effect cannot be obtained;
If it exceeds 0%, the bondability during welding will deteriorate;
It was set at 20-0.90%. In this case, in order to reduce the amount of Mn added, limit it to 0.50% to 1.20%, and if Mn + Cr exceeds 1.60%, fine martensite will form in the weld even if Mn is reduced. To do this, Mn
The upper limit of +Cr was set to 1.60%. When Mn and Cr are used together, the addition of Nb is more effective; Nb refines the crystal grains during solidification of the steel ingot, prevents micro-segregation of Mn, and further suppresses the growth of austenite grains during heating in the austenite region. It is also effective in improving ductility. Another effect is that the pearlite transformation completion time is greatly shortened, which is effective in preventing the formation of harmful martensite during heat treatment or cooling during welding.
Furthermore, when the heat-treated hardened portion of this rail is welded, if the cooling time is within the limited range of the present invention, it has the effect of extremely minimizing changes in hardness. These effects are based on the fine Nb carbides precipitated in this rail steel,
If the content is less than 0.004%, an effective amount of carbide cannot be obtained, and if the content is more than 0.010%, huge carbides are formed, reducing toughness and fatigue strength.
It was limited to less than 0.010%. As mentioned above, reducing Mn and adding Cr and Nb is effective when the cross section of the steel ingot or rail is large; on the other hand, it is effective when the cross section of the steel ingot is small or when the slab is cooled rapidly. In the case of casting, it is often necessary to add Cr and Nb, but these limitations do not limit the casting method of the present rail steel.

次にレール頭部表層部好ましくは頭部表面から101!
Wの深さまでを硬化するためオーステナイト化した後急
冷を行なうが、加熱温度は表層部を均質にオーステナイ
ト化するため、Ac3変態点以上の850℃以上の温度
に加熱することが必要である。
Next, the rail head surface layer preferably 101 from the head surface!
In order to harden to the depth of W, after austenitizing, rapid cooling is performed, but in order to uniformly austenite the surface layer, it is necessary to heat to a temperature of 850° C. or higher, which is the Ac3 transformation point or higher.

