JPH0453887Y2 - - Google Patents

Info

Publication number
JPH0453887Y2
JPH0453887Y2 JP20125087U JP20125087U JPH0453887Y2 JP H0453887 Y2 JPH0453887 Y2 JP H0453887Y2 JP 20125087 U JP20125087 U JP 20125087U JP 20125087 U JP20125087 U JP 20125087U JP H0453887 Y2 JPH0453887 Y2 JP H0453887Y2
Authority
JP
Japan
Prior art keywords
polishing
tubular member
rotary tool
members
circumferential surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20125087U
Other languages
Japanese (ja)
Other versions
JPH01106150U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20125087U priority Critical patent/JPH0453887Y2/ja
Publication of JPH01106150U publication Critical patent/JPH01106150U/ja
Application granted granted Critical
Publication of JPH0453887Y2 publication Critical patent/JPH0453887Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は回転工具に関するものであり、特に
パイプ等の管状部材の端部近傍における内周面と
外周面とを同時に研磨し得る回転工具に係る。
[Detailed description of the invention] (Field of industrial application) This invention relates to a rotary tool, and particularly to a rotary tool that can simultaneously polish the inner and outer surfaces near the end of a tubular member such as a pipe. It depends.

(従来の技術) パイプを溶接したり、或いはろう付けをする際
には、事前に接合部近傍の内外両周面を研磨し、
酸化被膜等の付着物を除去しておく必要がある
が、従来よりこの種の研磨作業においては、内周
面の研磨作業と外周面の研磨作業とは別々の工具
を用いて別工程として行うのが普通であり、その
作業能率は必ずしも高いものとはいえなかつた。
(Prior art) When welding or brazing pipes, both the inner and outer peripheral surfaces near the joint are polished in advance.
It is necessary to remove deposits such as oxide films, but traditionally in this type of polishing work, polishing the inner peripheral surface and polishing the outer peripheral surface are performed as separate processes using separate tools. This was common, and the work efficiency could not necessarily be said to be high.

そこで例えば実開昭59−78051号公報に、内外
両周面を同時に研磨して作業能率を向上し得る回
転工具が記載されている。その工具においては、
第13図に示すように、軸部120と、この軸部
120の径方向外方に同軸状に配設された円筒部
121とから成る研磨部122を工具先端側に設
けており、上記軸部120と円筒部121とはエ
アモータ等の駆動部によつて同時に回転駆動され
るようになされている。そして上記軸部120外
周面には径方向外方に放射状に延びる複数の内周
面研磨部材123が、また上記円筒部121内周
面には径方向内方に放射状に延びる複数の外周面
研磨部材124がそれぞれ植設されている。これ
らの研磨部材123,124は可撓性を有する板
状体の表面に砥粒を付着させた研磨布でそれぞれ
構成されている。
For example, Japanese Utility Model Application Publication No. 59-78051 describes a rotary tool that can simultaneously polish both the inner and outer circumferential surfaces to improve work efficiency. In that tool,
As shown in FIG. 13, a polishing section 122 consisting of a shaft section 120 and a cylindrical section 121 coaxially disposed radially outward of this shaft section 120 is provided on the tool tip side. The portion 120 and the cylindrical portion 121 are configured to be rotated simultaneously by a driving portion such as an air motor. A plurality of inner circumferential surface polishing members 123 extend radially outward in the radial direction on the outer circumferential surface of the shaft portion 120, and a plurality of outer circumferential surface polishing members 123 extend radially inward in the radial direction on the inner circumferential surface of the cylindrical portion 121. Members 124 are respectively implanted. These polishing members 123 and 124 are each composed of a polishing cloth having abrasive grains attached to the surface of a flexible plate-like body.

上記の回転工具においては、同図中二点鎖線で
断面を示すパイプの端部側を、上記軸部120と
同軸状に上記各研磨部材123,124間に位置
させて、上記軸部120と円筒部121とを回転
駆動することにより、パイプの内周面は上記内周
面側研磨部材123で、また外周面は外周面側研
磨部材124で同時に研磨される。
In the above-mentioned rotary tool, the end side of the pipe whose cross section is shown by the two-dot chain line in the figure is positioned between the polishing members 123 and 124 coaxially with the shaft section 120, and By rotating the cylindrical portion 121, the inner peripheral surface of the pipe is simultaneously polished by the inner peripheral surface side polishing member 123, and the outer peripheral surface is simultaneously polished by the outer peripheral surface side polishing member 124.

(考案が解決しようとする問題点) ところで、上記の回転工具においては、パイプ
の外径寸法、内径寸法等の仕様が変更される場合
に、その変更内容に応じて形状の異なる研磨部1
22に交換する必要がある。つまり上記ではパイ
プ外周面と円筒部121内周面との間、パイプ内
周面と軸部120外周面との間でそれぞれ弾性変
形する可撓性の各研磨部材123,124の弾性
反力が内外両周面における加工力としてそれぞれ
作用する構成であり、そして上記弾性変形量はパ
イプと研磨部122との形状関係で一義的に定ま
る構成となつている。したがつてパイプの仕様が
変更されてそれまでの形状関係が異なるものとな
つた場合には同一の研磨部122では加工力が異
なるものとなる。この結果、適正な加工量や加工
精度が得られなくなるために、予想されるパイプ
の変更仕様範囲に対応させて種々の形状の研磨部
をあらかじめ準備しておく必要があり、作業毎に
適正形状の研磨部の選定やその交換作業等が必要
となるのである。このため充分な作業能率が得ら
れないと共に、加工コストが高くなるという問題
を生じている。
(Problem to be solved by the invention) By the way, in the above rotary tool, when the specifications such as the outer diameter and inner diameter of the pipe are changed, the polishing part 1 has a different shape depending on the change.
I need to replace it with 22. In other words, in the above case, the elastic reaction forces of the flexible polishing members 123 and 124 that are elastically deformed between the outer circumferential surface of the pipe and the inner circumferential surface of the cylindrical portion 121 and between the inner circumferential surface of the pipe and the outer circumferential surface of the shaft portion 120 are This structure acts as a machining force on both the inner and outer circumferential surfaces, and the amount of elastic deformation is uniquely determined by the shape relationship between the pipe and the polishing section 122. Therefore, if the specifications of the pipe are changed and the previous shape relationship becomes different, the machining force will be different for the same polishing part 122. As a result, appropriate machining amount and machining accuracy cannot be obtained, so it is necessary to prepare polishing parts of various shapes in advance to correspond to the range of expected changes in the pipe specifications, and it is necessary to prepare polishing parts of various shapes in advance for each work. Therefore, it is necessary to select the polishing part and replace it. This causes problems in that sufficient working efficiency cannot be obtained and processing costs increase.

この考案は上記に鑑みなされたものであつて、
その目的は、例えばパイプ等の被加工物の仕様が
種々異なる場合にも、同一構成部品で内外両周面
の同時加工を適正に行うことができ、このため作
業性の向上や加工コストの低減をなし得る回転工
具を提供することにある。
This idea was made in view of the above,
The purpose of this is to be able to properly process both the inner and outer circumferential surfaces of the same component at the same time, even when the specifications of the workpiece, such as a pipe, differ, thereby improving workability and reducing processing costs. The purpose of the present invention is to provide a rotary tool that can perform the following functions.

