JPH0452114B2 - - Google Patents

Info

Publication number
JPH0452114B2
JPH0452114B2 JP59181295A JP18129584A JPH0452114B2 JP H0452114 B2 JPH0452114 B2 JP H0452114B2 JP 59181295 A JP59181295 A JP 59181295A JP 18129584 A JP18129584 A JP 18129584A JP H0452114 B2 JPH0452114 B2 JP H0452114B2
Authority
JP
Japan
Prior art keywords
medium
enzyme
glycine
activity
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59181295A
Other languages
Japanese (ja)
Other versions
JPS6181775A (en
Inventor
Yoko Igura
Koki Horikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP18129584A priority Critical patent/JPS6181775A/en
Publication of JPS6181775A publication Critical patent/JPS6181775A/en
Publication of JPH0452114B2 publication Critical patent/JPH0452114B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、酵素の製造方法に関し、更に詳細に
は、グリシンおよび/またはマンガン化合物を培
地に加えて微生物を培養し、微生物が生産する生
理活性物質の生産量を増加させ、特に、該生理活
性物質の菌体外への排出(分泌)を促進する方法
に関する。 〔従来技術〕 一般に、細菌や酵母等の微生物を培養して、酵
素等の高分子生理活性物質を製造する方法は周知
である。このような高分子生理活性物質は、微生
物の菌体内で生産され、通常は、菌体外に排出
(分泌)されることなく、ほとんど菌体内に蓄積
される。このため高分子生理活性物質を取り出す
ためには、集菌した菌体を超音波処理等により破
砕し、遠心分離等により目的物を分離、精製する
必要がある。このような機械的破砕操作は、時間
や労力の損失となるばかりでなく、生産物を変質
させるおそれもあり、好ましくない。 ところで菌体内に生産物が一定量蓄積される
と、その生産は当然停止する。しかし、これが菌
体内に蓄積されることなく、菌体外に排出(分
泌)されれば、その生産は継続して行われるはず
である。このため、菌体内で生産された生産物を
菌体外に排出(分泌)させ、菌体内生産を継続さ
せ、菌体外に著量の生産物を蓄積させようとする
試みがなされている。たとえば、掘越らは、ペニ
シリナーゼ、キシラナーゼ等の高分子物質の菌体
外生産に関与する遺伝情報を担うバチルス属微生
物の染色体DNA断片を組み込んだプラスミドを
含有する前記高分子物質の菌体外生産能を有する
エシエリヒア属の微生物をNa塩又はK塩含有倍
地で培養して、前記高分子物質を菌体外に分泌さ
せることに成功している(特開昭59−162874号及
び特開昭60−126077号公報参昭)。 〔発明の目的〕 本発明の目的は、微生物が生産する有用な生理
活性物質の生産量を増大させる方法を提供するこ
とである。さらに本発明の目的は、微生物の菌体
内で生産される有用な生理活性物質を、菌体外に
排出(分泌)させ、それによつて培地中に著量の
生産物を蓄積させる方法を提供することである。 〔発明の構成〕 本発明の目的は、菌体内に酵素を産生する微生
物を、マンガン化合物及びグリシンからなる群か
ら選ばれる少なくとも1種の化合物を含む培地で
あつて、マンガン化合物のみを含む場合にはその
含有量が0.5μM以上であり、グリシンのみを含む
場合にはその含有量が0.5%以上である培地で培
養し、菌体内に産生する酵素量を増加させ、且つ
該酵素の菌体外への排出(分泌)を促進させ、培
地から該酵素を採取することを特徴とする該酵素
の製造方法により達成される。 本発明に使用される微生物として特に好ましい
ものは細菌および酵母である。 細菌としては、たとえば、グラム陽性好アルカ
リ性細菌であるバチルス(Bacillus)No.A−59
(ATCC21591)(アルカリアミラーゼ生産菌とし
て分離された。Agric.Biol.Chem.Vol.36、1819
頁、1972年)、グラム陽性好アルカリ性細菌であ
るバチルス(Bacillus)No.C−125(FERM BP−
469)(β−ガラクトシダーゼ生産菌、Agric.
Biol.Chem.Vol.43、85頁および1359頁、1979
年)、エシエリヒア・コリ(Escherichia coli)
HB 101(Molecular Cloning a laboratory
manual CSH Lab.1982、504頁、Leu、Pro、
Thiamine要求性)、酵母としては、パン酵母
(オリンタル酵母(株)製)などが挙げられる。 本発明に使用することができる微生物は、上記
具体例に限定されるものではなく、グリシンおよ
び/またはマンガン化合物を加えた培地中で培養
することにより、菌体生産物の総生産量を増加
し、菌体生産物を菌体外に排出し、著量に蓄積す
るものであれば、既存の培養菌株、自然界から新
たに分離された菌株、あるいはこれらの菌株の変
異株、さらに、遺伝子組換や細胞融合によつて新
たに酵素等の有用生理活性物質生産能力を獲得す
るに至つた微生物など、いずれも使用することが
できる。 本発明に使用されるマンガン化合物としては、
たとえば、硫酸マンガン、塩化マンガン、硝酸マ
ンガン、炭酸マンガン、ケイ酸マンガン、ピロリ
ン酸マンガン、リン酸水素マンガン等の無機酸
塩、酢酸マンガン、酒石酸マンガン、シユウ酸マ
ンガン、クエン酸マンガン等の有機酸塩などが挙
げられる。 本発明において、グリシンの添加量は、培地に
対して0.5〜10重量%、好ましくは0.5〜3.0重量%
が適当である。これより少ないと目的とする効果
の発現が不十分であり、またこれより多いと逆に
微生物の生育阻害が顕著になり、好ましくない。 一方、マンガン化合物の添加量は、培地に対し
て0.5μM以上であればよい。これより少ないと目
的とする効果の発現が不十分である。なおマンガ
ン化合物の毒性は低いため、かなりの濃度(例え
ば100mM)に増加させても生育阻害は認められ
ない。 本発明に使用する微生物の培養培地としては、
通常、微生物の培養に使用される培地に、グリシ
ンおよび/またはマンガン化合物を添加したもの
で使用される。すなわち、炭素源、窒素源、無機
物、その他栄養物を程良く含有する培地であれ
ば、合成培地、天然培地のいずれもが使用でき
る。炭素源、窒素源は、使用菌が利用可能なもの
であればいずれの種類を用いてもよい。無機塩、
ビタミン類等についても、微生物の培地に通常使
用されるものを使用することができる。 以下、実施例を示し、本発明をさらに詳細に説
明するが、本発明はこれらの実施例の記録に限定
されるものではない。 実施例 1 好アルカリ性バチルスNo.59(ATCC21591)を使
用し、α−グルコシダーゼ活性について調べた。 900mlの井戸水に、可溶性でんぷん15g、ポリ
ペプトン5g、イーストエキス(デイフコ社製)
5g、リン酸二カリウム1g、硫酸マグネシウ
ム・7水和物0.2gおよび所定量のグリシンおよ
び/またはマンガン化合物を加えた培地、および
炭酸ナトリウム水溶液(100g/)を別別に調
製し、殺菌した。植菌時1/10量の炭酸ナトリウ
ム溶液を前記培地に無菌的に加えて、種培地およ
び本培地とする。 300mlの4個ひだ付三角フラスコに培地50mlを
入れ、これに、あらかじめ1晩培養したもの0.2
mlを植菌して、37℃で所定時間、振とう培養(ロ
ータリーシエーカー、200RPM)し、2mlずつ無
菌的にサンプリングする。サンプルの一部をその
まま10〜30倍に希釈して全酵素活性を測定する。
サンプルの残部は遠心分離し、上澄液を5〜30倍
して、培地中に排出(分泌)された酵素の活性を
測定する。 酵素活性は、次のように測定する。まず、p−
ニトロフエニルα−D−グルコシド2mM、PH7.5
のリン酸緩衝液40mM、酵素液0.03〜0.1mlを含む
総量0.5mlの液に、基質を加えて反応を開始し、
恒温槽中、40℃、10分間往復振とう後、1M炭酸
ナトリウム0.1mlを加えて反応を停止する。これ
に蒸留水3mlを加えて希釈攪拌し、420nmの吸収
を測定し、あらかじめ作成しておいた標準曲線か
ら、酵素活性を求める。1分間に1マイクロモル
のp−ニトロフエノールを生産する酵素量を1単
位とする。 全酵素活性すなわち、培地中の酵素と菌体中の
酵素の全活性は、培養液全体を希釈し、細胞膜を
透過性にするためトルエン1滴を加えて、5分後
から、酵素反応を開始し、反応停止後、遠心分離
(3000RPM、5分間)によつて菌体を除去し、上
澄液について酵素活性を測定することにより求め
る。培地中の酵素活性を全酵素活性で除したもの