また急冷は、800℃から550℃までを50秒ないし
400秒で冷却することによりスラツククエンチを行な
う。冷却時間が50秒未満ではマルテンサイトを生成し
、又400秒を超えると、微細パーライト組織と120
kg/In一以上の引張強さが得られないため、800
℃から550℃までの冷却所要時間を50〜400秒に
限定した。この冷却時間は40kg/m〜68kg/m
のレールをフラッシュバット溶接した場合の自然冷却時
間に等しく、レール圧延後の自然冷却時の冷却時間が約
800秒(60Kレールの場合)であることにくらべる
と短かく、レール熱処理時にこの冷却時間内での冷却を
達成するには何等かの強制冷却手段が必要であるが、こ
れは空気、不活性ガス等の気体もしくは少量の液体を混
ぜた気液体をノズルから噴出させることで達成され、液
体のみによる冷却では制御が困難となるため、これらの
気体を用いて急速冷却することに限定した。またこの場
合の温度はレール表面の温度を示すものとする。冷却後
の組織は微細パーライト組織に限定したが、これは12
0kg/RILTIL2以上の強度の場合耐摩耗性、耐
損傷性において、該組織が他のマルテン,サイト、低炭
素ベーナイト、焼戻しマルテンサイト等にくらべて著る
しく優れているためであり、本発明レールでは微細パー
ライト組織が必須である。熱処理硬化層の強度は、現行
高強度レールと同等以上のものとするため、引張強さを
120k9/WLm2以上としたが、これは組織が微細
パーライトに保たれるならば、必要により高めることは
差支えない。寸た、強度の判定を容易にするため、レー
ル頭頂部の硬さで強度を規制することが出来るが、その
ためには、頭頂部の硬さをHB33O以上とした。なお
レール頭部の硬化層の深さは、頭頂面および頭側面から
最低10mrttの深さ1で120kgALW”以上の
引張強さを有しておれば良く、10闘以上の硬化層を得
ること、あるいはレール全断面を硬化することはレール
の摩耗、損傷がレール頭部表面に限られること、レール
製造が極めて困難であること、から得策ではない。本レ
ールの柱部、底部は熱処理されず圧延ままの状態に保た
れるが、その引張強さは約100kg/Rnn2であシ
、実用上何等問題はない。以上述べた理由によシ、本発
明レールでは、溶接部に於ても母材同等の強度と組織を
得ることが可能であるが、以下に実施例を述べる。第1
に本発明鋼と比較従来鋼の化学成分と母材レール頭部硬
化層の引張性質を示した。
Further, the rapid cooling is performed by cooling from 800° C. to 550° C. in 50 seconds to 400 seconds to perform slack quenching. If the cooling time is less than 50 seconds, martensite will be formed, and if it is more than 400 seconds, a fine pearlite structure and 120
Since it is not possible to obtain a tensile strength of 800 kg/In or more,
The time required for cooling from °C to 550 °C was limited to 50 to 400 seconds. This cooling time is 40kg/m~68kg/m
It is equal to the natural cooling time when flash butt welding a rail of Some kind of forced cooling means is required to achieve cooling inside the machine, but this is achieved by jetting a gas such as air, inert gas, or a gas-liquid mixture with a small amount of liquid from a nozzle. Since cooling with liquid alone would be difficult to control, we limited ourselves to rapid cooling using these gases. Furthermore, the temperature in this case indicates the temperature of the rail surface. The structure after cooling was limited to a fine pearlite structure, which is 12
If the strength is 0 kg/RILTIL2 or more, this is because the structure is significantly superior in wear resistance and damage resistance compared to other marten, site, low carbon bainite, tempered martensite, etc. In this case, a fine pearlite structure is essential. The tensile strength of the heat-treated hardened layer was set to be at least 120k9/WLm2 in order to have the same or higher strength as the current high-strength rail, but this cannot be increased as necessary if the structure is maintained as fine pearlite. No problem. In order to easily judge the strength, the strength can be regulated by the hardness of the top of the rail, and for this purpose, the hardness of the top of the rail was set to be HB33O or higher. The depth of the hardened layer of the rail head should have a tensile strength of 120 kg ALW" or more at a depth of at least 10 mrtt from the top surface and the side surface of the head, and a hardened layer with a tensile strength of 10 kg or more must be obtained. Alternatively, hardening the entire cross section of the rail is not a good idea because rail wear and damage is limited to the rail head surface and rail manufacturing is extremely difficult.The column and bottom of this rail are not heat treated and are rolled. However, the tensile strength is approximately 100 kg/Rnn2, and there is no problem in practical use.For the reasons stated above, the rail of the present invention has a tensile strength of approximately 100 kg/Rnn2. Although it is possible to obtain equivalent strength and structure, examples will be described below.
The chemical composition and tensile properties of the hardened layer at the head of the base rail are shown in comparison with the inventive steel and the conventional steel.

本発明鋼A,Bの熱処理時のSOO℃から550℃1で
の冷却時間は、レールAは100秒、Bは120秒であ
る。従来鋼Cは圧延ままSi−Cr系合金鋼レールで微
細パーライト組織を有し、従来鋼Dは熱処理炭素鋼硬頭
レールで、炭素鋼レールの頭部を誘導加熱によって加熱
した後スラツククエンチを行なったもので、同じく微細
パーライト組織を有している。本発明レールA,Bは1
20kii2以上の引張強さ(σB)を有し、しかも絞
り(ψ)は40%以上で、高強度であるにも拘らず延性
が良好である。
The cooling time from SOO° C. to 550° C. 1 during heat treatment of the steels A and B of the present invention was 100 seconds for rail A and 120 seconds for rail B. Conventional steel C is an as-rolled Si-Cr alloy steel rail with a fine pearlite structure, and conventional steel D is a heat-treated carbon steel hard-headed rail, in which the head of the carbon steel rail is heated by induction heating and then subjected to slack quenching. It also has a fine pearlite structure. The rails A and B of the present invention are 1
It has a tensile strength (σB) of 20kii2 or more, and a reduction of area (ψ) of 40% or more, and has good ductility despite its high strength.