(問題点を解決するための手段) そこでこの考案の回転工具は、管状部材の端部
側における内周面の内方と外周面の外方とにこの
管状部材の軸心と略平行にそれぞれ配設される断
面略円形の外周面を有する2つの研磨部材を設
け、これらの研磨部材を、上記管状部材の内周面
と外周面とにそれぞれ接触させて回転させると共
に、上記管状部材と上記各研磨部材とを上記管状
部材の周面に沿つて相対回転させるべく構成して
成る回転工具であつて、さらに各研磨部材の管状
部材に対する回転移動軌跡の径を互いに独立に変
更し得るように構成していることを特徴としてい
る。
(Means for Solving the Problems) Therefore, the rotary tool of this invention is provided with a rotary tool that is arranged on the inner side of the inner circumferential surface and on the outer side of the outer circumferential surface on the end side of the tubular member, respectively, substantially parallel to the axis of the tubular member. Two polishing members each having an outer peripheral surface with a substantially circular cross section are provided, and these polishing members are brought into contact with the inner peripheral surface and the outer peripheral surface of the tubular member, respectively, and are rotated. The rotary tool is configured to relatively rotate each polishing member along the circumferential surface of the tubular member, and further, the diameter of the rotation locus of each polishing member with respect to the tubular member can be changed independently of each other. It is characterized by being composed of

(作用) 上記の回転工具においては、管状部材の内周面
と外周面との各被加工面に、回転する研磨部材を
それぞれ接触させると共に、これらの研磨部材を
上記各被加工面に沿つてそれぞれ円周方向に相対
移動させることによつて、内外両周面の同時研磨
加工が行われる。このような研磨加工における単
位時間当たりの加工量や加工精度は、各研磨部材
の外径寸法に対して、これらの研磨部材の各軸心
と被加工面との距離を調整することによつて適正
状態にすることが可能である。そして上記におい
ては各軸心と被加工面との距離、すなわち各被加
工面に沿う各研磨部材の移動軌跡の径を、互いに
独立に変更することができるようになされてい
る。したがつて例えば管状部材の外径が異なる場
合には、外周面側の研磨部材の移動軌跡の径を変
えることにより、また同一外径であつてもさらに
肉厚、すなわち内径が異なる場合は、上記外周面
側の研磨部材とは独立に、内周面側の研磨部材の
移動軌跡を変えることによつて、内外両周面の適
正な同時研磨加工を行うことが可能となる。この
ため管状部材の形状や材質等が異なる場合に一つ
の研磨部材の適用範囲が広くなり、この結果、準
備すべき研磨部材の種類数が低減されると共に交
換頻度等も少なくなるので、作業性の向上や加工
コストの低減を図ることができる。なおここで用
いている「研磨」という用語は、研削・研掃等を
含む広い意味を有するものである。
(Function) In the above rotary tool, rotating polishing members are brought into contact with each of the inner and outer peripheral surfaces of the tubular member, and these polishing members are moved along the respective surfaces to be processed. By moving them relative to each other in the circumferential direction, simultaneous polishing of both the inner and outer circumferential surfaces is performed. The amount of processing per unit time and processing accuracy in this type of polishing process are determined by adjusting the distance between the axis of each polishing member and the surface to be machined, relative to the outer diameter of each polishing member. It is possible to bring it into a proper state. In the above arrangement, the distance between each axis and the surface to be processed, that is, the diameter of the movement locus of each polishing member along each surface to be processed, can be changed independently from each other. Therefore, for example, if the outer diameters of the tubular members are different, by changing the diameter of the movement locus of the polishing member on the outer circumferential surface side, and even if the outer diameters are the same, if the wall thicknesses, that is, the inner diameters are different, By changing the locus of movement of the polishing member on the inner peripheral surface side independently of the polishing member on the outer peripheral surface side, it becomes possible to perform proper simultaneous polishing of both the inner and outer peripheral surfaces. For this reason, a single abrasive member can be applied to a wider range of applications when the tubular members have different shapes and materials, and as a result, the number of types of abrasive members that need to be prepared is reduced, and the frequency of replacement is also reduced, which improves work efficiency. It is possible to improve the performance and reduce processing costs. Note that the term "polishing" used here has a wide meaning including grinding, polishing, etc.

(実施例) 次にこの考案の回転工具の具体的な実施例につ
いて、図面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the rotary tool of this invention will be described in detail with reference to the drawings.

第1図〜第12図にはこの考案の一実施例を示
している。まずこの実施例における回転工具の全
体構成を説明すると、この回転工具は、パイプ等
の管状部材1の端部側における内周面と外周面と
を研磨する第1研磨部材2と第2研磨部材3とを
それぞれ自軸まわりに回転、すなわち自転させる
と共に、上記第1及び第2研磨部材2,3をそれ
ぞれ上記管状部材1の内外周面に沿つて円周方向
に公転移動させるための自転・公転移動機構10
7(第1図及び第4図)を備えている。また回転
工具は上記第1及び第2研磨部材2,3の公転移
動軌跡の径を変更するための公転移動軌跡変更機
構108(第7図)を備えている。さらに回転工
具は上記管状部材1を把持し、この回転工具にお
ける第1及び第2研磨部材2,3の軸心を管状部
材1の軸と平行にした状態で回転工具を管状部材
1の端部近傍に取付固定するための把持機構10
9(第1図及び第9図)を備えている。さらに回
転工具は上記自転・公転移動機構107及び把持
機構109を作動するためのエア供給機構110
(第3図)を備えている。
An embodiment of this invention is shown in FIGS. 1 to 12. First, the overall structure of the rotary tool in this embodiment will be explained. This rotary tool consists of a first polishing member 2 and a second polishing member that polish the inner circumferential surface and outer circumferential surface on the end side of a tubular member 1 such as a pipe. 3 about their own axes, that is, rotate, and rotate the first and second polishing members 2 and 3 in the circumferential direction along the inner and outer circumferential surfaces of the tubular member 1, respectively. Revolutionary movement mechanism 10
7 (Figures 1 and 4). Further, the rotary tool is equipped with a revolution trajectory changing mechanism 108 (FIG. 7) for changing the diameter of the revolution trajectory of the first and second polishing members 2 and 3. Further, the rotary tool grips the tubular member 1, and with the axes of the first and second polishing members 2 and 3 in the rotary tool parallel to the axis of the tubular member 1, the rotary tool is moved to the end of the tubular member 1. Gripping mechanism 10 for attaching and fixing in the vicinity
9 (Figures 1 and 9). Further, the rotary tool has an air supply mechanism 110 for operating the rotation/revolution movement mechanism 107 and the gripping mechanism 109.
(Figure 3).

そこでまず上記自転・公転移動機構について、
第1図、第2図及び第4図を基に説明する。第2
図において、5は本体枠であつて、この本体枠5
は左右の板材6,7と、これらの板材6,7にそ
れぞれ各端部を取着した互いに平行に延びる複数
のガイドバー8……とから成る。そして同図に示
すように、本体枠5の内部において右側の板材7
の同図上側位置にはエアモータ9が取着されてい
る。このエアモータ9の出力軸10は右側の板材
7を貫通しており、その先端部には第1歯車11
が設けられている、この第1歯車11は減速機構
12の第2歯車13に噛合している。この減速機
構12は上記第2歯車13と、この第2歯車13
を一端に取着し右側の板材7を本体枠5内方へと
貫通する減速機軸14と、この減速機軸14の他
端に取着した第3歯車15とから成る。そしてこ
の第3歯車15には第4歯車16を噛合させてい
る。この第4歯車16は、第1図に示すように、
筒状の歯車本体17を有し、この歯車本体17を
右側の板材7で軸受にて支持し、回転自在となさ
れている。この歯車本体17には第1回転軸18
が貫挿され、第1回転軸18がスプライン機構に
て第4歯車16と一体的に回転すると共に、第4
歯車16に対し軸方向に移動可能に構成されてい
る。軸方向に移動可能に構成した理由については
後述する。
First of all, regarding the above-mentioned rotation and revolution movement mechanism,
This will be explained based on FIGS. 1, 2, and 4. Second
In the figure, 5 is a main body frame, and this main body frame 5
consists of left and right plates 6, 7, and a plurality of guide bars 8 extending parallel to each other, each end of which is attached to these plates 6, 7. As shown in the figure, inside the main body frame 5, the right side plate 7
An air motor 9 is attached to the upper position in the figure. The output shaft 10 of this air motor 9 passes through the right plate 7, and a first gear 11 is attached to the tip thereof.
The first gear 11 is in mesh with the second gear 13 of the reduction mechanism 12. This speed reduction mechanism 12 includes the second gear 13 and the second gear 13.
It consists of a reducer shaft 14 which is attached to one end and passes through the right side plate 7 to the inside of the main body frame 5, and a third gear 15 which is attached to the other end of this reducer shaft 14. A fourth gear 16 is meshed with the third gear 15. This fourth gear 16, as shown in FIG.
The gear body 17 has a cylindrical shape, and the gear body 17 is supported by a bearing on the right plate 7 so as to be rotatable. This gear body 17 has a first rotating shaft 18.
is penetrated, the first rotation shaft 18 rotates integrally with the fourth gear 16 by the spline mechanism, and the fourth
It is configured to be movable in the axial direction relative to the gear 16. The reason why it is configured to be movable in the axial direction will be described later.

