JPH0452046A - Manufacture of metal porous body in collapsible mold - Google Patents

Manufacture of metal porous body in collapsible mold

Info

Publication number
JPH0452046A
JPH0452046A JP16105190A JP16105190A JPH0452046A JP H0452046 A JPH0452046 A JP H0452046A JP 16105190 A JP16105190 A JP 16105190A JP 16105190 A JP16105190 A JP 16105190A JP H0452046 A JPH0452046 A JP H0452046A
Authority
JP
Japan
Prior art keywords
mold
molten metal
calcium carbonate
porous
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16105190A
Other languages
Japanese (ja)
Other versions
JPH0626747B2 (en
Inventor
Yoshihiro Yoshida
吉田 良広
Chitose Hayashi
千歳 林
Shigeru Kuramoto
蔵本 繁
Kiyoshi Suzuki
清 鈴木
Hideo Nakamura
英夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO KK
TOYAMA PREF GOV
Toyama Prefecture
Nakamura Seisakusho KK
Original Assignee
MIYOSHI GOKIN KOGYO KK
TOYAMA PREF GOV
Toyama Prefecture
Nakamura Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO KK, TOYAMA PREF GOV, Toyama Prefecture, Nakamura Seisakusho KK filed Critical MIYOSHI GOKIN KOGYO KK
Priority to JP2161051A priority Critical patent/JPH0626747B2/en
Publication of JPH0452046A publication Critical patent/JPH0452046A/en
Publication of JPH0626747B2 publication Critical patent/JPH0626747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve collapsibility of a mold after solidifying molten metal and to facilitate removal of the mold by using slurry-state molding material containing calcium carbonate at the specific quantity or more. CONSTITUTION:In a flask for molding, the slurry-state molding material containing >=20wt% calcium carbonate, is filled up. As this molding material, the calcium carbonate of fossil shell flower and one or more kinds of silica, mullite, fused silica, alumina, chamotte, zirconia, gypsum, water-soluble phenol resin and organic ester at the same time, are used. Related to the collapse and removal of molding material after pouring and solidifying the molten metal, by absorbing moisture in the mold under condition of incorporating this into a humidifying box, this can be self-collapsed and even in the case of being impossible to self-collapse to 100%, by blowing the compressed air to the mold and auxiliarily executing sand blasting treatment, the molding sand can be surely removed. Further, after filling up and solidifying the molten metal, even by blowing the compressed air and executing the sand blasting treatment without absorbing the moisture, the collapse and removal of molding material can be surely executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種フィルター、熱交換用部材、触媒担体、デ
ミスタ−2蓄熱器、蓄冷器、断熱材、装飾品、照明機器
等に使用されるに崩壊性鋳型による金属多孔体の製造方
法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can be used in various filters, heat exchange members, catalyst carriers, demister-2 heat storage devices, cold storage devices, heat insulating materials, ornaments, lighting equipment, etc. The present invention relates to a method of manufacturing a porous metal body using a mold.

従来の技術 従来、崩壊性鋳型による金属多孔体の製造方法には、特
公昭56−8698号公報記載の発明、特公昭56−3
2059号公報記載の発明等が知られている。これらの
公知例は、三次元網状構造の多孔質樹脂体の三次元空隙
に、石膏を水で溶解したスラリー状の鋳型材料を充填し
た後、加熱により多孔質樹脂体を消失させて石膏製の鋳
型を形成する。そして、多孔質樹脂体の消失により形成
した石膏鋳型の三次元空隙に、溶融金属を充填して凝固
させ、その後、鋳型を除去する方法が用いられている。
Prior Art Conventionally, methods for manufacturing porous metal bodies using collapsible molds include the invention described in Japanese Patent Publication No. 56-8698 and the invention described in Japanese Patent Publication No. 56-3.
The invention described in No. 2059 is known. In these known examples, after filling the three-dimensional voids of a porous resin body with a three-dimensional network structure with a slurry-like molding material made by dissolving gypsum in water, the porous resin body is heated to disappear. Form a mold. A method is used in which the three-dimensional voids in the plaster mold formed by the disappearance of the porous resin body are filled with molten metal, solidified, and then the mold is removed.

