JPH0453839B2 - - Google Patents

Info

Publication number
JPH0453839B2
JPH0453839B2 JP62137985A JP13798587A JPH0453839B2 JP H0453839 B2 JPH0453839 B2 JP H0453839B2 JP 62137985 A JP62137985 A JP 62137985A JP 13798587 A JP13798587 A JP 13798587A JP H0453839 B2 JPH0453839 B2 JP H0453839B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon
raw material
quartz crucible
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62137985A
Other languages
Japanese (ja)
Other versions
JPS63303894A (en
Inventor
Michio Kida
Tateaki Sahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP13798587A priority Critical patent/JPS63303894A/en
Priority to CA000568083A priority patent/CA1305909C/en
Priority to EP88108790A priority patent/EP0293865B1/en
Priority to DE8888108790T priority patent/DE3878990T2/en
Priority to US07/201,018 priority patent/US4936949A/en
Publication of JPS63303894A publication Critical patent/JPS63303894A/en
Priority to US07/527,887 priority patent/US5009862A/en
Publication of JPH0453839B2 publication Critical patent/JPH0453839B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多重構造の石英ルツボを用いて、半
導体素子及び太陽電池用等のシリコン単結晶を引
上げ育成すると同時に、原料シリコンを石英ルツ
ボ内に連続的に供給するシリコン単結晶育成方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a quartz crucible with a multilayer structure to pull and grow silicon single crystals for semiconductor devices, solar cells, etc., and at the same time, draws and grows raw silicon in the quartz crucible. This invention relates to a method for growing silicon single crystals by continuously supplying silicon.

〔従来の技術〕[Conventional technology]

従来、バツチ式のシリコン単結晶育成方法にあ
つては、石英ルツボ内のシリコン融液量が単結晶
育成とともに減少し、この結果として1本の単結
晶中の品質(酸素濃度、結晶成長界面、ドーパン
ト濃度)が結晶の長手方向で変化するという問題
がある。すなわち、酸素濃度は、石英ルツボから
シリコン融液内に溶出する酸素量に依存するた
め、石英ルツボ内のシリコン融液が変化するのに
伴つて変化する。また、シリコン融液量が変化す
るのに伴つて炉内の熱分布と対流とが変化するた
め、結晶成長界面が変化する。さらに、一般に、
シリコン単結晶の電気伝導度を制御するために、
リン、ホウ素、アンチモン等のドーパントを添加
するが、これらの不純物原子の偏析係数が1では
ないため、結晶育成にしたがつて結晶中のドーパ
ント濃度が異なる。
Conventionally, in the batch type silicon single crystal growth method, the amount of silicon melt in the quartz crucible decreases as the single crystal grows, and as a result, the quality (oxygen concentration, crystal growth interface, The problem is that the dopant concentration varies along the length of the crystal. That is, since the oxygen concentration depends on the amount of oxygen eluted from the quartz crucible into the silicon melt, it changes as the silicon melt in the quartz crucible changes. Furthermore, as the amount of silicon melt changes, the heat distribution and convection within the furnace change, and therefore the crystal growth interface changes. Furthermore, in general,
To control the electrical conductivity of silicon single crystals,
Dopants such as phosphorus, boron, and antimony are added, but since the segregation coefficient of these impurity atoms is not 1, the dopant concentration in the crystal varies as the crystal grows.

このように、1本の単結晶中の品質がその長手
方向で変化するために、1本の単結晶のうち一部
分しか所望の品質にならないという問題があつ
た。また、バツチ式においては、生産性が低いと
いう問題があつた。
As described above, since the quality in one single crystal changes in its longitudinal direction, there is a problem in that only a portion of one single crystal has the desired quality. In addition, the batch type had the problem of low productivity.