を排出度とする。結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for producing an enzyme, and more specifically, a method for culturing microorganisms by adding glycine and/or manganese compounds to a medium to increase the production amount of physiologically active substances produced by the microorganisms. In particular, the present invention relates to a method of promoting the excretion (secretion) of the physiologically active substance to the outside of the microbial cell. [Prior Art] Generally, methods for producing bioactive polymeric substances such as enzymes by culturing microorganisms such as bacteria and yeast are well known. Such bioactive polymer substances are produced within the cells of microorganisms, and are usually not excreted (secreted) outside the cells, but mostly accumulate within the cells. Therefore, in order to extract a bioactive polymeric substance, it is necessary to crush the collected bacterial cells by ultrasonication or the like, and then separate and purify the target product by centrifugation or the like. Such a mechanical crushing operation not only results in a loss of time and labor, but also has the risk of altering the quality of the product, and is therefore undesirable. By the way, when a certain amount of the product accumulates within the bacterial body, its production naturally stops. However, if it is excreted (secreted) from the bacterial body without being accumulated within the bacterial body, its production should continue. For this reason, attempts have been made to excrete (secrete) products produced within the microbial cells to the outside of the microbial cells, to continue production within the microbial cells, and to accumulate a significant amount of products outside the microbial cells. For example, Horikoshi et al. reported that the extracellular production of polymeric substances such as penicillinase and xylanase contains a plasmid that incorporates a chromosomal DNA fragment of a Bacillus microorganism that carries genetic information involved in the extracellular production of polymeric substances such as penicillinase and xylanase. We have succeeded in culturing a microorganism of the genus Escherichia in a medium containing Na salt or K salt and secreting the above-mentioned macromolecular substances outside the microorganism (Japanese Patent Laid-Open Nos. 59-162874 and 1983). (See Publication No. 60-126077). [Object of the Invention] An object of the present invention is to provide a method for increasing the production amount of useful physiologically active substances produced by microorganisms. A further object of the present invention is to provide a method for excreting (secreting) useful physiologically active substances produced within the microbial cells to the outside of the microbial cells, thereby accumulating a significant amount of the products in the culture medium. That's true. [Structure of the Invention] An object of the present invention is to culture microorganisms that produce enzymes in their cells using a medium containing at least one compound selected from the group consisting of manganese compounds and glycine, which contains only manganese compounds. is cultured in a medium with a content of 0.5 μM or more, and if it contains only glycine, the content is 0.5% or more, to increase the amount of enzyme produced inside the bacteria, and to increase the amount of enzyme produced outside the bacteria. This is achieved by a method for producing the enzyme, which is characterized by promoting the excretion (secretion) into the enzyme and collecting the enzyme from the culture medium. Particularly preferred microorganisms for use in the present invention are bacteria and yeast. Examples of bacteria include Bacillus No. A-59, which is a Gram-positive alkalophilic bacterium.
(ATCC21591) (Isolated as an alkaline amylase-producing bacterium. Agric.Biol.Chem.Vol.36, 1819
Page, 1972), Bacillus No. C-125 (FERM BP-
469) (β-galactosidase producing bacteria, Agric.
Biol.Chem.Vol.43, pages 85 and 1359, 1979
), Escherichia coli
HB 101 (Molecular Cloning a laboratory
manual CSH Lab.1982, 504 pages, Leu, Pro,
Examples of the yeast include baker's yeast (manufactured by Orintal Yeast Co., Ltd.). The microorganisms that can be used in the present invention are not limited to the above specific examples, but can be cultured in a medium containing glycine and/or manganese compounds to increase the total production of microbial products. , existing cultured strains, strains newly isolated from nature, or mutant strains of these strains, as well as genetically modified strains, if they excrete bacterial cell products outside the bacterial body and accumulate in significant amounts. Microorganisms that have newly acquired the ability to produce useful physiologically active substances such as enzymes through cell fusion can be used. Manganese compounds used in the present invention include:
For example, inorganic acid salts such as manganese sulfate, manganese chloride, manganese nitrate, manganese carbonate, manganese silicate, manganese pyrophosphate, manganese hydrogen phosphate, and organic acid salts such as manganese acetate, manganese tartrate, manganese oxalate, and manganese citrate. Examples include. In the present invention, the amount of glycine added is 0.5 to 10% by weight, preferably 0.5 to 3.0% by weight based on the medium.
is appropriate. If the amount is less than this, the desired effect will not be sufficiently expressed, and if it is more than this, the growth of microorganisms will be significantly inhibited, which is not preferable. On the other hand, the amount of the manganese compound added to the medium may be 0.5 μM or more. If the amount is less than this, the desired effect will be insufficiently expressed. Note that since the toxicity of manganese compounds is low, no growth inhibition is observed even when the concentration is increased to a considerable level (for example, 100 mM). The culture medium for microorganisms used in the present invention includes:
Usually, glycine and/or manganese compounds are added to the medium used for culturing microorganisms. That is, either a synthetic medium or a natural medium can be used as long as the medium contains adequate amounts of carbon sources, nitrogen sources, inorganic substances, and other nutrients. Any type of carbon source or nitrogen source may be used as long as it can be used by the bacteria used. inorganic salt,
As for vitamins and the like, those commonly used in microorganism culture media can be used. EXAMPLES Hereinafter, the present invention will be explained in more detail by way of Examples, but the present invention is not limited to the recording of these Examples. Example 1 Using alkalophilic Bacillus No. 59 (ATCC21591), α-glucosidase activity was investigated. 900ml of well water, 15g of soluble starch, 5g of polypeptone, yeast extract (manufactured by Difco)
A medium containing 5 g of dipotassium phosphate, 1 g of magnesium sulfate heptahydrate, 0.2 g of magnesium sulfate heptahydrate, and a predetermined amount of glycine and/or manganese compound, and an aqueous sodium carbonate solution (100 g/) were separately prepared and sterilized. At the time of inoculation, 1/10 volume of sodium carbonate solution is added aseptically to the above medium to form a seed medium and a main medium. Pour 50 ml of culture medium into four 300 ml pleated Erlenmeyer flasks, and add 0.2 ml of cultured medium overnight.
ml is inoculated, cultured with shaking (rotary shaker, 200 RPM) at 37°C for a predetermined time, and aseptically sampled in 2 ml portions. A portion of the sample is directly diluted 10 to 30 times to measure total enzyme activity.
The remainder of the sample is centrifuged, the supernatant is multiplied 5-30 times, and the activity of the enzyme excreted (secreted) into the medium is measured. Enzyme activity is measured as follows. First, p-
Nitrophenyl α-D-glucoside 2mM, PH7.5
Start the reaction by adding the substrate to a total volume of 0.5 ml of a solution containing 40 mM of phosphate buffer and 0.03 to 0.1 ml of enzyme solution.
After shaking reciprocally for 10 minutes at 40°C in a constant temperature bath, add 0.1ml of 1M sodium carbonate to stop the reaction. Add 3 ml of distilled water to dilute and stir, measure absorption at 420 nm, and determine enzyme activity from a standard curve prepared in advance. One unit is the amount of enzyme that produces 1 micromole of p-nitrophenol per minute. To determine the total enzyme activity, that is, the total activity of enzymes in the medium and in the bacterial cells, dilute the entire culture solution, add one drop of toluene to permeabilize the cell membrane, and start the enzyme reaction after 5 minutes. After stopping the reaction, the bacterial cells are removed by centrifugation (3000 RPM, 5 minutes), and the enzyme activity of the supernatant is determined. The excretion rate is calculated by dividing the enzyme activity in the medium by the total enzyme activity. The results are shown in Table 1.