この鋳型の除去は、高圧水、圧縮空気、サンドブラスト
等により行われるが、石膏製の鋳型は崩壊性が悪く、溶
融金属を凝固して形成した三次元網状多孔質金属に、鋳
型の石膏が残留してしまう欠点を有している。また、三
次元網状多孔質金属は、三次元網状の格子太さが一般的
に1+ue以下で空孔の直径も数輪論であって、構造物
としての強度が弱いものである。そのため、石膏の除去
率を高めるため、高圧水、圧縮空気、サンドブラスト等
の吹き付は圧力を高めると、三次元網状多孔質金属を破
損したり、変形を生じるものとなっていた。
This removal of the mold is carried out using high-pressure water, compressed air, sandblasting, etc. However, the gypsum mold has poor collapsibility, and the gypsum of the mold remains in the three-dimensional mesh porous metal formed by solidifying molten metal. It has the disadvantage of causing In addition, the three-dimensional network porous metal generally has a three-dimensional network lattice thickness of 1+ue or less, and the diameter of the pores is also a number theory, so the strength as a structure is weak. Therefore, when spraying with high-pressure water, compressed air, sandblasting, etc. increases the pressure to increase the removal rate of gypsum, the three-dimensional network porous metal is damaged or deformed.

発明が解決しようとする課題 本発明は上述のごとき課題を解決しようとするものであ
って、崩壊性調型による金属多孔体の製造方法において
、溶融金属が凝固した後の鋳型の崩壊性を高め、鋳型の
除去を容易とすることにより、三次元網状多孔質金属を
破損したり、変形を生じることなく製造することを可能
にしようとするものである。
Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned problems, and is to improve the collapsibility of the mold after the molten metal has solidified in a method for manufacturing a porous metal body by collapsible molding. The present invention aims to make it possible to manufacture a three-dimensional reticular porous metal without damaging or deforming it by facilitating the removal of the mold.

課題を解決するための手段 本発明は上述のごとき課題を解決するため、三次元網状
構造の多孔質樹脂体の三次元空隙に、炭酸カルシウムを
20−t%以上含有するスラリー状の鋳型材料を充填し
た後、加熱により多孔質樹脂体を消失させて鋳型を形成
し、多孔質樹脂体の消失により形成した鋳型の三次元空
隙に、溶融金属を充填して凝固させ、その後、鋳型を崩
壊させて除去するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a slurry mold material containing 20-t% or more of calcium carbonate in the three-dimensional voids of a porous resin body having a three-dimensional network structure. After filling, the porous resin body is heated to disappear to form a mold, the three-dimensional voids in the mold formed by the disappearance of the porous resin body are filled with molten metal and solidified, and then the mold is collapsed. It is to be removed.

また、鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型に水分を吸収させ、自己崩壊させて行うものであって
も良い。
Further, the mold may be collapsed and removed by allowing the mold to absorb moisture and self-collapse after filling with molten metal and solidifying.

また、鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型に圧縮空気を吹き付けて行うものであっても良い。
Moreover, the collapse and removal of the mold may be performed by blowing compressed air onto the mold after filling and solidifying the molten metal.

また、鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型にサンドブラスト処理を行うものであっても良い。
Moreover, the collapse and removal of the mold may be performed by sandblasting the mold after filling and solidifying the molten metal.

また、炭酸カルシウム源としては、貝化石フラワーを用
いても良い。
Moreover, fossil shell flour may be used as a source of calcium carbonate.