これらの問題点を解決するものとして、原料を
石英ルツボに供給しながら同時に単結晶を育成す
る連続単結晶引ぎ上げ育成方法が従来から提案さ
れてきている。このうち、最も構造の簡単なもの
として、多重構造の石英ルツボと粉末、塊状、ま
たは顆粒状の原料の連続投入とを組み合わせた引
上げ育成方法が知られている(例えば、USP−
2892739号、特開昭57−183392号、特開昭58−
130195号公報参照)。
To solve these problems, continuous single crystal pulling and growing methods have been proposed in which raw materials are supplied to a quartz crucible and single crystals are grown at the same time. Of these, the most simple structure is known as the pulling growth method, which combines a multilayered quartz crucible and continuous input of powdered, lumpy, or granular raw materials (for example, USP-
No. 2892739, JP-A-57-183392, JP-A-58-
(See Publication No. 130195).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の方法によつてシリコ
ン単結晶を育成する場合には次のような問題点が
あつた。すなわち、シリコンの融液温度は1420℃
以上であるのに対して、ルツボとして使用する石
英は温度1100℃以上で軟化し高温になればなるほ
ど軟化する。この結果、グラフアイトサセプタに
よつて支えられた外側と石英ルツボは大きく変化
することがなく、単結晶育成に困難はないが、支
持機構の充分ではない内側のルツボは変形が激し
く単結晶育成が困難にある。
However, when growing a silicon single crystal using the above-mentioned conventional method, there are the following problems. In other words, the silicon melt temperature is 1420℃
On the other hand, quartz used as a crucible softens at temperatures above 1100°C, and the higher the temperature, the softer it becomes. As a result, the outer side supported by the graphite susceptor and the quartz crucible do not change significantly, and there is no difficulty in growing a single crystal, but the inner crucible, which does not have a sufficient support mechanism, is severely deformed and cannot grow a single crystal. in difficulty.

そして、このルツボの変形は、単結晶の育成時
よりも、引上サイクルの初期において充填した原
料シリコンを溶解する際に大量の熱量を必要と
し、炉内温度が高くなるため、最大となる。この
状態を示したのが、第6図ないし第9図であり、
これらの図において符号の1,1′は円筒状及び
有底円筒状の内ルツボ、2は外ルツボ、3はグラ
フアイトサセプタ、4はヒーター、5は初期投入
原料、6はシリコン融液を示している。
This deformation of the crucible is greatest because a larger amount of heat is required to melt the filled raw material silicon at the beginning of the pulling cycle than during single crystal growth, and the temperature inside the furnace becomes higher. This state is shown in Figures 6 to 9.
In these figures, numerals 1 and 1' represent a cylindrical and bottomed cylindrical inner crucible, 2 an outer crucible, 3 a graphite susceptor, 4 a heater, 5 an initial input raw material, and 6 a silicon melt. ing.

また、石英は断熱効果が高く、内ルツボ1,
1′の内側の温度は、その外側の温度に比べて低
い。このことは、結晶育成時には、内ルツボ1,
1′と外ルツボ2との間に供給された原料シリコ
ンを効率良く溶解できるので都合が良いが、初期
充填された原料シリコンを溶解する際には、内ル
ツボ1,1′に遮断されて抵抗加熱ヒーター4か
らの熱が内部に充分に伝えられないため、溶解の
効率が低い、そして、溶解時間を短縮しようとし
て、大量の熱を供給すると、上述した内ルツボ
1,1′の変形の問題が大きくなる。
In addition, quartz has a high heat insulation effect, and the inner crucible 1,
The temperature inside 1' is lower than the temperature outside it. This means that during crystal growth, the inner crucible 1,
This is convenient because the raw silicon supplied between 1' and the outer crucible 2 can be efficiently melted, but when melting the initially filled raw silicon, it is blocked by the inner crucibles 1 and 1' and there is resistance. Since the heat from the heating heater 4 is not sufficiently transmitted inside, the melting efficiency is low, and if a large amount of heat is supplied in an attempt to shorten the melting time, the above-mentioned problem of deformation of the inner crucibles 1 and 1' may occur. becomes larger.