【表】 出度を示す。
グリシンとマンガン化合物を併用することによ
り全酵素活性が大きくなり、グリシンを添加する
ことにより培地中の酵素活性すなわち排出度が大
きくなることがわかる。 実施例 2 好アルカリ性バチルスNo.C−125(FERMBP−
469)を使用し、β−ガラクトシダーゼ活性につ
いて調べた。 培地は、実施例1の培地において、可溶性でん
ぷんの代りに、乳糖15gを加えたものを使用し
た。実施例1と同様に種培養を行い、本培養は、
2の2個ひだ付三角フラスコに培地400mlをを
入れ、これに、1mlの種培養液を加えて、実施例
1と同様に行つた。3mlずつサンプリングした。 酵素活性は、実施例1においてp−ニトロフエ
ニルα−D−グルコシドの代りに、o−ニトロフ
エニルβ−D−ガラクトシドを使用するほかは、
同様に行う。1分間に1マイクロモルのo−ニト
ロフエノールを生産する酵素量を1単位とする。 結果を第2表に示す。本菌株においては、マン
ガン化合物は酵素の総活性を増加させ、かつ排出
を促進するので、マンガン化合物のみの添加でも
ある程度の良好な結果が得られる。しかしグリシ
ン0.5%を同時添加する事により菌体外に排出さ
れる酵素の収率は改善されるため、共に用いる事
が望ましい。
[Table] Shows the degree of occurrence.
It can be seen that the combined use of glycine and a manganese compound increases the total enzyme activity, and that the addition of glycine increases the enzyme activity in the medium, that is, the degree of excretion. Example 2 Alkaliphilic Bacillus No.C-125 (FERMBP-
469) was used to examine β-galactosidase activity. The medium used was the same as in Example 1 except that 15 g of lactose was added instead of soluble starch. Seed culture was performed in the same manner as in Example 1, and the main culture was
The same procedure as in Example 1 was carried out by placing 400 ml of the medium in a two-fold Erlenmeyer flask and adding 1 ml of the seed culture solution. A sample of 3 ml was taken. The enzyme activity was determined by using o-nitrophenyl β-D-galactoside instead of p-nitrophenyl α-D-glucoside in Example 1.
Do the same. One unit is the amount of enzyme that produces 1 micromole of o-nitrophenol per minute. The results are shown in Table 2. In this strain, since manganese compounds increase the total activity of enzymes and promote excretion, some good results can be obtained even with the addition of manganese compounds alone. However, simultaneous addition of 0.5% glycine improves the yield of enzymes excreted from the cells, so it is desirable to use them together.