第1回転軸18は、第1図のように、その先端
側(同図左側)が本体枠5内方に突出し、該先端
側には回転枠19の基端側が取着されている。す
なわち回転枠19の基端側には、第4図のよう
に、嵌入孔20が形成され、この嵌入孔20内に
上記第1回転軸18の先端側が嵌入接続されてい
る。そしてこの第1回転軸18と回転枠19とは
回転方向において係合し一体的に回転するような
されている。なお回転枠19の先端側の構成につ
いては後述する。一方上記各ガイドバー8……に
は固定枠21が軸方向に移動可能に嵌合されてお
り、この固定枠21の同図右端中央部に設けた嵌
入孔22に上記回転枠19の基端側が嵌入され、
軸受にて回転枠19を回転自在に支持している。
As shown in FIG. 1, the first rotating shaft 18 has a distal end (left side in the figure) protruding inward of the main body frame 5, and a proximal end of a rotating frame 19 is attached to the distal end. That is, as shown in FIG. 4, a fitting hole 20 is formed on the base end side of the rotating frame 19, and the distal end side of the first rotating shaft 18 is fitted and connected into the fitting hole 20. The first rotating shaft 18 and the rotating frame 19 are engaged in the rotational direction and rotate integrally. Note that the configuration of the distal end side of the rotating frame 19 will be described later. On the other hand, a fixed frame 21 is fitted into each of the guide bars 8 so as to be movable in the axial direction. The side is inset,
The rotating frame 19 is rotatably supported by bearings.

上記回転枠19の先端側は同図左方に開く断面
コの字状をなしており、かつ該先端側の軸心が基
端側の軸心に対し偏心した構成となされている。
そして回転枠19において相対向することとなる
第1及び第2対向部23,24の先端側(同図左
側)には、第4図及び第7図に示すように、この
第1及び第2対向部23,24間において、上記
第1回転軸18と略直交する方向に延びる1対の
支持軸25,25が設けられており、この支持軸
25,25の軸方向2箇所の位置でそれぞれ第1
及び第2研磨部材接続体26,27(以下、接続
体と称す)を上記支持軸25,25の軸方向にお
いて摺動可能に支持している。このように摺動可
能にした理由については後述する。
The distal end of the rotary frame 19 has a U-shaped cross section that opens toward the left in the figure, and the axis of the distal end is eccentric with respect to the axis of the proximal end.
As shown in FIG. 4 and FIG. A pair of support shafts 25, 25 extending in a direction substantially orthogonal to the first rotating shaft 18 is provided between the opposing parts 23, 24, and two positions in the axial direction of the support shafts 25, 25 are provided, respectively. 1st
and second polishing member connecting bodies 26, 27 (hereinafter referred to as connecting bodies) are supported slidably in the axial direction of the support shafts 25, 25. The reason why it is made slidable in this way will be described later.

第1及び第2接続体26,27は、第4図に示
すように、第1及び第2固定部28,29と、こ
の固定部28,29にそれぞれ穿設した貫通孔3
0,31に軸受を介して上記第1回転軸18と平
行に貫挿された第2及び第3回転軸32,33と
から成り、固定部28,29よりも先端側(同図
左側)に突出する第2及び第3回転軸32,33
の各先端部には、第1及び第2研磨部材2,3を
それぞれ接続する第1及び第2接続部34,35
が設けられている。そして第1及び第2接続部3
4,35にそれぞれ接続される第1及び第2研磨
部材2,3は、第1及び第2接続体26,27を
支持軸25上の軸方向の適当な位置に位置保持す
ることによつてそれらの各軸心が第1回転軸18
の軸心に対して偏心するようなされている。この
位置保持の構成については後述する公転移動軌跡
変更機構の構成と共に説明する。なお上記固定部
28,29よりも基端側(同図右側)に突出する
第2及び第3回転軸32,33の基端部にはそれ
ぞれ後述する第5及び第6傘歯車が設けられてい
る。
As shown in FIG. 4, the first and second connecting bodies 26 and 27 have first and second fixing parts 28 and 29, and through holes 3 formed in the fixing parts 28 and 29, respectively.
The second and third rotating shafts 32 and 33 are inserted through the first rotating shaft 18 through bearings 0 and 31 in parallel with the first rotating shaft 18. Protruding second and third rotating shafts 32, 33
First and second connecting portions 34 and 35 for connecting the first and second polishing members 2 and 3, respectively, are provided at the respective tip portions of the
is provided. and the first and second connection parts 3
The first and second abrasive members 2, 3 connected to 4, 35, respectively, are held by holding the first and second connecting bodies 26, 27 at appropriate axial positions on the support shaft 25. Each of those axes is the first rotating shaft 18
It is eccentric to the axis of the The configuration for holding this position will be explained together with the configuration of the revolution trajectory changing mechanism, which will be described later. Incidentally, fifth and sixth bevel gears, which will be described later, are provided at the base end portions of the second and third rotating shafts 32 and 33, which protrude toward the base end side (to the right side in the figure) from the fixed portions 28 and 29, respectively. There is.