作  用 本発明は上述のごとく構成したものであるから、ウレタ
ン発泡体、スポンジ等の三次元網状構造の多孔質樹脂体
を、成形型枠内に挿入する。そして、この成形型枠内に
、炭酸カルシウムを20wt%以上含有するスラリー状
の鋳型材料を充填することにより、多孔質樹脂体の三次
元空隙に鋳型材料を充填する。この鋳型材料は、貝化石
フラワー等の炭酸カルシウムを20wt%以上含有して
いるが、同時に珪砂、ムライト、溶融シリカ、アルミナ
、シャモット、ジルコン、石膏、水溶性フェノール樹脂
、有機エステルの一種若しくは複数種を同時に鋳型材料
として用いるものである。炭酸カルシウム源としての貝
化石フラワーは、貝殻を主体とする動物の海底堆積物が
長年の時間経過によって、海中から隆起して形成された
、石灰質砂岩層から産出する炭酸カルシウム、珪砂、粘
度、その他の不純物から成るものである。鋳型の造形方
法としては通常のショウプロセス法や、プラスターモー
ルド法等による事もできるが、水溶性フェノール樹脂を
粘結剤、有機エステルを硬化剤とする注型タイプの造形
方法が好ましい。
Function Since the present invention is configured as described above, a porous resin body having a three-dimensional network structure such as urethane foam or sponge is inserted into a molding frame. Then, by filling the molding frame with a slurry-like molding material containing 20 wt % or more of calcium carbonate, the three-dimensional voids of the porous resin body are filled with the molding material. This mold material contains 20 wt% or more of calcium carbonate such as shell fossil flour, but also one or more of silica sand, mullite, fused silica, alumina, chamotte, zircon, gypsum, water-soluble phenolic resin, and organic ester. At the same time, it is used as a mold material. Fossil shell flower as a source of calcium carbonate is calcium carbonate, silica sand, viscosity, etc. produced from the calcareous sandstone layer, which was formed by the seafloor sediments of animals, mainly shells, rising from the sea over many years. It consists of impurities. Although the mold may be formed by the usual show process method or plaster molding method, a casting type forming method using a water-soluble phenol resin as a binder and an organic ester as a hardening agent is preferable.

また、鋳型材料中の貝化石フラワー等の炭酸カルシウム
は、含有量が20wt%未満では崩壊性が悪くなり、鋳
型の除去が不十分となり、除去工程で多孔質金属に損傷
を生じ易いものとなる。
In addition, if the content of calcium carbonate such as shell fossil flour in the mold material is less than 20 wt%, the disintegration becomes poor, the mold cannot be removed sufficiently, and the porous metal is likely to be damaged during the removal process. .

次に鋳型材料の自然硬化を待って成形型枠から取り出し
、加熱炉に挿入する。この加熱炉内で、800℃〜1.
000℃の温度範囲で加熱焼成することにより、多孔質
樹脂体を消失させて鋳型を形成する。
Next, wait for the mold material to harden naturally, then take it out of the mold and insert it into a heating furnace. In this heating furnace, 800°C to 1.
By heating and baking in a temperature range of 000° C., the porous resin body disappears and a mold is formed.

この加熱焼成により鋳型材料を構成する炭酸カルシウム
は、大部分が酸化カルシウムとなり、崩壊し易いものと
なる。
By heating and firing, most of the calcium carbonate constituting the mold material becomes calcium oxide, and becomes easily disintegrated.

次に、多孔質樹脂体の消失により形成した鋳型の、三次
元空隙に溶融金属を充填する。この多孔質樹脂体の消失
により形成した鋳型は、三次元網状の格子太さが一般的
に1111m以下で空孔の直径も数lであるから、グラ
ビテイによる鋳造法では鋳型内の空隙に溶融金属を確実
に充填出来ない、そのため溶融金属の充填においては、
鋳型を充填型枠内に挿入して行う、この充填型枠は、通
気性耐熱物により内部を上下に区分し、上部を、鋳型挿
入用の注湯室とし、下部を、真空ポンプ等に接続した吸
引室とする−そして、注湯室に溶融金属を加圧して注湯
し、通気性耐熱物を介して吸引室に排気をすることによ
り行えば、鋳型に確実な溶融金属の充填を行うことがで
きる。また加圧しての注湯を行わず、真空ポンプ等を作
動し吸引室を減圧状態とし、通気性耐熱物を介して注湯
室を減圧しなから注湯を行うものであっても良い。また
更には、減圧と加圧とを同時に行っても良い。また遠心
鋳造法を用いることも勿論可能である。
Next, the three-dimensional voids in the mold formed by the disappearance of the porous resin body are filled with molten metal. The mold formed by the disappearance of this porous resin body generally has a three-dimensional mesh lattice thickness of 1111 m or less, and the diameter of the pores is several liters. Therefore, when filling with molten metal,
The mold is inserted into the filling mold.The filling mold is divided into upper and lower parts using breathable heat-resistant material.The upper part serves as a pouring chamber for inserting the mold, and the lower part is connected to a vacuum pump, etc. - Then, by pressurizing and pouring molten metal into the pouring chamber and exhausting the air into the suction chamber through a breathable heat-resistant material, the mold can be reliably filled with molten metal. be able to. Alternatively, instead of pouring the hot water under pressure, a vacuum pump or the like may be operated to reduce the pressure in the suction chamber, and the hot water may be poured after reducing the pressure in the pouring chamber through an air-permeable heat-resistant material. Furthermore, depressurization and pressurization may be performed simultaneously. Of course, it is also possible to use a centrifugal casting method.