【表】 を示す。
実施例 3 エシエリヒア・コリを使用し、β−ガラクトシ
ダーゼ活性を測定した。培地は実施例2で使用し
た培地より炭酸ナトリウムを除いたものを使用
し、本培養は50mlの培地で、300mlの4個ひだ付
三角フラスコを使用した。活性測定法は実施例2
と同じである。 結果を第3表に示す。グリシンは排出に対する
効果のみでなく、全酵素活性を3〜7倍に上昇さ
せる。
[Table] is shown below.
Example 3 β-galactosidase activity was measured using Escherichia coli. The medium used was the same as the medium used in Example 2 except that sodium carbonate was removed, and for the main culture, 50 ml of the medium was used in four 300 ml pleated Erlenmeyer flasks. Activity measurement method is Example 2
is the same as The results are shown in Table 3. Glycine not only has an effect on excretion, but also increases total enzyme activity by 3-7 times.

【表】 内の数字は排出度を示す。
実施例 4 パン酵母を使用し、β−フラクトシダーゼ活性
を測定した。培地は、実施例1の培地から炭酸ナ
トリウムを除いたものを使用した。この培地100
mlを、300mlの三角フラスコに入れ、植菌し、30
〜32℃で48時間、種培養する。種培養液を滅菌水
に懸濁し、600nmの吸収が100付近となるように
調整し、その1mlを本培養培地に植菌し、本培養
を実施例1と同様に行つた。 酵素活性の測定は次のように行つた。5%サツ
カロース0.2ml、0.2Mリン酸緩衝液(PH7.5)0.1
ml、酵素液0.20〜0.1mlを含む、総量0.4mlの試料
液を、恒温槽中、40℃、30分間振とうしながら反
応させる。次にDNS試薬(福井作蔵著「還元糖
の定量法」19頁、1969年)1.0mlを加えて反応を
停止し、混合して100℃、5分間加熱後、水冷し、
蒸留水4mlを加え、500nmの吸収を測定する。対
照として、蒸留水0.4mlにDNS試薬1.0mlを加え、
同様に処理したものを使用する。1分間に還元糖
をグルコースとして1マイクロモル生成する酵素
量を1単位とする。 結果を第4表に示す。
[Table] The numbers in the table indicate the degree of emission.
Example 4 Using baker's yeast, β-fructosidase activity was measured. The medium used was the medium of Example 1 except that sodium carbonate was removed. This medium 100
ml into a 300ml Erlenmeyer flask, inoculate, and
Incubate for 48 hours at ~32 °C. The seed culture solution was suspended in sterilized water and adjusted so that the absorption at 600 nm was around 100, and 1 ml of the suspension was inoculated into the main culture medium, and main culture was carried out in the same manner as in Example 1. Enzyme activity was measured as follows. 5% sutucarose 0.2ml, 0.2M phosphate buffer (PH7.5) 0.1
A total of 0.4 ml of sample solution containing 0.20 to 0.1 ml of enzyme solution is reacted in a constant temperature bath at 40°C for 30 minutes with shaking. Next, add 1.0 ml of DNS reagent (Sakuzo Fukui, "Determination of reducing sugars", p. 19, 1969) to stop the reaction, mix and heat at 100°C for 5 minutes, then cool with water.
Add 4 ml of distilled water and measure the absorption at 500 nm. As a control, add 1.0 ml of DNS reagent to 0.4 ml of distilled water.
Use the same treatment. The amount of enzyme that produces 1 micromole of reducing sugar as glucose per minute is defined as 1 unit. The results are shown in Table 4.

【表】 排出度を示す。
実施例 5 実施例2において、硫酸マンガンの代りに種々
のマンガン化合物を用いて、β−ガラクトシダー
ゼ活性を調べた。培養は、300mlの三角フラスコ
にて、50mlの培地を用いて行い、48時間後に酵素
活性を測定した。結果を第5表に示す。
[Table] Shows the degree of emission.
Example 5 In Example 2, β-galactosidase activity was investigated using various manganese compounds instead of manganese sulfate. Culture was performed in a 300 ml Erlenmeyer flask using 50 ml of medium, and enzyme activity was measured 48 hours later. The results are shown in Table 5.

【表】 出度を示す。
実施例 6 遺伝子組換えによりセルラーゼ生産能を獲得し
た大腸菌によるセルラーゼの菌体外生産 大腸菌(E.coli.HB101)に好アルカリ性バチ
ルスNo.N−4のDNAを組みこみ、セルラーゼを
生産するようになつた大腸菌についてグリシン無
添加時とグリシン1.0%添加の場合の菌体外セル
ラーゼ活性を測定した。使用した好アルカリ性バ
チルスNo.N−4のセルラーゼ生産については掘越
ら(カナデイアン・ジヤーナル・オブ・マイクロ
バイオロジイ(Canadian Journal of
Microbiology)30巻p−774〜779、1984年)が
記述し、大腸菌へのセルラーゼ遺伝子の組換え実
験と得られたpNK−1、pNK−2株のアルカリ
セルラーゼ生産については指原らの報告(ジヤー
ナル・オブ・バクテリオロジイ(Journal of
Bacteriology)158巻p503〜506、1984年)に記
載されている。 培地はブレイン・ハート・インフユージヨン
(Brain Heart Infusion)培地(デイフコ
(Difco)社製)に30μg/mlのアンピシリンを加
えたものを使用した。培地は300mlの2個ひだ付
三角フラスコに50mlの培地を入れ一晩前培養した
培養液1.0mlを加えて37℃24時間培養後、遠心上
澄液の活性を比較した。活性はカルボキシメチル
セルロースナトリウム塩0.5%水溶液0.25ml、M
−炭酸ナトリウム0.05mlおよび培養の遠心上澄液
0.2mlを40℃30分反応後、DNS試薬(“還元糖の
定量法”、福井作蔵編、東京大学出版会発行1969
年、19頁)1.0mlを加え、100℃5分煮沸後、水冷
し、3.0mlの蒸留水を加えて混合し、500nmの吸
収を測定し、グルコース量に換算した。この条件
で1分間に1μmoleのグルコースを生産するよう
な酵素量を1単位とした。 指原らの報告によればpNK−1では全活性の
95.6%、pNK−2では86.1%が、菌体内に存在す
る。これらの菌体の活性がグリシン添加培養によ
り培養液中に排出(分泌)されたゝめ、本実施例
での菌体外活性が高くなるものと考えられる。結
果を第6表に示す。
[Table] Shows the degree of occurrence.
Example 6 Extracellular production of cellulase using Escherichia coli that has acquired the ability to produce cellulase through genetic recombination The DNA of alkalophilic Bacillus No. N-4 was incorporated into Escherichia coli (E.coli.HB101) to produce cellulase. The extracellular cellulase activity of mature E. coli was measured when no glycine was added and when 1.0% glycine was added. The cellulase production of the alkaliphilic Bacillus No. N-4 used was described by Horikoshi et al. (Canadian Journal of Microbiology).
Microbiology, Vol. 30, pp. 774-779, 1984), and Sashihara et al.'s report ( Journal of Bacteriology
Bacteriology) Vol. 158, p. 503-506, 1984). The medium used was Brain Heart Infusion medium (manufactured by Difco) to which 30 μg/ml ampicillin was added. 50 ml of the medium was placed in two 300 ml pleated Erlenmeyer flasks, 1.0 ml of the culture solution that had been precultured overnight was added, and after culturing at 37°C for 24 hours, the activity of the centrifuged supernatant was compared. Activity is carboxymethylcellulose sodium salt 0.5% aqueous solution 0.25ml, M
- 0.05 ml of sodium carbonate and centrifuged supernatant of the culture.
After reacting 0.2 ml at 40℃ for 30 minutes, add DNS reagent (“Determination of reducing sugars”, edited by Sakuzo Fukui, published by the University of Tokyo Press, 1969).
2000, p. 19) was added, boiled at 100°C for 5 minutes, cooled with water, added 3.0 ml of distilled water, mixed, measured the absorption at 500 nm, and converted to the amount of glucose. The amount of enzyme that would produce 1 μmole of glucose per minute under these conditions was defined as one unit. According to a report by Sashihara et al., the total activity of pNK-1 is
95.6% and 86.1% of pNK-2 exist inside the bacterial body. It is thought that the activity of these microbial cells was excreted (secreted) into the culture medium by glycine-added culture, so that the extracellular activity in this example was increased. The results are shown in Table 6.