一方回転枠19の第2対向部24の外面基端側
には、第4図に示すように、同図下方に開く断面
コの字状の支持枠36が取着されている。この支
持枠36の相対向する第3及び第4対向部37,
38間には第4回転軸39が軸受にて回転自在に
支持されている。この第4回転軸39における上
記第4対向部38を貫通した一端側(同図右側)
には第5歯車40が取着されている。この第5歯
車40は、固定枠21の内周部基端側に設けた内
歯車41と噛合されている。また支持枠36内に
おいて、上記第4回転軸39の外周部の中央やや
同図右側よりの位置には第1傘歯車42が取着さ
れている。この第1傘歯車42は支持枠36内で
第2傘歯車43に噛合され、この第2傘歯車43
は第5回転軸44の一端(同図下側)に取着され
ている。この第5回転軸44はその両端側を回転
枠19の第1及び第2対向部23,24の各基端
側(同図右側)に、上記第1回転軸18と略直交
状態で軸受を介して回転自在に支持されており、
その一端側(同図下側)は支持枠36内に突出し
ている。そして回転枠19内において第5回転軸
44の外周部軸方向2箇所にはそれぞれ第3及び
第4傘歯車45,46が該回転軸44の軸方向に
移動可能に取着されている。これらの第3及び第
4傘歯車45,46はそれぞれ軸受を介して、上
記第1及び第2接続体26,27から基端側へと
それぞれ延びる第1及び第2支持部材47,48
の基端側(同図右側)に回転自在に支持されてい
る。そして上記第3及び第4傘歯車45,46は
それぞれ、第1及び第2接続体26,27を構成
する第2及び第3回転軸32,33の基端部(同
図右側)に取着した第5及び第6傘歯車49,5
0に噛合されている。
On the other hand, as shown in FIG. 4, a support frame 36 having a U-shaped cross section and opening downward in the figure is attached to the base end side of the outer surface of the second facing portion 24 of the rotating frame 19. As shown in FIG. Third and fourth opposing portions 37 of this support frame 36,
A fourth rotation shaft 39 is rotatably supported between the shafts 38 and 38 by a bearing. One end of the fourth rotating shaft 39 passing through the fourth opposing portion 38 (right side in the figure)
A fifth gear 40 is attached to. This fifth gear 40 is meshed with an internal gear 41 provided on the base end side of the inner peripheral portion of the fixed frame 21 . Further, within the support frame 36, a first bevel gear 42 is attached at a position slightly toward the center of the outer circumferential portion of the fourth rotating shaft 39 on the right side in the figure. This first bevel gear 42 meshes with a second bevel gear 43 within the support frame 36, and this second bevel gear 43
is attached to one end of the fifth rotating shaft 44 (lower side in the figure). The fifth rotating shaft 44 has bearings at both ends thereof on the proximal end sides (on the right side in the figure) of the first and second opposing parts 23 and 24 of the rotating frame 19 in a state substantially orthogonal to the first rotating shaft 18. It is rotatably supported through the
One end side (lower side in the figure) protrudes into the support frame 36. Third and fourth bevel gears 45 and 46 are respectively attached to two locations in the axial direction of the outer circumference of the fifth rotating shaft 44 within the rotating frame 19 so as to be movable in the axial direction of the rotating shaft 44 . These third and fourth bevel gears 45 and 46 are connected to first and second support members 47 and 48 that extend from the first and second connecting bodies 26 and 27 toward the proximal end through bearings, respectively.
It is rotatably supported on the proximal end side (right side in the figure). The third and fourth bevel gears 45 and 46 are respectively attached to the base ends (on the right side of the figure) of the second and third rotating shafts 32 and 33 that constitute the first and second connecting bodies 26 and 27. The fifth and sixth bevel gears 49, 5
It is engaged with 0.

上記自転・公転移動機構107においては、エ
アモータ9の出力軸10の回転力が第1歯車1
1、減速機構12、第4歯車16、第1回転軸1
8、回転枠19へと伝達され、回転枠19が回転
駆動される。そして回転枠19においては、上記
第1回転軸18の軸心と偏心する位置で第1及び
第2研磨部材2,3が保持されているので、回転
枠19の回転に伴つて第1及び第2研磨部材2,
3が第1回転軸18の軸心まわりを公転すること
になる。また回転枠19の回転によつて支持枠3
6が回転枠19と一体的に回転することになり、
その結果、第5歯車40が内歯車41に沿つて移
動していく。この移動によつて第5歯車40が自
軸回りで回転し、その回転が第4回転軸39、第
1傘歯車42、第2傘歯車43、第5回転軸44
へと伝達され、この第5回転軸44と共に回転す
る第3及び第4傘歯車45,46の回転がそれぞ
れ第5及び第6傘歯車49,50、第2及び第3
回転軸31,33に伝達され、第1及び第2研磨
部材2,3がそれぞれ自軸まわりで回転、すなわ
ち自転することになるのである。
In the above-mentioned autorotation/revolution movement mechanism 107, the rotational force of the output shaft 10 of the air motor 9 is applied to the first gear 1.
1, reduction mechanism 12, fourth gear 16, first rotating shaft 1
8, the signal is transmitted to the rotating frame 19, and the rotating frame 19 is rotationally driven. In the rotating frame 19, the first and second polishing members 2 and 3 are held at positions eccentric to the axis of the first rotating shaft 18, so that as the rotating frame 19 rotates, the first and second polishing members 2 polishing member 2,
3 revolves around the axis of the first rotating shaft 18. Also, due to the rotation of the rotating frame 19, the supporting frame 3
6 will rotate integrally with the rotating frame 19,
As a result, the fifth gear 40 moves along the internal gear 41. Due to this movement, the fifth gear 40 rotates around its own axis, and the rotation causes the fourth rotation shaft 39, the first bevel gear 42, the second bevel gear 43, and the fifth rotation shaft 44 to rotate.
The rotation of the third and fourth bevel gears 45 and 46, which rotate together with the fifth rotating shaft 44, is transmitted to the fifth and sixth bevel gears 49 and 50, and the second and third bevel gears 45 and 46, respectively.
This is transmitted to the rotating shafts 31 and 33, and the first and second polishing members 2 and 3 rotate about their own axes, that is, rotate on their own axis.

次に公転移動軌跡変更機構108について、第
6図〜第8図を基に説明する。第7図は回転枠1
9の第1及び第2対向部23,24間に延設され
た1対の支持軸25,25で第1及び第2接続体
26,27を支持している状態を示している。同
図において、上記第2対向部24の両側にはばね
掛用の第1及び第2ボルト51,52がそれぞれ
取着されており、これらの第1及び第2ボルト5
1,52の同図上方位置において第1及び第2接
続体26,27にもそれぞればね掛用の第3及び
第4ボルト53,54が取着されている。そして
第1及び第3ボルト51,53には第1ばね55
の両端がそれぞれ、また第2及び第4ボルト5
2,54には第2ばね56の両端がそれぞれ取着
されており、第1及び第2ばね55,56のばね
力にて第1及び第2接続体26,27をそれぞれ
第2対向部24側に付勢している。また第2対向
部24にはその反対向側(同図下側)より第1及
び第2調整ねじ57,58が螺入されており、各
調整ねじ57,58の先端側が第1対向部23と
第2対向部24との間に突出するようなされてい
る。そして第1調整ねじ57の先端部は第1支持
部材47に、また第2調整ねじ58の先端部は第
2支持部材48に当接し、これによつて第1及び
第2ばね55,56によつて第2対向部24側に
付勢されている第1及び第2接続体26,27を
その付勢力に抗してそれぞれ支持するようなされ
ている。すなわち上記公転移動軌跡変更機構10
8においては、第1及び第2調整ねじ57,58
をそれぞれ調整することによつて第1及び第2接
続体26,27がそれぞれ支持軸25,25上を
軸方向に移動することになり、これによつて、第
1及び第2研磨部材2,3の上記第1回転軸18
の軸心に対する偏心位置がそれぞれ変更され、そ
の結果、第1及び第2研磨部材2,3のそれぞれ
の公転移動軌跡の径が独立して変更されることに
なるのである。なお第1及び第2接続体26,2
7が支持軸25,25上を移動する際には、第4
図に示すように、第1及び第2支持部材47,4
8を介して第3及び第4傘歯車45,46も第5
回転軸44上を移動することになる。
Next, the revolution movement trajectory changing mechanism 108 will be explained based on FIGS. 6 to 8. Figure 7 shows rotating frame 1
9, the first and second connecting bodies 26, 27 are supported by a pair of support shafts 25, 25 extending between the first and second opposing parts 23, 24 of FIG. In the figure, first and second bolts 51 and 52 for spring hooking are respectively attached to both sides of the second facing portion 24, and these first and second bolts 5
1 and 52, third and fourth bolts 53 and 54 for spring hooking are also attached to the first and second connecting bodies 26 and 27, respectively. A first spring 55 is attached to the first and third bolts 51 and 53.
and the second and fourth bolts 5 respectively.
2 and 54 are respectively attached to both ends of a second spring 56, and the spring force of the first and second springs 55 and 56 causes the first and second connecting bodies 26 and 27 to be connected to the second opposing portion 24, respectively. It is biased towards the side. Further, first and second adjusting screws 57 and 58 are screwed into the second facing part 24 from the opposite side (lower side in the figure), and the tips of each adjusting screw 57 and 58 are connected to the first facing part 24. and the second facing portion 24 . The tip of the first adjusting screw 57 comes into contact with the first support member 47, and the tip of the second adjusting screw 58 comes into contact with the second support member 48, thereby making contact with the first and second springs 55, 56. Therefore, the first and second connecting bodies 26 and 27, which are biased toward the second facing portion 24, are supported, respectively, against the biasing force. That is, the above-mentioned revolution movement trajectory changing mechanism 10
8, the first and second adjustment screws 57, 58
By adjusting these, the first and second connecting bodies 26 and 27 move in the axial direction on the support shafts 25 and 25, respectively, thereby causing the first and second polishing members 2, 3, the first rotating shaft 18
The eccentric positions with respect to the axes of the polishing members 2 and 3 are respectively changed, and as a result, the diameters of the respective orbits of revolution of the first and second polishing members 2 and 3 are changed independently. Note that the first and second connecting bodies 26, 2
7 moves on the support shafts 25, 25, the fourth
As shown in the figure, the first and second support members 47, 4
8, the third and fourth bevel gears 45, 46 also connect to the fifth bevel gear 45, 46.
It will move on the rotating shaft 44.