そして鋳型に注湯した溶融金属を凝固させ、その後、鋳
型を崩壊させて除去する。この鋳型の崩壊除去は、鋳型
材料が、貝化石フラワー等の炭酸カルシウムを20wt
%以上含有しているから、崩壊が容易で石膏を用いた場
合のごとく、崩壊不良を生じることがない。鋳型の崩壊
除去は、溶融金属の注湯凝固後に、鋳型を、加湿箱に収
納して水分を吸収させることにより行えば、自己崩壊さ
せる事が出来るし、100%の自己崩壊が出来ない場き
でも、鋳型に圧縮空気を吹き付けなり、サンドブラスト
処理を補助的に行うことで、鋳型の確実な除去を可能と
する。
Then, the molten metal poured into the mold is solidified, and then the mold is collapsed and removed. This mold disintegration removal requires that the mold material contains 20wt of calcium carbonate such as shellfish fossil flower.
% or more, it disintegrates easily and does not cause poor disintegration like when using gypsum. To remove mold collapse, self-collapse can be achieved by storing the mold in a humidifying box to absorb moisture after pouring molten metal and solidifying it, but in cases where 100% self-collapse is not possible. However, by blowing compressed air onto the mold and performing supplementary sandblasting, it is possible to reliably remove the mold.

また、鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型に水分の吸収を行わせずに、圧縮空気を吹き付けたり
サンドブラスト処理を行うものであっても、鋳型の崩壊
を確実に行うことが出来るものである。
Furthermore, mold collapse cannot be removed reliably even if the mold is sprayed with compressed air or sandblasted without absorbing moisture after filling with molten metal and solidifying. It is possible.

実施例1 以下本発明の一実施例を図面に於いて説明すれば、(1
)はウレタン発泡体の三次元網状構造の多孔質樹脂体で
、縦501m1l+、横501、高さ1801の寸法と
し、格子太さ0.04〜0.6+u+、セル粒径的2−
輪、セル数約13個(個/25+1T11)に形成した
。そして、この多孔質樹脂体〈2)を第1図に示すごと
く成形型枠(2)内に挿入する。そして、 貝化石フラワー(CaCo、80wt%含有、300〜
350メツシーL)  30wt%ムライト(150〜
270メツシユ)    40wt%水溶性フェノール
樹脂(固形分50wt%)  9wt%有機エステル 
           3wt%珪酸カリウム    
         3wt%水           
               15wt%以上の組成
を混合調整したスラリー状の鋳型材料(3)を、第2図
に示すごとく成型型枠(2)内に充填する。この鋳型材
料(3)の成型型枠(2)への充填後、多孔質樹脂体(
1)内に取り込まれている気泡を脱気除去することによ
って、三次元網状構造のウレタン多孔質樹脂体(1)の
空隙部に鋳型材料(3)が均一に充填される。
Example 1 An example of the present invention will be described below with reference to the drawings.
) is a porous resin body with a three-dimensional network structure of urethane foam, with dimensions of 501 ml+ in length, 501 ml in width, and 1801 in height, lattice thickness of 0.04 to 0.6+u+, and cell particle size of 2-
A ring was formed with approximately 13 cells (cells/25+1T11). Then, this porous resin body (2) is inserted into a molding frame (2) as shown in FIG. And fossil shell flower (CaCo, containing 80wt%, 300~
350 Metsushi L) 30wt% Mullite (150~
270 mesh) 40wt% water-soluble phenolic resin (solid content 50wt%) 9wt% organic ester
3wt% potassium silicate
3wt% water
A slurry mold material (3) mixed and adjusted to have a composition of 15 wt% or more is filled into a mold flask (2) as shown in FIG. After filling the mold material (3) into the mold flask (2), the porous resin body (
1) By degassing and removing the air bubbles trapped therein, the voids of the porous urethane resin body (1) having a three-dimensional network structure are uniformly filled with the mold material (3).