【表】 活性は培養液1リツトル中に排出された酵素単
位。 実施例 7 トランスアミナーゼの排出(分泌) 標準培地として1中に次の成分を含むものを
使用した。グルコース又は可溶性でんぷん又は乳
糖15g、ポリペプトン5g、イーストエキス5
g、リン酸二カリウム1.0g、硫酸マグネシウム
7水和物0.2g、硫酸マンガン(4又は5)水和
物0.02g、生育に必要な場合は肉エキス3.0g、
好アルカリ性細菌の場合は炭酸ナトリウム10gを
別途殺菌して加えた。細菌株は300mlのエルレン
マイヤーフラスコ又は2個ひだ付三角フラスコ又
は4個ひだ付三角フラスコに50mlの培地を入れ、
前培養液0.5mlを植菌し、好アルカリ性細菌およ
びバチルス・サチルス(Bacillus subtilis)は37
℃その他は30〜32℃で回転振とう機(200回転/
分)で培養した。アセトバクダー・パスツリアヌ
ス(Acetobacter pasteurianus)およびグルコ
ノバクター・ロゼウス(Glconobacter roseus)
は初発PH5.7、好アルカリ性細菌は初発PH10.3、
その他はPH7.1とした。グルタミン酸−オキザロ
酢酸トランスフエラーゼ(アミノ基転移酵素、以
下GOT)、グルタミン酸−ピルビン酸トランスア
ミナーゼ(GPT)は和光純薬工業製の測定試薬
を使用した。 すなわちGOT測定は0.2mlの基質液(4mMα−
ケトグルタール酸、200mMのL−アスパラギン
酸、0.1Mのリン酸緩衝液を含む)と0.05mlの酵
素液(培養後の遠心上澄液)を40℃15分又は30分
反応させ、0.1mlの発色液(8mMの2,4ジニト
ロフエニルヒドラジン、5%酢酸、95%のジメチ
ルホルムアミドから成る)を加えて40℃10分発色
させ、0.4mlの0.5N−水酸化ナトリウムを加え、
40℃10分後520nmの吸収を測定した。GPTの場
合基質液は2mMのα−ケトグルタール酸、
200mMのDL−アラニン、0.1Mのリン酸緩衝液
を含むものを使用し、GOT、GPT共PH7.4であ
る。この条件で1分間に1μモルのピルピン酸を
生じる酵素量を1単位とした。結果を第7表に示
す。
[Table] Activity is the enzyme unit excreted in 1 liter of culture solution. Example 7 Excretion (secretion) of transaminase A standard medium containing the following components was used as a standard medium. 15g glucose or soluble starch or lactose, 5g polypeptone, 5g yeast extract
g, dipotassium phosphate 1.0g, magnesium sulfate heptahydrate 0.2g, manganese (4 or 5) sulfate hydrate 0.02g, meat extract 3.0g if necessary for growth,
In the case of alkaliphilic bacteria, 10 g of sodium carbonate was separately sterilized and added. For the bacterial strain, put 50 ml of culture medium into a 300 ml Erlenmeyer flask, two pleated Erlenmeyer flasks, or four pleated Erlenmeyer flasks.
Inoculate 0.5 ml of preculture solution, and inoculate 37 ml of alkaliphilic bacteria and Bacillus subtilis.
℃ Others at 30 to 32℃ using a rotary shaker (200 rpm/
cultured for 1 minute). Acetobacter pasteurianus and Glconobacter roseus
The initial pH is 5.7, and the initial pH for alkaliphilic bacteria is 10.3.
Others were set to PH7.1. For glutamate-oxaloacetate transferase (aminotransferase, hereinafter referred to as GOT) and glutamate-pyruvate transaminase (GPT), measurement reagents manufactured by Wako Pure Chemical Industries, Ltd. were used. In other words, for GOT measurement, 0.2 ml of substrate solution (4mM α-
(containing ketoglutaric acid, 200mM L-aspartic acid, 0.1M phosphate buffer) and 0.05ml of enzyme solution (centrifuged supernatant after culture) were reacted at 40°C for 15 or 30 minutes, and 0.1ml of color was developed. A solution (consisting of 8mM 2,4 dinitrophenylhydrazine, 5% acetic acid, 95% dimethylformamide) was added to develop color at 40°C for 10 minutes, and 0.4ml of 0.5N sodium hydroxide was added.
Absorption at 520 nm was measured after 10 minutes at 40°C. In the case of GPT, the substrate solution is 2mM α-ketoglutaric acid,