次に把持機構109を、第1図、第9図及び第
10図を基に説明する。第1図のように、本体枠
5を構成する左側の板材6には、上記回転枠19
の取着された第1回転軸18と略同軸上を左方向
に延びるケーシングとしての外筒60が取着され
ている。第9図に示すように、この外筒60内部
の軸方向の2箇所にはそれぞれ第1及び第2環状
スペーサ61,62によつて、第1及び第2内筒
部63,64が上記外筒60と同軸上に配置さ
れ、第1内筒部63と外筒60との間、及び第2
内筒部64と外筒60との間にそれぞれ、第1及
び第2環状ピストン室65,66を形成してい
る。これらの第1及び第2環状ピストン室65,
66にはそれぞれ、第1及び第2環状ピストン6
7,68が軸方向摺動自在に配置され、第1環状
ピストン67よりも同図左側の第1環状ピストン
室65に第1圧力室69を、右側に第2圧力室7
0をそれぞれ形成する一方、第2環状ピストン6
8よりも同図右側の第2環状ピストン室66に第
3圧力室71を、左側に第4圧力室72をそれぞ
れ形成している。そして、第1及び第2環状ピス
トン67,68間には、同図において上下1対の
第1及び第2クランプ爪73,74が円周状に配
設されている。ところで上記第1及び第2環状ピ
ストン67,68の相対面する側の端面にはそれ
ぞれ第1及び第2環状押圧部76,77が軸方向
に延設されると共に、これらの第1及び第2環状
押圧部76,77の先端側内周面を先端側に向け
て拡径する第1及び第2テーパ面78,79とし
て構成している。一方上記第1及び第2クランプ
爪73,74の軸方向両端側の内周面はそれぞれ
管状部材1の外周面に略沿う第1及び第2把持面
80,81として形成されると共に、その外周面
は上記第1及び第2テーパ面78,79とテーパ
嵌合する第3及び第4テーパ面82,83として
形成されている。なおクランプ爪73,74の各
内周側中央位置には環状に溝84が形成され、こ
の溝84にリング85を内設し、このリング85
にてクランプ爪73,74を外筒60の内周面側
に付勢するようになされている。すなわち上記把
持機構109においては、第1及び第3圧力室6
9,71内にエア圧を作用させると第1及び第2
環状ピストン67,68が相互に接近する方向に
移動することになる。このとき各ピストン67,
68の第1及び第2環状押圧部76,77の先端
側がそれぞれクランプ爪73,74の中央部に向
けて移動し、これによつて上記押圧部76,77
の各第1及び第2テーパ部78,79がそれぞれ
クランプ爪73,74の各第3及び第4テーパ面
82,83とテーパ嵌合し、クランプ爪73,7
4の各端部側を径方向内方に押圧し、第1及び第
2把持面80,81にて管状部材1の外周面を把
持するのである。
Next, the gripping mechanism 109 will be explained based on FIGS. 1, 9, and 10. As shown in FIG.
An outer cylinder 60 is attached as a casing that extends leftward substantially coaxially with the first rotating shaft 18 to which the outer cylinder 60 is attached. As shown in FIG. 9, first and second annular spacers 61 and 62 are provided at two locations in the axial direction inside this outer cylinder 60, so that first and second inner cylinder parts 63 and 64 are connected to the outside of the outer cylinder 60. It is arranged coaxially with the cylinder 60, and between the first inner cylinder part 63 and the outer cylinder 60, and the second
First and second annular piston chambers 65 and 66 are formed between the inner cylinder portion 64 and the outer cylinder 60, respectively. These first and second annular piston chambers 65,
66 respectively include first and second annular pistons 6
7 and 68 are disposed so as to be freely slidable in the axial direction, and a first pressure chamber 69 is provided in the first annular piston chamber 65 on the left side of the first annular piston 67 in the figure, and a second pressure chamber 7 is provided on the right side of the first annular piston 67.
0 respectively, while the second annular piston 6
A third pressure chamber 71 is formed in the second annular piston chamber 66 on the right side of FIG. 8, and a fourth pressure chamber 72 is formed on the left side. Further, between the first and second annular pistons 67 and 68, a pair of upper and lower first and second clamp claws 73 and 74 are disposed circumferentially in the figure. Incidentally, first and second annular pressing portions 76 and 77 are respectively provided on the end surfaces of the first and second annular pistons 67 and 68 that extend in the axial direction. The inner circumferential surfaces on the distal end side of the annular pressing portions 76 and 77 are configured as first and second tapered surfaces 78 and 79 whose diameter increases toward the distal end side. On the other hand, the inner circumferential surfaces of the first and second clamp claws 73 and 74 at both ends in the axial direction are respectively formed as first and second gripping surfaces 80 and 81 that substantially follow the outer circumferential surface of the tubular member 1. The surfaces are formed as third and fourth tapered surfaces 82 and 83 that taper fit into the first and second tapered surfaces 78 and 79, respectively. Note that an annular groove 84 is formed at the center position on the inner circumferential side of each of the clamp claws 73 and 74, and a ring 85 is disposed inside this groove 84.
The clamp claws 73 and 74 are urged toward the inner circumferential surface of the outer cylinder 60. That is, in the gripping mechanism 109, the first and third pressure chambers 6
When air pressure is applied inside 9 and 71, the first and second
The annular pistons 67 and 68 will move toward each other. At this time, each piston 67,
The tip sides of the first and second annular pressing parts 76 and 77 of 68 move toward the center of the clamp claws 73 and 74, respectively, and thereby the pressing parts 76 and 77
The first and second tapered portions 78 and 79 of the clamping claws 73 and 74 taper-fit with the third and fourth tapered surfaces 82 and 83 of the clamping claws 73 and 74, respectively.
4 is pressed inward in the radial direction, and the outer peripheral surface of the tubular member 1 is gripped by the first and second gripping surfaces 80 and 81.