次に鋳型材料(3)を、自然硬化を待って成形型枠(2
)から取り出し、加熱炉(4)に挿入する。この加熱炉
内で、自然硬化後の鋳型材料(3)を、昇温速度2℃/
1nで850℃まで加熱焼成し、多孔質樹脂体(1)を
消失させるとともに850℃で3時間保持することによ
り、鋳型材料(3)の炭酸カルシウムの大部分を酸化カ
ルシウムに変化させた。
Next, add the mold material (3) to the molding frame (2) after waiting for it to harden naturally.
) and insert it into the heating furnace (4). In this heating furnace, the naturally hardened mold material (3) is heated at a heating rate of 2°C/
Most of the calcium carbonate in the mold material (3) was changed to calcium oxide by heating and firing at 1n to 850°C to eliminate the porous resin body (1) and holding at 850°C for 3 hours.

次に、多孔質樹脂体(1)の消失により形成した鋳型(
5)を、700℃まで冷却し、第4図に示すごとく充填
型枠(6)内に挿入する。この充填型枠(6)は、中央
部を通気性耐熱物(7)とした区画壁(9)により、内
部を上下に区分し、上部を、鋳型(5)挿入用の注湯室
(8)とし、下部を、真空ポンプ等l\の接続口(10
)を設けた吸引室(11)としている。そして注湯室〈
8〉に高純度アルミニュウム溶湯から成る溶融金属(1
2)を、減圧法により注湯した。この減圧法による注湯
は、接続口(10)に接続した真空ポンプ(図示せず)
を作動し、吸引室(11)を減圧状態とし、通気性耐熱
物(7)を介して注湯室(8)を減圧しなから注湯を行
った。
Next, the mold formed by the disappearance of the porous resin body (1) (
5) is cooled to 700° C. and inserted into a filling mold (6) as shown in FIG. This filling mold (6) is divided into upper and lower parts by a partition wall (9) with a breathable heat-resistant material (7) in the center, and the upper part is a pouring chamber (8) for inserting the mold (5). ), and connect the bottom part to the connection port (10) for a vacuum pump, etc.
) is provided as a suction chamber (11). And pouring room〈
8> Molten metal made of high purity molten aluminum (1
2) was poured using a reduced pressure method. Pouring by this depressurization method is performed using a vacuum pump (not shown) connected to the connection port (10).
was activated, the suction chamber (11) was brought into a reduced pressure state, and the pouring chamber (8) was poured through the air-permeable heat-resistant material (7) without being depressurized.

次に、室温まで鋳型(5)を冷却した後、鋳型(5)を
第5図に示すごとく、加湿箱(13)に収納して湿度1
00%雰囲気内に1時間放置することにより、水分を鋳
型(5)に吸収させた。
Next, after cooling the mold (5) to room temperature, the mold (5) is stored in a humidifying box (13) as shown in FIG.
The mold (5) was allowed to absorb moisture by leaving it in a 0.00% atmosphere for 1 hour.

次に、第6図に示すごとく加湿箱(13)から鋳型(5
)を取り出し、放置することにより自己崩壊させ、三次
元網状の多孔質金属(14)を形成した。
Next, as shown in Figure 6, from the humidifying box (13) to the mold (5
) was taken out and allowed to stand to self-destruct, forming a three-dimensional network porous metal (14).

次いで多孔質金属(14)内に残留した鋳型(5)を、
圧縮空気を数分間あてて除去した。
Next, the mold (5) remaining in the porous metal (14) is
It was removed by applying compressed air for several minutes.