従来鋼Cは、C量力{やや少ないが、Ss,Mn量はA
鋼と同等でしかもCr量は1.08%と多いにも拘らず
引張強さは102kgAniと低く、絞シもA,B鋼と
同等でしかない。又、鋼Dは合金量が少ないにも拘らず
引張強さは123ky/Mm2で本発明鋼と同等であり
、降伏比も高いが、これはスラツククエンチという熱処
理による結果である。第1図(硬さは中心部従断面で頭
頂面から5朋の点について測定した)にこれらのレール
のフラッシュバット溶接部の硬さ変化を示したが、本発
明鋼A,Bは溶接部中心から約20朋点に軟化部が認め
られるもののその巾と、軟化の程度は小さく、1た溶接
部中心付近の硬さはHvで約320以上であり、これは
左右の母材レールの硬さ、Hvで約370、と大差なく
、溶接部の組織も連続冷却による微細パーライト組織を
示しており、本発明鋼は溶接部の材質変化が極めて小さ
いことが明らかである。一方、比較鋼Cは母材硬さがH
vで約300であるのに対し、溶性部ではHv4OOを
越える寸でに硬化し、組織にもマルテンサイトが点在し
、極めて硬化、脆化しており、このままで使用した場合
、溶接部に於けるレールの早期折損あるいは道床の噴泥
化を生じていた。この硬化、脆化を除くためには、溶接
後、徐冷する或いは後熱焼戻しを行なう行なう等の処理
が必要で溶接能率を著るしく低下させ、寸たCr量が多
いため接合性が劣り、適正溶接条件の選定が困難であっ
た。一方比較鋼Dは、母材硬さはHvで350であるの
に対し、溶接部ではHv3lO以下で熱処理前の母材硬
さまで軟化し、しかもその巾は約70r111Lできわ
めて広く、熱処理の効果は全く失われている。これは熱
処理時の冷却速度が溶接部の冷却速度にくらべて極めて
早いためである。この軟化部において、局部的なレール
の摩耗、変形が生じ、そのため道床の噴泥化が問題とな
っている。以上述べたように本発明ではレールの高強度
化と溶接による材質特性劣化防止の両面から鋼成分と熱
処理条件とを規定しているので、本発明で製造されるレ
ールは、母材の引張性質については既存の高強度レール
と大差ないものの、溶接部における材質は母材同等であ
って、材質変化は極めて小さい。これは従来鋼が溶接部
において硬化、脆化あるいは軟化を生ずる点に対して本
発明レールが著るしくすぐれている特性である。
Conventional steel C has a C quantity {a little less, but the Ss and Mn contents are A
Although it is equivalent to steel and has a high Cr content of 1.08%, its tensile strength is low at 102 kgAni, and its drawing strength is only the same as steel A and B. Further, despite the small amount of alloy, Steel D has a tensile strength of 123 ky/Mm2, which is equivalent to the steel of the present invention, and a high yield ratio, which is the result of heat treatment called slack quenching. Figure 1 (hardness was measured at 5 points from the crown surface on the center secondary section) shows the change in hardness of the flash butt welds of these rails, and the steels A and B of the present invention Although a softened part is observed at about 20 points from the center, the width and degree of softening is small, and the hardness near the center of the weld is about 320 Hv or more, which is due to the hardness of the left and right base material rails. There is not much difference in Hv, about 370, and the structure of the welded part also shows a fine pearlite structure due to continuous cooling, and it is clear that the material change of the welded part of the steel of the present invention is extremely small. On the other hand, comparative steel C has a base metal hardness of H
V is about 300, whereas the soluble part is hardened to a level exceeding Hv4OO, and the structure is also dotted with martensite, making it extremely hardened and brittle. If used as is, the welded part will be This resulted in early breakage of the rails or the turning of the trackbed into mud. In order to eliminate this hardening and embrittlement, it is necessary to perform slow cooling or post-heat tempering after welding, which significantly reduces welding efficiency and causes poor bonding properties due to the large amount of Cr. , it was difficult to select appropriate welding conditions. On the other hand, for comparison steel D, the base metal hardness is 350 Hv, but in the welded part it softens to the base metal hardness before heat treatment at Hv3lO or less, and the width is extremely wide at about 70r111L, and the effect of heat treatment is Totally lost. This is because the cooling rate during heat treatment is extremely fast compared to the cooling rate of the welded part. In this softened area, local wear and deformation of the rail occurs, resulting in the problem of mud on the trackbed. As described above, in the present invention, the steel composition and heat treatment conditions are specified from the viewpoint of both increasing the strength of the rail and preventing deterioration of material properties due to welding. Although it is not much different from existing high-strength rails, the material at the welded part is the same as the base material, and the change in material quality is extremely small. This is a characteristic that the rail of the present invention is significantly superior to in that conventional steel suffers from hardening, embrittlement, or softening at the welded portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明レールおよび比較レールのフラッシュバ
ット溶接部の硬さ変化を示す図表である。
FIG. 1 is a chart showing changes in hardness of flash butt welded parts of the rail of the present invention and the comparative rail.