本発明は、上記事情に鑑みでなされたもので、
その目的とするところは、引上げサイクルにおい
て最も炉内温度が高くなる初期投入原料溶解時
に、未然に内側収容体の熱変形を防止でき、しか
も溶解効率が極めて高いシリコン単結晶育成方法
も提供することにある。
The present invention was made in view of the above circumstances, and
The purpose is to provide a method for growing silicon single crystals that can prevent thermal deformation of the inner container during melting of the initial input material, which is when the furnace temperature is highest in the pulling cycle, and that has extremely high melting efficiency. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、多重構造の石英ルツボを用いて、単
結晶を引上げ育成すると同時に、原料シリコンを
石英ルツボ内に連続的に供給するシリコン単結晶
育成方法において、単結晶の引上げ育成に先立つ
て、引上げサイクルの初期に充填した原料シリコ
ンを溶接する際に、内側収容体を取り除いた状態
の外側収容体内に初期原料シリコンを充填して溶
解し、この後、前記内側収容体を前記外側収容体
内に収容し、一体化して多重構造の石英ルツボと
し、この後、一体化した石英ルツボを回転させつ
つ単結晶の引上げ育成を行うことを特徴とするも
のである。
The present invention utilizes a quartz crucible with a multi-layered structure to pull and grow a single crystal, and at the same time continuously supplies raw material silicon into the quartz crucible. When welding the raw material silicon filled at the beginning of the cycle, the initial raw material silicon is filled and melted into the outer housing with the inner housing removed, and then the inner housing is housed in the outer housing. The quartz crucible is integrated into a multi-structured quartz crucible, and then a single crystal is pulled and grown while rotating the integrated quartz crucible.

なお、内側収容体としては、有底円筒状(深皿
状)のもの、あるいは円筒状のものが好ましい。
また、三重以上のルツボ構造にあつては、最も外
側の収容体を除く収容体を除く他の内側収容体に
ついて同じ効果が期待できる。なお、内側収容体
と外側収容体を一体化するには内側収容体を下降
させる方法も可能であるが、外側収容体を支持す
る下軸に付設されている昇降および回転機構を用
いて外側収容体を上昇させ一体化させれば、装置
の構成が単純になり有りである。
In addition, as the inner container, it is preferable to have a bottomed cylindrical shape (deep dish shape) or a cylindrical shape.
In addition, in the case of a triple or more crucible structure, the same effect can be expected for the other inner containers except for the outermost container. Although it is possible to integrate the inner and outer containers by lowering the inner container, it is also possible to integrate the inner and outer containers by lowering the inner container. If the body is raised and integrated, the structure of the device can be simplified.

〔作用〕[Effect]

本発明のシリコン単結晶育成方法にあつては、
最も炉内温度が高くなる初期原料充填溶解時に外
側収容体だけによつて原料を溶解し、内側収容体
の熱変形を防止し、次いで原料が溶解した後に、
外側収容体内に内側収容体を収納して一体化して
多重構造の石英ルツボとし、単結晶の引上げ育成
を行なう。
In the silicon single crystal growth method of the present invention,
During the initial charging and melting of raw materials, when the temperature inside the furnace is highest, the raw materials are melted only by the outer container to prevent thermal deformation of the inner container, and then after the raw materials are melted,
The inner container is housed within the outer container and integrated to form a multi-layered quartz crucible, and a single crystal is pulled and grown.