実施例2 炭酸カルシウム(300〜350メツシーL)  35
wt%珪砂(250〜300メツシユ)       
35wt%水溶性フェノール樹脂(固形分50wt%)
 8−t%有機エステル            3w
t%珪酸カリウム            4wt%水
                         
 15wt%以上の組成を混合調整したスラリー状の鋳
型材料を、実施例】と同一条件で鋳型造形、錆造、後処
理を行った。
Example 2 Calcium carbonate (300-350 Metsii L) 35
wt% silica sand (250-300 mesh)
35wt% water-soluble phenolic resin (solid content 50wt%)
8-t% organic ester 3w
t% potassium silicate 4wt% water
A slurry-like mold material having a composition of 15 wt% or more was mixed and subjected to mold molding, rust molding, and post-treatment under the same conditions as in Example.

比較例 上記実施例の鋳型材料(3)を、石膏75wL%と水2
5−t%を混合したスラリー状物に置き換え、他の条件
を同一にして三次元網状多孔質金属の製造を行った。た
だし、比較例の石膏鋳型に水分を吸収させると溶解して
ヘト付き、除去不能となるのて、上記の本発明実施例て
行った水分の吸収は、石膏鋳型には行っていない。また
条件の統一性を保つため、本発明の比較のための実施例
品でも水分の吸収は行っていない。
Comparative Example The mold material (3) of the above example was mixed with 75wL% of gypsum and 2% of water.
A three-dimensional network porous metal was produced by replacing the slurry with a mixed slurry of 5-t% and keeping the other conditions the same. However, if the gypsum mold of the comparative example were allowed to absorb moisture, it would dissolve and become sticky, making it impossible to remove, so the gypsum mold was not absorbed with the moisture that was carried out in the above-mentioned example of the present invention. In addition, in order to maintain uniformity of conditions, no moisture absorption was performed even in the example products for comparison of the present invention.

そして上記比較例の鋳型と本発明実施例の鋳型とを、サ
ンドブラスト処理または圧縮空気処理することにより、
鋳型の除去を行った。
Then, by sandblasting or compressed air treatment the mold of the comparative example and the mold of the example of the present invention,
The mold was removed.

まずサンドブラスト処理は、#1o00のカラスヒース
の砥粒を空気圧2 kgf/Cm2て行った。
First, sandblasting was performed using #1o00 crow heather abrasive grains at an air pressure of 2 kgf/Cm2.

本発明実施例の鋳型は、2分間の噴射により完全に除去
でき、多孔質金属にも損傷を生じなかった。これに対し
、比較例は2分間の噴射では殆ど鋳型の除去ができない
ため、10分間行った。その結果、多孔質金属の外周部
分の鋳型は除去出来るものの、多孔質金属の内部に鋳型
が残留した。
The mold of the present invention example could be completely removed by spraying for 2 minutes, and the porous metal was not damaged. On the other hand, in the comparative example, the mold could hardly be removed by spraying for 2 minutes, so spraying was carried out for 10 minutes. As a result, although the mold on the outer periphery of the porous metal could be removed, the mold remained inside the porous metal.

また多孔質金属の外周部分は損傷を生じた。Additionally, the outer peripheral portion of the porous metal was damaged.

次に圧縮空気のみにての処理は、空気圧4 kgf/c
II+2で行った。
Next, for processing using only compressed air, the air pressure is 4 kgf/c.
I went with II+2.

本発明実施例1.2の鋳型は3分間の噴射により、鋳型
は完全に除去でき、多孔質金属にも損傷を生しなかった
。これに対し、比較例は3分間の噴射では殆ど鋳型の除
去ができないため、10分間行った。その結果、多孔質
金属の外周部分の鋳型は除去出来るものの、多孔質金属
の内部に鋳型か残留した。
The mold of Example 1.2 of the present invention could be completely removed by spraying for 3 minutes, and the porous metal was not damaged. On the other hand, in the comparative example, the mold could hardly be removed by spraying for 3 minutes, so spraying was carried out for 10 minutes. As a result, although the mold on the outer periphery of the porous metal could be removed, the mold remained inside the porous metal.