A solution containing 200mM DL-alanine and 0.1M phosphate buffer is used, and both GOT and GPT have a pH of 7.4. The amount of enzyme that produced 1 μmol of pyrupic acid per minute under these conditions was defined as 1 unit. The results are shown in Table 7.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明にしたがい、グリシンおよび/またはマ
ンガン化合物を培地に添加して微生物を培養する
ことにより、微生物が生産する酵素などの有用な
生理活性物質の全生産量(菌体内と菌体外の総
和)を大巾に増大させ、しかも、菌体外に排出さ
れる生産物質の比率を著しく向上することができ
る。 実施例 8 更に、マンガン化合物および/またはグリシン
の添加培養により、本来菌体外に生産される酵素
の生産量もまた増加させることができる。好アル
カリ性バチルスをはじめとして一般にバチルス属
の菌株で可能である例として好アルカリ性バチル
スNo.C−125(FERMBP−469)によるキシラナ
ーゼの生産についての例を第8表に示す。 培地は、1中にキシラン5.0g、ポリペプト
ン10.0g、イーストエキス(デイフコ社製)5.0
g、リン酸二カリウム1.0g、硫酸マグネシウ
ム・7水和物0.2g、炭酸ナトリウム10gを含む。
但し炭酸ナトリウムは、別殺菌する。2個ひだ付
300mlのエルレンマイヤーフラスコに50mlの培地
を作り、1晩培養した前培養液0.5mlを植菌し、
37℃24時間培養する。遠心上清の活性を測定す
る。活性は、酵素液(遠心上清液)0.05mlに0.5
mlの0.5%キシラン液(PH7.0の0.05Mリン酸緩衝
液にとかしたもの)を加えて40℃10分反応させ、
DNS試薬1.0mlを加え100℃5分加熱後、水冷、
30mlの蒸留水を加えて510nmの吸収を測定した。
1分間に100μgのキシロースを生産する酵素量
を1単位とした。 第 8 表添加物 培養液上清の活性(単位/ml) 無添加 1.00 硫酸マンガン200μM 3.60 グリシン 0.5% 4.02 〃 1.0% 4.08 硫酸マンガン200μM+グリシン1.0% 3.46
According to the present invention, by culturing microorganisms with the addition of glycine and/or manganese compounds to a medium, the total production amount (sum of intracellular and extracellular substances) of useful physiologically active substances such as enzymes produced by microorganisms. can be greatly increased, and the ratio of produced substances excreted outside the microbial cells can be significantly improved. Example 8 Furthermore, by culturing with the addition of manganese compounds and/or glycine, the production amount of enzymes that are originally produced outside the bacterial cells can also be increased. Table 8 shows an example of xylanase production by alkalophilic Bacillus No. C-125 (FERMBP-469), which is possible with strains of the genus Bacillus, including alkalophilic Bacillus. The medium contains 5.0 g of xylan, 10.0 g of polypeptone, and 5.0 g of yeast extract (manufactured by Difco).
Contains 1.0 g of dipotassium phosphate, 0.2 g of magnesium sulfate heptahydrate, and 10 g of sodium carbonate.
However, sodium carbonate is sterilized separately. 2 pieces pleated
Prepare 50 ml of medium in a 300 ml Erlenmeyer flask, inoculate it with 0.5 ml of preculture that was cultured overnight,
Incubate at 37℃ for 24 hours. Measure the activity of the centrifuged supernatant. The activity is 0.5 per 0.05 ml of enzyme solution (centrifugal supernatant).
Add ml of 0.5% xylan solution (dissolved in 0.05M phosphate buffer with pH 7.0) and react at 40℃ for 10 minutes.
Add 1.0ml of DNS reagent and heat at 100℃ for 5 minutes, then cool with water.
30 ml of distilled water was added and the absorption at 510 nm was measured.
The amount of enzyme that produced 100 μg of xylose per minute was defined as 1 unit. Table 8 Additives Activity of culture supernatant (unit/ml) No addition 1.00 Manganese sulfate 200 μM 3.60 Glycine 0.5% 4.02 〃 1.0% 4.08 Manganese sulfate 200 μM + glycine 1.0% 3.46