次にエア供給機構110について、第3図を基
に説明する。同図において、87はエアホースで
あつて、このエアホース87の一端は図示せぬエ
ア源に、そして他端は、第1〜第3ポート88,
89,90を有する切換弁91の第1ポート88
に接続されている。この切換弁91は第1ポート
88と第2ポート89、及び第1ポート88と第
3ポート90とをレバー92にて切換可能に構成
されたものである。この切換弁91の第2ポート
89には第1管93が、また第3ポート90には
第2管94がそれぞれ接続されている。上記第1
管93は途中で分岐され、その第1分岐管95に
はレバー96にて開閉可能な開閉弁97が介設さ
れ、その先端はエアモータ9(第2図参照)に接
続されている。また第3図に示すように、第1管
93の第2分岐管98はさらに分岐されてその第
3分岐管99は上記把持機構109における第1
圧力室69(第9図参照)に、またその第4分岐
管100は第3圧力室71にそれぞれ接続されて
いる。また第3図のように、上記第2管94も分
岐され、その第5分岐管101は第2圧力室70
(第9図参照)に、その第6分岐管102は第4
圧力室72にそれぞれ接続されている。なお上記
切換弁91は第3図のように、本体枠5に取着し
た取付部材103に取着されている。上記エア供
給機構110においては、開閉弁97を閉弁し、
切換弁91を第1ポート88と第3ポート90と
が連通する切換位置(第1切換位置)にすること
によつて、エアが第2管94から第5及び第6分
岐管101,102を介して把持機構の第2及び
第4圧力室70,72に導入され、第1及び第2
環状ピストン67,68を相互に離れる方向に移
動させることになる(把持解除状態)。またこの
状態で切換弁91を第1ポート88と第2ポート
89とが連通する切換位置(第2切換位置)にす
ることによつて、エアが第1管93、第2分岐管
98から第3及び第4分岐管99,100を介し
て把持機構109の第1及び第3圧力室69,7
1に導入され、第1及び第2環状ピストン67,
68を相互に接近する方向に移動させることにな
る(把持状態)。さらにこの状態で開閉弁97を
開弁すると、エアは第1分岐管95を介してエア
モータ9に供給され、エアモータ9を駆動するこ
とになるのである。
Next, the air supply mechanism 110 will be explained based on FIG. 3. In the figure, 87 is an air hose, one end of which is connected to an air source (not shown), and the other end is connected to the first to third ports 88,
First port 88 of switching valve 91 with 89, 90
It is connected to the. This switching valve 91 is configured to be able to switch between a first port 88 and a second port 89, and between a first port 88 and a third port 90 using a lever 92. A first pipe 93 is connected to the second port 89 of the switching valve 91, and a second pipe 94 is connected to the third port 90. 1st above
The pipe 93 is branched in the middle, and a first branch pipe 95 is provided with an on-off valve 97 that can be opened and closed by a lever 96, and its tip is connected to the air motor 9 (see FIG. 2). As shown in FIG. 3, the second branch pipe 98 of the first pipe 93 is further branched, and the third branch pipe 99 is the first branch pipe 99 in the gripping mechanism
The pressure chamber 69 (see FIG. 9) and its fourth branch pipe 100 are connected to a third pressure chamber 71, respectively. Further, as shown in FIG. 3, the second pipe 94 is also branched, and the fifth branch pipe 101 is connected to the second pressure chamber 70.
(See FIG. 9), the sixth branch pipe 102 is connected to the fourth branch pipe 102.
The pressure chambers 72 are connected to each other. The switching valve 91 is attached to a mounting member 103 attached to the main body frame 5, as shown in FIG. In the air supply mechanism 110, the on-off valve 97 is closed,
By setting the switching valve 91 to the switching position where the first port 88 and the third port 90 communicate with each other (first switching position), air flows from the second pipe 94 to the fifth and sixth branch pipes 101 and 102. is introduced into the second and fourth pressure chambers 70, 72 of the gripping mechanism through the first and second pressure chambers 70, 72 of the gripping mechanism.
This causes the annular pistons 67 and 68 to move away from each other (grip release state). Also, in this state, by setting the switching valve 91 to the switching position (second switching position) where the first port 88 and the second port 89 communicate with each other, air is transferred from the first pipe 93 and the second branch pipe 98 to the switching position. The first and third pressure chambers 69 and 7 of the gripping mechanism 109 are connected to each other through the third and fourth branch pipes 99 and 100.
1, the first and second annular pistons 67,
68 in the direction of approaching each other (grasped state). Furthermore, when the on-off valve 97 is opened in this state, air is supplied to the air motor 9 via the first branch pipe 95, and the air motor 9 is driven.

なお上記構成の回転工具においては、さらに第
1及び第2研磨部材2,3を軸方向に移動させ、
管状部材1の端部側への突出量を調節するための
突出機構111が設けられている。すなわち第1
1図及び第12図に示すように、本体枠5の上記
取付部材103にはスリツト104が穿設されて
おり、このスリツト104を通してハンドルレバ
ー105が本体枠5内に延設されている。そして
取付部材103の内面(第12図下面)には上記
スリツト104の近傍の位置にピボツト106が
設けられており、このピボツト106にて上記ハ
ンドルレバー105を回動可能に軸支している。
このハンドルレバー105の先端側(第11図下
側)は固定枠21に連結されており、これによつ
てハンドルレバー105を回転操作することによ
つて固定枠21をガイドバー8……に沿つて移動
させ、研磨部材2,3を先端側又は基端側へと移
動させるようなされているのである。なおこのと
き第1回転軸18は歯車本体17に対し軸方向に
移動することになる。また把持機構109におけ
る外筒60の基端部近傍には覗き穴(図示せず)
が形成されており、研磨部材2,3による管状部
材1の仕上具合等を外部から観察することができ
るようなされている。
Note that in the rotary tool having the above configuration, the first and second polishing members 2 and 3 are further moved in the axial direction,
A protrusion mechanism 111 is provided for adjusting the amount of protrusion of the tubular member 1 toward the end. That is, the first
As shown in FIGS. 1 and 12, a slit 104 is formed in the mounting member 103 of the main body frame 5, and a handle lever 105 extends into the main body frame 5 through the slit 104. A pivot 106 is provided on the inner surface (lower surface in FIG. 12) of the mounting member 103 at a position near the slit 104, and the handle lever 105 is rotatably supported by the pivot 106.
The tip side (lower side in FIG. 11) of the handle lever 105 is connected to the fixed frame 21, so that by rotating the handle lever 105, the fixed frame 21 is moved along the guide bar 8... The polishing members 2 and 3 are moved toward the distal end or the proximal end. Note that at this time, the first rotating shaft 18 moves in the axial direction with respect to the gear body 17. In addition, a peep hole (not shown) is provided near the base end of the outer cylinder 60 in the gripping mechanism 109.
is formed so that the finishing of the tubular member 1 by the polishing members 2 and 3 can be observed from the outside.

次に上記構成の回転工具の作動状態について説
明する。
Next, the operating state of the rotary tool having the above configuration will be explained.