発明の効果 本発明は上述のごとく構成したものであるから、三次元
網状多孔質金属の製造において、溶融金属が凝固した後
の鋳型の崩壊性を高める事が可能となり、鋳型の除去を
容易とし、三次元網状多孔質金属を、破損したり、変形
を生じることなく製造することを可能にするものである
Effects of the Invention Since the present invention is configured as described above, in the production of three-dimensional network porous metal, it is possible to improve the collapsibility of the mold after the molten metal has solidified, and to facilitate the removal of the mold. , it is possible to manufacture a three-dimensional network porous metal without causing damage or deformation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものてあって、第1図は
多孔質樹脂体を成形型枠内に挿入した状態の断面図、第
2図は成形型枠内に鋳型材料を充填している状態の断面
図、第3図は自然凝固した鋳型材料を加熱炉に挿入した
状態の断面図、第4図は鋳型を充填型枠内に挿入し溶融
金属を注湯している状態の断面図、第5図は鋳型を加湿
箱に収納して水分を吸収させている状態の断面図、第6
図は鋳型の自己崩壊状態の断面図、第7図は完成した多
孔質金属の断面図、第8図は多孔質金属の部分拡大図で
ある。 (1)・・・・・・多孔質樹脂体 (3)・・・・・・・・鋳型材料 (5)・・・・・・・・・鋳型 (12)・・・・・・・溶融金属 第 図 第 図
The drawings show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of a porous resin body inserted into a molding frame, and FIG. 2 is a cross-sectional view of a porous resin body inserted into a molding frame, and FIG. Fig. 3 is a cross-sectional view of the naturally solidified mold material inserted into the heating furnace, and Fig. 4 shows the mold inserted into the filling form and molten metal poured into it. Cross-sectional view, Figure 5 is a cross-sectional view of the mold stored in a humidifying box to absorb moisture, Figure 6
The figure is a sectional view of the mold in a self-collapsing state, FIG. 7 is a sectional view of the completed porous metal, and FIG. 8 is a partially enlarged view of the porous metal. (1)・・・Porous resin body (3)・・・Mold material (5)・・・Mold (12)・・・Melting metal chart chart

Claims (5)

【特許請求の範囲】[Claims] (1)三次元網状構造の多孔質樹脂体の三次元空隙に、
炭酸カルシウムを20wt%以上含有するスラリー状の
鋳型材料を充填した後、加熱により多孔質樹脂体を消失
させて鋳型を形成し、多孔質樹脂体の消失により形成し
た鋳型の三次元空隙に、溶融金属を充填して凝固させ、
その後、鋳型を崩壊させて除去する事を特徴とする崩壊
性鋳型による金属多孔体の製造方法。
(1) In the three-dimensional voids of a porous resin body with a three-dimensional network structure,
After filling a slurry-like mold material containing 20 wt% or more of calcium carbonate, the porous resin body is heated to disappear to form a mold, and the three-dimensional voids of the mold formed by the disappearance of the porous resin body are filled with melting material. Fill with metal and solidify it,
A method for producing a porous metal body using a collapsible mold, characterized in that the mold is then collapsed and removed.
(2)鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型に水分を吸収させ、自己崩壊させて行うものであるこ
とを特徴とする請求項1記載の崩壊性鋳型による金属多
孔体の製造方法。
(2) Manufacturing a porous metal body using a collapsible mold according to claim 1, wherein the mold is disintegrated and removed by allowing the mold to absorb moisture and self-collapse after being filled with molten metal and solidified. Method.
(3)鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型に圧縮空気を吹き付けて行うことを特徴とする請求項
1記載の崩壊性鋳型による金属多孔体の製造方法。
(3) The method for producing a porous metal body using a collapsible mold according to claim 1, wherein the mold is disintegrated and removed by blowing compressed air onto the mold after the molten metal is filled and solidified.
(4)鋳型の崩壊除去は、溶融金属の充填凝固後に、鋳
型にサンドブラスト処理を行うことを特徴とする請求1
項記載の崩壊性鋳型による金属多孔体の製造方法。
(4) The disintegration and removal of the mold is performed by sandblasting the mold after filling with molten metal and solidifying it.Claim 1
A method for producing a porous metal body using a collapsible mold as described in 1.
(5)炭酸カルシウム源としては、貝化石フラワーを用
いることを特徴とする請求1項記載の崩壊性鋳型による
金属多孔体の製造方法。
(5) The method for producing a porous metal body using a collapsible mold according to claim 1, wherein fossil shell flour is used as the calcium carbonate source.
JP2161051A 1990-06-19 1990-06-19 Method for producing porous metal body using collapsible template Expired - Lifetime JPH0626747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161051A JPH0626747B2 (en) 1990-06-19 1990-06-19 Method for producing porous metal body using collapsible template