Claims (1)

【特許請求の範囲】 1 C:0.55〜0.85%、Si:0.50〜1.
20%、Mn:0.80〜1.50%、Al:0.00
5〜0.05%を含有して残部が鉄および不可避的不純
物からなる鋼をレール圧延したレールの頭部表層部を温
度850℃以上に加熱してオーステナイト化した後気体
もしくは気液体冷却で温度800〜550℃の間を50
〜400秒で冷却し、レール頭部表層部の組織を微細パ
ーライト化し、その引張強さを120kg/mm^2以
上、またレール頭頂部の表面硬さをH_B330以上に
することを特徴とする溶接性低合金熱処理硬頭レールの
製造法。 2 C:0.55〜0.85%、Si:0.50〜1.
20%、Mn:0.50〜1.20%、Al:0.00
5〜0.05%、Cr:0.20〜0.90%、Nb0
.004〜0.010%未満ただしMn+Cr:1.6
0%以下を含有して残部が鉄および不可避的不純物から
なる鋼をレール圧延したレールの頭部表層部を温度85
0℃以上に加熱してオーステナイト化した後気体もしく
は気液体冷却で温度800〜550℃の間を50〜40
0秒で冷却し、レール頭部表層部の組織を微細パーライ
ト化し、その引張強さを120kg/mm^2以上、ま
たレール頭頂部の表面硬さをH_B330以上にするこ
とを特徴とする溶接性低合金熱処理硬頭レールの製造法
[Claims] 1 C: 0.55-0.85%, Si: 0.50-1.
20%, Mn: 0.80-1.50%, Al: 0.00
The head surface layer of a rail made by rail-rolling steel containing 5 to 0.05% and the remainder consisting of iron and unavoidable impurities is heated to a temperature of 850°C or higher to austenite, and then cooled by gas or gas-liquid cooling. 50 between 800 and 550℃
Welding characterized by cooling for ~400 seconds, turning the structure of the surface layer of the rail head into fine pearlite, making its tensile strength 120 kg/mm^2 or more, and the surface hardness of the top of the rail head H_B330 or more. A method for manufacturing low-alloy heat-treated hard-headed rails. 2C: 0.55-0.85%, Si: 0.50-1.
20%, Mn: 0.50-1.20%, Al: 0.00
5-0.05%, Cr: 0.20-0.90%, Nb0
.. 004 to less than 0.010% However, Mn+Cr: 1.6
The head surface layer of a rail made of rail-rolled steel containing 0% or less and the remainder consisting of iron and unavoidable impurities is heated to a temperature of 85%.
After heating to 0°C or higher to austenite, the temperature is 50 to 40°C between 800 and 550°C by gas or gas-liquid cooling.
Weldability characterized by cooling in 0 seconds, turning the structure of the surface layer of the rail head into fine pearlite, making its tensile strength 120 kg/mm^2 or more, and the surface hardness of the top of the rail head H_B330 or more. Manufacturing method for low-alloy heat-treated hard-headed rails.
JP3141879A 1979-03-17 1979-03-17 Manufacturing method of weldable low-alloy heat-treated hard-headed rail Expired JPS5919173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141879A JPS5919173B2 (en) 1979-03-17 1979-03-17 Manufacturing method of weldable low-alloy heat-treated hard-headed rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141879A JPS5919173B2 (en) 1979-03-17 1979-03-17 Manufacturing method of weldable low-alloy heat-treated hard-headed rail

Publications (2)