〔実施例〕〔Example〕

以下、第1図ないし第5図に基づいて本発明の
実施例を説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

まず、有底円筒状(深皿状)の内側収容体10
をチヤツク機構11と接続し、ヒーター12及び
外側収容体13、グラフアイトサセプタ14に対
して上方に配置すると共に、外側収容体13内に
初期原料15を充填する(第1図参照)。次いで、
引上炉内の空気をアルゴンガスで充分排除した後
に、低効加熱したヒーター12に電流を流し炉内
を昇温する。そして、初期充填原料15が完全に
溶解した後、ヒーター12の発熱量を落として、
シリコン融液16の温度を単結晶育成に適した温
度まで下げる。この状態において、上方に待機中
の内側収容体10を下降させ、その支持部10a
を外側収容体13を保持するグラフアイトサセプ
タ14に接触させるまたは、グラフアイトサセプ
タ14を介して外側収容体13を支持している下
軸に付設された昇降および回転機構(図示略)を
用いて、外側収容体13を上昇させて内側収容体
10に接触させる。こうして、内側収容体10を
グラフアイトサセプタ14に接触支持させた後
に、チヤツク機構11と内側収容体10とを切り
離し、チヤツク機構11を上方に移動させるまた
は、下軸に付設された前記昇降および回転機構を
用いて、グラフアイトサセブタ14および外側収
容体13を下降させる。このとき、シリコン融液
16内に内側収容体10が入ると融液温度が下が
るが、その分ヒーター12を昇温させる。
First, a bottomed cylindrical (deep dish) inner container 10
is connected to the chuck mechanism 11 and placed above the heater 12, the outer container 13, and the graphite susceptor 14, and the initial raw material 15 is filled into the outer container 13 (see FIG. 1). Then,
After the air in the pulling furnace is sufficiently removed with argon gas, current is applied to the heater 12 which has been heated with low efficiency to raise the temperature in the furnace. After the initial filling material 15 is completely melted, the amount of heat generated by the heater 12 is reduced.
The temperature of the silicon melt 16 is lowered to a temperature suitable for single crystal growth. In this state, the inner container 10, which is waiting upward, is lowered and its support portion 10a is
is brought into contact with the graphite susceptor 14 that holds the outer container 13, or by using a lifting and rotating mechanism (not shown) attached to the lower shaft that supports the outer container 13 via the graphite susceptor 14. , the outer container 13 is raised and brought into contact with the inner container 10. After the inner container 10 is supported in contact with the graphite susceptor 14 in this way, the chuck mechanism 11 and the inner container 10 are separated, and the chuck mechanism 11 is moved upward, or the elevating and rotating mechanism attached to the lower shaft is The graphite susceptor 14 and the outer container 13 are lowered using a mechanism. At this time, when the inner container 10 enters the silicon melt 16, the temperature of the melt decreases, but the temperature of the heater 12 increases accordingly.

続いて、一体化した内側収容体10と外側収容
体13を回転させて、上方より種結晶17を下降
させシリコン融液16に付着させる(第2図と第
3図参照)。さらに、従来公知の方法で種結晶1
7を回転させながら引上げることにより、単結晶
18のネツク部18aと肩部18bを形成した後
に直胴部18cの育成を開始する。この直胴部1
8cの引上中は、フイーダ19より原料供給管2
0を介して粉末、塊状あるいは顆粒状の原料21
を単結晶18の育成量と同種供給し、石英ルツボ
22内のシリコン融液16の量を一定としたまま
単結晶を育成する。
Subsequently, the integrated inner container 10 and outer container 13 are rotated, and the seed crystal 17 is lowered from above and attached to the silicon melt 16 (see FIGS. 2 and 3). Furthermore, the seed crystal 1 is prepared using a conventionally known method.
7 is pulled up while being rotated to form the neck portion 18a and shoulder portion 18b of the single crystal 18, and then the growth of the straight body portion 18c is started. This straight body part 1
8c is being pulled up, the feeder 19 feeds the raw material supply pipe 2.
Powdered, lumpy or granular raw material 21 through 0
The amount of silicon melt 16 in the quartz crucible 22 is kept constant, and the single crystal is grown.

なお、上記実施例においては、内側収容体10
として有底円筒状(深皿状)のものを用いて説明
したが、これに限らず、第5図に示すように円筒
状の内側収容体30を用いてもよい。
In addition, in the above embodiment, the inner container 10
Although the explanation has been made using a bottomed cylindrical (deep dish) type, the present invention is not limited to this, and a cylindrical inner container 30 may be used as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、単結晶の引上
げ育成に先立つて、引上げサイクルの初期に充填
した原料シリコンを溶接する際に、内側収容体を
取り除いた状態の外側収容体内に初期原料シリコ
ンを充填して溶解し、この後、前記内側収容体を
前記外側収容体内に収容し、一体化して多重構造
の石英ルツボとし、この後、一体化した石英ルツ
ボを回転させつつ単結晶の引上げ育成を行うもの
であるので、内側の収容体の変形が少なく、単結
晶の育成時に問題が生ずることがない。
As explained above, in the present invention, prior to pulling and growing a single crystal, when welding the raw material silicon filled at the beginning of the pulling cycle, the initial raw material silicon is placed inside the outer container with the inner container removed. After filling and melting, the inner container is housed in the outer container and integrated to form a multi-layered quartz crucible, and then the integrated quartz crucible is rotated to pull and grow a single crystal. Therefore, there is little deformation of the inner container, and no problems occur during single crystal growth.