Claims (1)

【特許請求の範囲】 1 菌体内に酵素を産生する微生物を、マンガン
化合物及びグリシンからなる群から選ばれる少な
くとも1種の化合物を含む培地であつて、マンガ
ン化合物のみを含む場合にはその含有量が0.5μM
以上であり、グリシンのみを含む場合にはその含
有量が0.5%以上である培地で培養し、菌体内に
産生する酵素量を増加させ、且つ該酵素の菌体外
への排出(分泌)を促進させ、培地から該酵素を
採取することを特徴とする該酵素の製造方法。 2 微生物が細菌又は酵母である特許請求の範囲
第1項記載の方法。
[Scope of Claims] 1. A medium containing at least one compound selected from the group consisting of manganese compounds and glycine, in which microorganisms that produce enzymes within their bodies are cultured, and in the case of containing only manganese compounds, the content thereof is 0.5μM
If the above is the case, if it contains only glycine, it is cultured in a medium with a glycine content of 0.5% or more to increase the amount of enzyme produced within the bacterial body and to inhibit the excretion (secretion) of the enzyme from the bacterial body. A method for producing the enzyme, which comprises accelerating the production of the enzyme and collecting the enzyme from a culture medium. 2. The method according to claim 1, wherein the microorganism is a bacteria or yeast.
JP18129584A 1984-08-30 1984-08-30 Cultivation of microorganism Granted JPS6181775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18129584A JPS6181775A (en) 1984-08-30 1984-08-30 Cultivation of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18129584A JPS6181775A (en) 1984-08-30 1984-08-30 Cultivation of microorganism

Publications (2)

Publication Number Publication Date
JPS6181775A JPS6181775A (en) 1986-04-25
JPH0452114B2 true JPH0452114B2 (en) 1992-08-20

Family

ID=16098179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18129584A Granted JPS6181775A (en) 1984-08-30 1984-08-30 Cultivation of microorganism

Country Status (1)

Country Link
JP (1) JPS6181775A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695948B2 (en) * 1991-06-05 1994-11-30 エム・ディ・リサーチ株式会社 Medium and method for producing peptide or protein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892579A (en) * 1972-03-16 1973-11-30
JPS5443595A (en) * 1977-09-12 1979-04-06 Showa Electric Wire & Cable Co Method of forming bridged polyethylene cable connector
JPS5612111A (en) * 1979-07-10 1981-02-06 Matsushita Electric Ind Co Ltd Electric power supply unit of electric power amplifier
JPS5675094A (en) * 1979-11-27 1981-06-20 Kitasato Inst:The Medium for preparing antibiotic
JPS59109187A (en) * 1982-11-19 1984-06-23 ジェネックス・コーポレイション Enzymatic synthesis of l-serine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892579A (en) * 1972-03-16 1973-11-30
JPS5443595A (en) * 1977-09-12 1979-04-06 Showa Electric Wire & Cable Co Method of forming bridged polyethylene cable connector
JPS5612111A (en) * 1979-07-10 1981-02-06 Matsushita Electric Ind Co Ltd Electric power supply unit of electric power amplifier
JPS5675094A (en) * 1979-11-27 1981-06-20 Kitasato Inst:The Medium for preparing antibiotic
JPS59109187A (en) * 1982-11-19 1984-06-23 ジェネックス・コーポレイション Enzymatic synthesis of l-serine

Also Published As

Publication number Publication date
JPS6181775A (en) 1986-04-25

Similar Documents

Publication Publication Date Title
CN109679864B (en) Strain for producing transglycosylation active beta-galactosidase and method for producing galactooligosaccharide by using same
CA1311701C (en) Quality improvement of alcoholic liquors
JPS61135583A (en) Bacteriolytic enzyme product obtained from streptomyces bacteria, its production and strain suitable therefor
Godtfredsen et al. Occurrence of α-acetolactate decarboxylases among lactic acid bacteria and their utilization for maturation of beer
EP1283888B1 (en) Fructosyltransferases (inulosucrase and levansucrase) from lactobacillus reuteri
US4929557A (en) Thermostable amylases and pullulanases from two anaerobic microorganisms
JPH0452114B2 (en)
JP2002101876A (en) New beta-glucosidase
WO1996016166A1 (en) Novel keratan sulfate hydrolase
KR20140012932A (en) Method for preparing galactooligosaccharide using lactobacillus extract and whey
US5861289A (en) Heat-resistant β-galactosyltransferase, its production process and its use
US5153128A (en) Heat-resistant β-galactosyltransferase, its production process and its use
JP4380874B2 (en) Alkaline cellulase gene
JPS6027389A (en) Fusion and regeneration of protoplast of bacterium belonging to genus lactobacillus
JP2572567B2 (en) Enzyme production method
JPH0763358B2 (en) Lactic acid bacteria starter for silage preparation
JP3556704B2 (en) β-galactosidase
US6897047B1 (en) Heat-resistant mannose isomerase, process for producing the same and process for producing mannose by using the same
JP2518218B2 (en) Method for producing microbial cell
JPH062057B2 (en) Novel β-galactosidase A and method for producing the same
JP3516105B2 (en) Mutanase producing microorganism and mutanase
JP2699078B2 (en) Muscin degrading enzyme and its production method
CN117821336A (en) Culture, enzyme preparation, and preparation method and application thereof
JP2512769B2 (en) Method for producing yeast cell containing β-galactosidase
KR100398063B1 (en) Acid-tolerant and bile acid-tolerant Bifidobacterium longum BO-11 and its use