Publication Number Publication Date
JPS55125231A JPS55125231A (en) 1980-09-26
JPS5919173B2 true JPS5919173B2 (en) 1984-05-02

Family

ID=12330704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141879A Expired JPS5919173B2 (en) 1979-03-17 1979-03-17 Manufacturing method of weldable low-alloy heat-treated hard-headed rail

Country Status (1)

Country Link
JP (1) JPS5919173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612852A1 (en) * 1993-02-26 1994-08-31 Nippon Steel Corporation Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatique resistance
USRE40263E1 (en) 1994-11-15 2008-04-29 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198216A (en) * 1981-05-27 1982-12-04 Nippon Kokan Kk <Nkk> Manufacture of high-strength rail
JPS62127453A (en) * 1985-11-26 1987-06-09 Nippon Kokan Kk <Nkk> High-efficiency rail excellent in toughness and ductility and its production
JPS62278247A (en) * 1986-02-17 1987-12-03 Nippon Kokan Kk <Nkk> High-carbon steel material for hot-pressure welding excellent in property at welded joint
JPH0653916B2 (en) * 1986-07-16 1994-07-20 日本鋼管株式会社 Wear resistant high performance rail with excellent ability to stop unstable fracture propagation
JP2620369B2 (en) * 1989-04-20 1997-06-11 新日本製鐵株式会社 Rails with excellent rolling fatigue resistance
DE4200545A1 (en) * 1992-01-11 1993-07-15 Butzbacher Weichenbau Gmbh TRACK PARTS AND METHOD FOR THE PRODUCTION THEREOF
CN112063826B (en) * 2020-08-28 2022-07-19 攀钢集团攀枝花钢铁研究院有限公司 1300 MPa-level low-alloy heat treatment steel rail postweld heat treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612852A1 (en) * 1993-02-26 1994-08-31 Nippon Steel Corporation Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatique resistance
EP1101828A1 (en) * 1993-02-26 2001-05-23 Nippon Steel Corporation High-strength bainitic steel rails with excellent rolling-contact fatigue resistance
USRE40263E1 (en) 1994-11-15 2008-04-29 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
USRE41033E1 (en) 1994-11-15 2009-12-08 Nippn Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same
USRE42360E1 (en) 1994-11-15 2011-05-17 Nippon Steel Corporation Pearlitic steel rail having excellent wear resistance and method of producing the same

Also Published As

Publication number Publication date
JPS55125231A (en) 1980-09-26

Similar Documents

Publication Publication Date Title
US5382307A (en) Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatigue resistance
CA2222281C (en) Low-alloy heat-treated pearlitic steel rail excellent in wear resistance and weldability and process for producing the same
US4426236A (en) Method for manufacturing high strength rail of excellent weldability
JPS6323244B2 (en)
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JPS5919173B2 (en) Manufacturing method of weldable low-alloy heat-treated hard-headed rail
JPS613842A (en) Manufacture of high strength rail
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP4153650B2 (en) Manufacturing method of high weldability rail
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
RU2450063C2 (en) Intermediate part to connect shaped body from manganous steel with carbon steel, and also method to connect casts from manganous austenite steel with standard rails
JP3522613B2 (en) Bainitic rails with excellent rolling fatigue damage resistance, internal fatigue damage resistance, and welded joint characteristics, and manufacturing methods thereof
JP2002363698A (en) Rail having excellent rolling fatigue damage resistance and wear resistance, and production method therefor
RU2139946C1 (en) Rails from low-alloyed heat-treated perilit steel featuring high wear resistance and weldability and method of their production
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JPH1192867A (en) Low segregation pearlitic rail excellent in wear resistance and weldability and its production
JPH0734132A (en) Production of high-strength and high-toughness bainite rail having excellent surface damage resistance
JP2004162106A (en) Method for producing high carbon steel rail
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPS6256523A (en) Manufacture of high strength rail providing weldability
JPH0143005B2 (en)
JPH02175815A (en) Manufacture of high tensile steel stock for welded construction excellent in toughness
JPH06340951A (en) High strength rail excellent in toughness and its production
JPH11152521A (en) Production of high strength pearlitic rail excellent in wear resistance
JPH10280098A (en) High toughness rail excellent in wear resistance