まず研磨加工すべき管状部材1の端部側に回転
工具の把持機構109を構成する外筒60を外嵌
し、管状部材1の外周面にクランプ爪73,74
の各第1及び第2把持面80,81が位置するよ
うにする。そしてレバー92にて切換弁91を第
2切換位置に切換え、エアを第1及び第3圧力室
69,71に導入し、第1及び第2環状ピストン
67,68の相互接近による第1及び第2テーパ
面78,79の第3及び第4テーパ面82,83
とのテーパ嵌合にてクランプ爪73,74の各端
部側の第1及び第2把持面80,81にて管状部
材1の外周面の軸方向2箇所を押圧把持する。こ
れによつて回転工具は管状部材1の端部側に、第
1及び第2研磨部材2,3の軸心を管状部材1の
軸心と平行にした状態で、取付、設置されること
になる。次に上記した覗き穴から第1及び第2研
磨部材2,3、環状部材1の端部側を観察しなが
ら第1及び第2調整ねじ57,58、ハンドルレ
バー105を操作する。すなわち第1調整ねじ5
7を操作することによつて管状部材1の外周径に
応じて第1研磨部材2の第1回転軸18に対する
偏心量を調整すると共に、第2調整ねじ58を操
作することによつて管状部材1の内周径に応じて
第2研磨部材3の第1回転軸18に対する偏心量
を調整するのである。そしてハンドルレバー10
5の操作は、上記偏心量を調整する際に、固定枠
21を先端側へと移動することによつて管状部材
1の端部近傍に位置させ、第1及び第2調整ねじ
57,58による上記偏心量の調整を目視にて行
うと共に、偏心量の調整終了後に、さらに第1及
び第2研磨部材2,3を先端側へと移動させ、該
研磨部材2,3の周側部が管状部材1の端部側の
内周面及び外周面にそれぞれ接触するようにする
ためのものである。なお同一寸法の管状部材1…
…を複数連続的に研磨加工する場合には、一度第
1及び第2調整ねじ57,58を操作して偏心量
を所定量に調整しておけば、後はこの調整は行わ
なくてもよく、したがつてハンドルレバー105
の操作だけを行うようにすることも可能である。
次に開閉弁97を開弁し、エアをエアモータ9に
供給しエアモータ9を駆動することによつて、上
記したように、第1及び第2研磨部材2,3を自
転させると共に管状部材1の外周面及び内周面に
沿つてそれぞれ公転させるのである。これによつ
て管状部材1の端部側の内外周面が研磨加工され
ていくことになる。そして上記覗き穴から加工の
仕上具合を観察し、適当な仕上具合となつたとこ
ろで開閉弁97を閉弁し、エアモータ9の駆動を
停止すると共に、ハンドルレバー105の操作を
解除し、各研磨部材2,3を元の状態に復帰させ
る。そして切換弁91を第1切換位置に切換え、
エアを第2及び第4圧力室70,72に導入し、
第1及び第2環状ピストン67,68の相互離反
移動によるテーパ嵌合の解除にてクランプ爪7
3,74による管状部材1の把持を解除し、回転
工具を管状部材1から取外すのである。
First, the outer cylinder 60 constituting the gripping mechanism 109 of the rotary tool is fitted onto the end side of the tubular member 1 to be polished, and the clamp claws 73 and 74 are attached to the outer peripheral surface of the tubular member 1.
so that each of the first and second gripping surfaces 80, 81 is positioned. Then, the switching valve 91 is switched to the second switching position using the lever 92, air is introduced into the first and third pressure chambers 69, 71, and the first and second annular pistons 67, 68 are brought closer to each other. The third and fourth tapered surfaces 82 and 83 of the two tapered surfaces 78 and 79
With the taper fitting, the first and second gripping surfaces 80 and 81 on each end side of the clamp claws 73 and 74 press and grip two locations on the outer circumferential surface of the tubular member 1 in the axial direction. As a result, the rotary tool is attached and installed on the end side of the tubular member 1 with the axes of the first and second polishing members 2 and 3 parallel to the axis of the tubular member 1. Become. Next, the first and second adjusting screws 57 and 58 and the handle lever 105 are operated while observing the first and second polishing members 2 and 3 and the end sides of the annular member 1 through the above-mentioned peephole. That is, the first adjustment screw 5
7 to adjust the amount of eccentricity of the first polishing member 2 with respect to the first rotating shaft 18 according to the outer circumferential diameter of the tubular member 1, and by operating the second adjustment screw 58 to The amount of eccentricity of the second polishing member 3 with respect to the first rotating shaft 18 is adjusted according to the inner circumferential diameter of the second polishing member 3 . and handle lever 10
In the operation 5, when adjusting the amount of eccentricity, the fixed frame 21 is moved to the distal end side to be located near the end of the tubular member 1, and the first and second adjustment screws 57, 58 are adjusted. The eccentricity is adjusted visually, and after the adjustment of the eccentricity is completed, the first and second polishing members 2, 3 are further moved toward the distal end, so that the peripheral side portions of the polishing members 2, 3 are shaped like a tube. This is for making contact with the inner circumferential surface and outer circumferential surface of the end portion of the member 1, respectively. Note that the tubular member 1 with the same dimensions...
When polishing multiple pieces in succession, once the eccentricity is adjusted to a predetermined amount by operating the first and second adjusting screws 57 and 58, this adjustment is not necessary afterwards. , therefore the handle lever 105
It is also possible to perform only these operations.
Next, by opening the on-off valve 97 and supplying air to the air motor 9 to drive the air motor 9, the first and second polishing members 2 and 3 are rotated and the tubular member 1 is rotated as described above. It revolves along the outer circumferential surface and the inner circumferential surface, respectively. As a result, the inner and outer peripheral surfaces of the end portion of the tubular member 1 are polished. Then, the finish condition of the machining is observed through the peep hole, and when the finish condition is appropriate, the on-off valve 97 is closed, the drive of the air motor 9 is stopped, and the operation of the handle lever 105 is released, and each polishing member is 2 and 3 are returned to their original states. Then, switch the switching valve 91 to the first switching position,
Introducing air into the second and fourth pressure chambers 70, 72,
The clamp claw 7 is released by releasing the taper fitting due to mutual separation movement of the first and second annular pistons 67 and 68.
3 and 74 are released, and the rotary tool is removed from the tubular member 1.

以上のように上記実施例においては、管状部材
1の端部側内外両周面においてそれぞれ第1及び
第2研磨部材2,3が自転すると共に公転するよ
う回転駆動されるので、管状部材1の両周面にお
ける各接触加工領域での管状部材1との相対摺動
速度を、それぞれ従来の回転工具における自転速
度のみの場合よりも大きく与えるように構成する
ことが可能である。この結果、単位時間当たりの
加工量をより大きくすることや加工精度を向上さ
せることが可能となつて、従来よりも能率的な研
磨作業を行うことができる。
As described above, in the above embodiment, the first and second polishing members 2 and 3 are rotationally driven to rotate and revolve on both the inner and outer peripheral surfaces of the end side of the tubular member 1. It is possible to provide a structure in which the relative sliding speed with respect to the tubular member 1 in each contact processing region on both peripheral surfaces is given larger than in the case of only the rotation speed in a conventional rotary tool. As a result, it becomes possible to increase the amount of processing per unit time and improve the processing accuracy, making it possible to perform polishing work more efficiently than before.

また上記実施例においては、第1及び第2研磨
部材2,3の公転移動軌跡の径を、それぞれ第1
及び第2調整ねじ57,58を操作することによ
つて、互いに独立に変更することができるように
なされているので、例えば管状部材1の外径、或
いは内径等の仕様の変更の場合にも、上記各公転
移動軌跡を変えることによつて、内外両周面の適
正な同時研磨加工を行うことが可能であり、この
ため同一の第1及び第2研磨部材2,3の適用範
囲が広く、準備すべき研磨部材の種類数が減少さ
れると共に交換頻度も少なくなるので、作業性の
向上や加工コストの低減を図ることが可能であ
る。
Further, in the above embodiment, the diameters of the orbits of the first and second polishing members 2 and 3 are set to the first
By operating the second adjustment screws 57 and 58, they can be changed independently of each other, so that even when changing the specifications such as the outer diameter or inner diameter of the tubular member 1, for example, By changing each of the above-mentioned orbital movement trajectories, it is possible to perform proper simultaneous polishing of both the inner and outer circumferential surfaces, and therefore, the application range of the same first and second polishing members 2 and 3 is wide. Since the number of types of polishing members to be prepared is reduced and the frequency of replacement is also reduced, it is possible to improve workability and reduce processing costs.