また、単結晶育成に要する装置の構成を簡素化
して、作業コストを軽減するとことができ、良質
なシリコン単結晶を経済的に製造することができ
る。
Furthermore, the configuration of the apparatus required for single crystal growth can be simplified, reducing operating costs, and high quality silicon single crystals can be economically produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示す
もので、第1図は初期原料充填時の説明図、第2
図は初期原料溶解時の説明図、第3図は平面図、
第4図は単結晶育成時の説明図、第5図は本発明
の別の一例を示す説明図、第6図と第7図は従来
の単結晶育成方法の一例を示すもので、第6図は
初期原料充填時の説明図、第7図は原料溶解時の
説明図、第8図と第9図は従来の単結晶育成方法
の他の一例を示すもので、第8図は初期原料充填
時の説明図、第9図は原料溶解時の説明図であ
る。 10……内側収容体、13……外側収容体、1
5……初期原料、18……単結晶、21……原
料、22……石英ルツボ、30……内側収容体。
Figures 1 to 4 show one embodiment of the present invention. Figure 1 is an explanatory diagram at the time of initial filling of raw materials,
The figure is an explanatory diagram at the time of initial raw material melting, Figure 3 is a plan view,
FIG. 4 is an explanatory diagram for growing a single crystal, FIG. 5 is an explanatory diagram showing another example of the present invention, and FIGS. 6 and 7 are examples of a conventional single crystal growing method. Figure 7 is an explanatory diagram of the initial raw material filling process, Figure 7 is an explanatory diagram of the raw material melting process, Figures 8 and 9 are other examples of the conventional single crystal growth method, and Figure 8 is an explanatory diagram of the initial raw material filling process. An explanatory diagram at the time of filling, and FIG. 9 is an explanatory diagram at the time of dissolving the raw material. 10... Inner container, 13... Outer container, 1
5... Initial raw material, 18... Single crystal, 21... Raw material, 22... Quartz crucible, 30... Inner container.

Claims (1)

【特許請求の範囲】[Claims] 1 多重構造の石英ルツボを用いて、単結晶を引
上げ育成すると同時に、原料シリコンを石英ルツ
ボ内に連続的に供給するシリコン単結晶育成方法
において、単結晶の引上げ育成に先立つて、引上
げサイクルの初期に充填した原料シリコンを溶解
する際に、内側収容体を取り除いた状態の外側収
容体内に初期原料シリコンを充填して溶解し、こ
の後、前記内側収容体を前記外側収容体内に収容
し、一体化して多重構造の石英ルツボとし、この
後、一体化した石英ルツボを回転させつつ単結晶
の引上げ育成を行うことを特徴とするシリコン単
結晶育成方法。
1 In a silicon single crystal growth method that uses a multi-layered quartz crucible to pull and grow a single crystal while continuously supplying raw material silicon into the quartz crucible, the initial stage of the pulling cycle is performed prior to pulling and growing the single crystal. When melting the raw material silicon filled in the container, the initial raw material silicon is filled and melted into the outer container with the inner container removed, and then the inner container is housed in the outer container, and the initial silicon is melted. A method for growing a silicon single crystal, comprising: converting the crucible into a quartz crucible with a multilayer structure, and then pulling and growing the single crystal while rotating the integrated quartz crucible.
JP13798587A 1987-06-01 1987-06-01 Method for growing silicon single crystal Granted JPS63303894A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13798587A JPS63303894A (en) 1987-06-01 1987-06-01 Method for growing silicon single crystal
CA000568083A CA1305909C (en) 1987-06-01 1988-05-30 Apparatus and process for growing crystals of semiconductor materials
EP88108790A EP0293865B1 (en) 1987-06-01 1988-06-01 Apparatus and process for growing crystals of semiconductor materials
DE8888108790T DE3878990T2 (en) 1987-06-01 1988-06-01 DEVICE AND METHOD FOR GROWING CRYSTALS FROM SEMICONDUCTOR MATERIALS.
US07/201,018 US4936949A (en) 1987-06-01 1988-06-01 Czochraski process for growing crystals using double wall crucible
US07/527,887 US5009862A (en) 1987-06-01 1990-05-23 Apparatus and process for growing crystals of semiconductor materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13798587A JPS63303894A (en) 1987-06-01 1987-06-01 Method for growing silicon single crystal