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161051A JPH0626747B2 (en) 1990-06-19 1990-06-19 Method for producing porous metal body using collapsible template

Publications (2)

Publication Number Publication Date
JPH0452046A true JPH0452046A (en) 1992-02-20
JPH0626747B2 JPH0626747B2 (en) 1994-04-13

Family

ID=15727676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161051A Expired - Lifetime JPH0626747B2 (en) 1990-06-19 1990-06-19 Method for producing porous metal body using collapsible template

Country Status (1)

Country Link
JP (1) JPH0626747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096140A (en) * 2016-12-14 2018-06-21 積水化学工業株式会社 Sleeper repair method and sleeper repair structure
CN110076295A (en) * 2019-04-13 2019-08-02 江西运缘达实业有限公司 A kind of filler casting manufacture craft
CN112355239A (en) * 2020-11-03 2021-02-12 中信戴卡股份有限公司 Preparation method of foamed aluminum special-shaped part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632059A (en) * 1979-08-24 1981-04-01 Smiths Industries Ltd Choke warning indication circuit for automobile
JPS63137565A (en) * 1986-11-30 1988-06-09 Chuo Denki Kogyo Kk Production of porous heat radiator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632059A (en) * 1979-08-24 1981-04-01 Smiths Industries Ltd Choke warning indication circuit for automobile
JPS63137565A (en) * 1986-11-30 1988-06-09 Chuo Denki Kogyo Kk Production of porous heat radiator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096140A (en) * 2016-12-14 2018-06-21 積水化学工業株式会社 Sleeper repair method and sleeper repair structure
CN110076295A (en) * 2019-04-13 2019-08-02 江西运缘达实业有限公司 A kind of filler casting manufacture craft
CN112355239A (en) * 2020-11-03 2021-02-12 中信戴卡股份有限公司 Preparation method of foamed aluminum special-shaped part

Also Published As

Publication number Publication date
JPH0626747B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US4812278A (en) Process for preparing mold
CN105522112A (en) High-collapsibility ceramic shell for manufacturing magnesium alloy fusible pattern and preparation method for high-collapsibility ceramic shell
US2948935A (en) Process of making refractory shell for casting metal
JPH0262104B2 (en)
CN102371340A (en) Lost foam casting method for large casting
JPH09268067A (en) Production of silicon carbide member
US20230036173A1 (en) Casting elements and methods of making the same using low temperature solidification
US20110232857A1 (en) Investment Casting Shell Incorporating Desiccant Material
JPH0452046A (en) Manufacture of metal porous body in collapsible mold
FI61648C (en) SAFETY FORM OF SILICONE BUND FORM AND FORM FORM
CN108637173A (en) A kind of nice foundry sand lost foam casting process
JP2007030027A (en) Method for forming water soluble core, and method for casting aluminum alloy
JP2006175510A (en) Method and device for molding water-soluble core
GB2148760A (en) Casting metal in a sand backed shell mould
JP2799639B2 (en) Manufacturing method of electroformed brick
JPH08332547A (en) Casting method and mold and its production
JPH09174194A (en) Manufacture of mold and method for distingrating mold obtained by this method
JP3136708B2 (en) Mold dismantling method
JPS63140740A (en) Mold for casting active metal of high melting point
TW453918B (en) A method of precise casting of shell
JPS61289944A (en) Lost wax mold for casting
RU2086341C1 (en) Method of manufacture of foundry cores and molds on cold equipment
JPS6021809B2 (en) Method for manufacturing water-soluble molds
JPS5818987Y2 (en) Precision casting mold that can be easily disassembled
JP3541228B2 (en) Manufacturing method of investment precision casting mold