また上記実施例においては、円周状に配設した
第1及び第2クランプ爪73,74の軸方向両端
側、すなわち軸方向の2箇所でそれぞれ管状部材
1の端部側外周面を把持する構成をとつており、
そのため回転工具の管状部材1に対する確実な固
定が可能である。しかもこのような軸方向2箇所
で把持するための把持部材を互いに独立して設け
るのではなく、一体的に形成されているクランプ
爪73,74を共用する構成となされているので
部品点数が少なくなり、構成が簡素になると共
に、軸方向長さを短縮することが可能である。
Further, in the above embodiment, the outer circumferential surface of the end side of the tubular member 1 is gripped at both axial end sides of the first and second clamp claws 73 and 74 arranged circumferentially, that is, at two locations in the axial direction. It has a structure,
Therefore, the rotary tool can be securely fixed to the tubular member 1. Furthermore, the number of parts is reduced because the clamping members 73 and 74, which are integrally formed, are shared, instead of providing gripping members for gripping at two locations in the axial direction independently of each other. Therefore, the configuration becomes simple and the axial length can be shortened.

なお上記では管状部材1を固定する実施例を示
したが、管状部材1を回転させるようにしてもよ
い。
In addition, although the embodiment in which the tubular member 1 is fixed has been shown above, the tubular member 1 may be rotated.

(考案の効果) 上記のようにこの考案の回転工具においては、
管状部材の内周面と外周面とにそれぞれ接触して
回転と共に相対回転することにより、両面の研磨
をする研磨部材の各移動軌跡の径を、互いに独立
に変更することができるようになされているの
で、例えば管状部材の外径、或いは内径等の仕様
の変更の場合にも、上記各移動軌跡を変えること
によつて、内外両周面の適正な同時研磨加工を行
うことが可能であり、このため同一の研磨部材の
適用範囲が広く、準備すべき研磨部材の種類数が
低減されると共に交換頻度等も少なくなるので、
作業性の向上や加工コストの低減を図ることが可
能となる。
(Effect of the invention) As mentioned above, in the rotating tool of this invention,
By contacting the inner circumferential surface and the outer circumferential surface of the tubular member and rotating them relative to each other, the diameter of each movement locus of the polishing member for polishing both sides can be changed independently from each other. Therefore, even when changing the specifications such as the outer diameter or inner diameter of a tubular member, by changing the above-mentioned movement trajectories, it is possible to perform appropriate simultaneous polishing of both the inner and outer circumferential surfaces. Therefore, the same polishing member can be applied in a wide range of applications, the number of types of polishing members to be prepared is reduced, and the frequency of replacement is also reduced.
It becomes possible to improve workability and reduce processing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の回転工具の一実施例の全体
構成を示す縦断面図、第2図は上記回転工具の部
分断面側面図、第3図はエア供給機構を示す回転
工具の側面図、第4図は第1図における自転・公
転移動機構を拡大して示す回転工具の要部断面
図、第5図は第1図の−線矢視図、第6図は
第1図の−線矢視図、第7図は第1図の−
線矢視図、第8図は第7図の−線断面図、
第9図は第1図における把持機構を拡大して示す
回転工具の要部拡大断面図、第10図は第9図に
おける把持機構の横断面図、第11図は突出機構
を示す部分断面図、第12図は突出機構における
ハンドルレバーの作動状態の説明図、第13図は
従来の回転工具の横断面図である。 1……管状部材、2……第1研磨部材、3……
第2研磨部材、108……移動軌跡変更機構。
FIG. 1 is a longitudinal sectional view showing the overall configuration of an embodiment of the rotary tool of this invention, FIG. 2 is a partially sectional side view of the rotary tool, and FIG. 3 is a side view of the rotary tool showing an air supply mechanism. Fig. 4 is a cross-sectional view of the main parts of the rotary tool showing an enlarged view of the rotation and revolution movement mechanism in Fig. 1, Fig. 5 is a view taken along the - line in Fig. 1, and Fig. 6 is a view taken along the - line in Fig. 1. The arrow view, Figure 7 is - of Figure 1.
Fig. 8 is a cross-sectional view taken along the - line in Fig. 7;
FIG. 9 is an enlarged cross-sectional view of the main parts of the rotary tool showing the gripping mechanism in FIG. 1, FIG. 10 is a cross-sectional view of the gripping mechanism in FIG. 9, and FIG. 11 is a partial cross-sectional view showing the ejection mechanism. , FIG. 12 is an explanatory view of the operating state of the handle lever in the ejection mechanism, and FIG. 13 is a cross-sectional view of a conventional rotary tool. 1... Tubular member, 2... First polishing member, 3...
Second polishing member, 108...Movement trajectory changing mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 管状部材の端部側における内周面の内方と外周
面の外方とにこの管状部材の軸心と略平行にそれ
ぞれ配設される断面略円形の外周面を有する2つ
の研磨部材を設け、これらの研磨部材を、上記管
状部材の内周面と外周面とにそれぞれ接触させて
回転させると共に、上記管状部材と上記各研磨部
材とを上記管状部材の周面に沿つて相対回転させ
るべく構成して成る回転工具であつて、さらに各
研磨部材の管状部材に対する回転移動軌跡の径を
互いに独立に変更し得るように構成していること
を特徴とする回転工具。
Two polishing members each having an outer circumferential surface with a substantially circular cross section are disposed on the inner side of the inner circumferential surface and on the outer side of the outer circumferential surface on the end side of the tubular member, respectively, and are disposed substantially parallel to the axis of the tubular member. , these polishing members are brought into contact with and rotated on the inner peripheral surface and the outer peripheral surface of the tubular member, respectively, and the tubular member and each of the polishing members are relatively rotated along the peripheral surface of the tubular member. What is claimed is: 1. A rotary tool comprising: a rotary tool comprising: a rotary tool; further comprising: a rotary tool configured such that the radius of a rotational locus of each polishing member relative to the tubular member can be changed independently of each other;
JP20125087U 1987-12-29 1987-12-29 Expired JPH0453887Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20125087U JPH0453887Y2 (en) 1987-12-29 1987-12-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20125087U JPH0453887Y2 (en) 1987-12-29 1987-12-29

Publications (2)

Publication Number Publication Date
JPH01106150U JPH01106150U (en) 1989-07-17
JPH0453887Y2 true JPH0453887Y2 (en) 1992-12-17

Family

ID=31491620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20125087U Expired JPH0453887Y2 (en) 1987-12-29 1987-12-29

Country Status (1)

Country Link
JP (1) JPH0453887Y2 (en)

Also Published As

Publication number Publication date
JPH01106150U (en) 1989-07-17

Similar Documents

Publication Publication Date Title
WO2004024376A2 (en) A device for fixation of a portable drilling or milling machine on a hole template.
JP2002200544A (en) Machine for polishing internal and external face of pipe
JP2020075348A (en) Gear manufacturing device and manufacturing method for toothed workpiece
EP1635975B1 (en) Orbital machining apparatus with drive element with drive pins
KR100453253B1 (en) Grinding machine spindle
JPH0453887Y2 (en)
US3423098A (en) Ball chuck with roll-back bearing
JPH0524436Y2 (en)
JP4140687B2 (en) Crankpin lathe
JPH0453888Y2 (en)
US4471521A (en) Rotary head for machining and simultaneously polishing the peripheral surface of shafts or the like
JPH0536581Y2 (en)
JP3265201B2 (en) Crank pin phase indexing device and phase indexing method
JPH10337601A (en) Machine tool for working tubular material to be worked
WO2023175981A1 (en) Machine tool equipped with workpiece changer, and machining system
JPH1080852A (en) Groove working tool for machine tool
RU2215634C2 (en) Method and apparatus for working annular surfaces
JPS6212487Y2 (en)
JP3212995B2 (en) Pipe end milling device with improved torque opposition and clamping capability
JPS62166935A (en) Support device for rotary tool
JPH0761565B2 (en) Turn broach machine tool unit
JP4316354B2 (en) Spindle unit
JPS61260969A (en) Combined processing device
JPS61252001A (en) Spherical surface machining device
JPH0318081Y2 (en)