Publications (2)

Publication Number Publication Date
JPS63303894A JPS63303894A (en) 1988-12-12
JPH0453839B2 true JPH0453839B2 (en) 1992-08-27

Family

ID=15211362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13798587A Granted JPS63303894A (en) 1987-06-01 1987-06-01 Method for growing silicon single crystal

Country Status (1)

Country Link
JP (1) JPS63303894A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107587A (en) * 1988-10-13 1990-04-19 Mitsubishi Metal Corp Growing equipment for semiconductor single crystal
TW430699B (en) * 1995-12-27 2001-04-21 Mitsubishi Material Silicon Co Single crystal pulling apparatus
TW503265B (en) * 1995-12-28 2002-09-21 Mitsubishi Material Silicon Single crystal pulling apparatus
JP3533416B2 (en) * 1996-02-06 2004-05-31 三菱住友シリコン株式会社 Single crystal pulling device
JP3482979B2 (en) * 1996-04-09 2004-01-06 三菱住友シリコン株式会社 Heater electrode erosion prevention device in single crystal pulling device
US7691199B2 (en) 2004-06-18 2010-04-06 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US9745666B2 (en) * 2012-09-10 2017-08-29 Gtat Ip Holding Llc Continuous czochralski method and apparatus
CN112210820A (en) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 Crystal production process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204895A (en) * 1982-05-25 1983-11-29 Nippon Telegr & Teleph Corp <Ntt> Crystal pulling method and its device
JPS61261288A (en) * 1985-05-14 1986-11-19 Toshiba Ceramics Co Ltd Apparatus for pulling up silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204895A (en) * 1982-05-25 1983-11-29 Nippon Telegr & Teleph Corp <Ntt> Crystal pulling method and its device
JPS61261288A (en) * 1985-05-14 1986-11-19 Toshiba Ceramics Co Ltd Apparatus for pulling up silicon single crystal

Also Published As

Publication number Publication date
JPS63303894A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
US4936949A (en) Czochraski process for growing crystals using double wall crucible
TW541363B (en) Method and device for manufacturing single crystals
JPH02107587A (en) Growing equipment for semiconductor single crystal
JP2601411B2 (en) Single crystal pulling method and apparatus therefor
EP0294758B1 (en) Apparatus for growing crystals of semiconductor materials
CN101435107A (en) Method for growing silicon ingot
JPH0453839B2 (en)
US10557213B2 (en) Crystal growing systems and methods including a transparent crucible
JPH03115188A (en) Production of single crystal
WO2023051693A1 (en) Nitrogen dopant feeding apparatus and method, and system for manufacturing nitrogen-doped monocrystalline silicon rod
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
US6090198A (en) Method for reducing thermal shock in a seed crystal during growth of a crystalline ingot
US6652824B2 (en) Method of growing large-diameter dislocation-free &lt;110&gt; crystalline ingots
JPH0511074B2 (en)
JPS62226890A (en) Single crystal and its production
JPH07277875A (en) Method for growing crystal
JPH0769778A (en) Equipment for single crystal growth
JPH05294784A (en) Single crystal growth device
JPH026382A (en) Apparatus for pulling up single crystal
JPS62226897A (en) Production of single crystal
JPH06135791A (en) Device for growing semiconductor single crystal
JPH0825834B2 (en) Single crystal pulling device
JPH02283693A (en) Method and device for preparing silicon single crystal
JPH085736B2 (en) Method and apparatus for growing silicon single crystal
JPH09208363A (en) Apparatus for pulling up single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 15