JPH0451750B2 - - Google Patents

Info

Publication number
JPH0451750B2
JPH0451750B2 JP18051988A JP18051988A JPH0451750B2 JP H0451750 B2 JPH0451750 B2 JP H0451750B2 JP 18051988 A JP18051988 A JP 18051988A JP 18051988 A JP18051988 A JP 18051988A JP H0451750 B2 JPH0451750 B2 JP H0451750B2
Authority
JP
Japan
Prior art keywords
heat exchanger
inner layer
outer layer
layer heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18051988A
Other languages
Japanese (ja)
Other versions
JPS6446562A (en
Inventor
Takashi Takizawa
Tsutomu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18051988A priority Critical patent/JPS6446562A/en
Publication of JPS6446562A publication Critical patent/JPS6446562A/en
Publication of JPH0451750B2 publication Critical patent/JPH0451750B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は内層、外層の各々に熱交換器、送風機
を配置した強制循環式の低温シヨーケースの運転
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of operating a forced circulation type low-temperature show case in which a heat exchanger and a blower are arranged in each of the inner and outer layers.

(ロ) 従来の技術 特公昭42−24797号公報には、内層及び外層の
各々に熱交換器と送風機とを配置し、内層及び外
層を夫々通過する循環空気を冷却して開口に2層
のエアーカーテンを形成するオープンシヨーケー
スの構成が示されている。前記両熱交換器は並列
関係に接続され、内層用熱交換器のみホツトガス
除霜されるようになつている。
(b) Prior art Japanese Patent Publication No. 42-24797 discloses that a heat exchanger and a blower are arranged in each of the inner layer and the outer layer, and the circulating air passing through the inner layer and the outer layer is cooled and two layers are formed in the opening. An open showcasing configuration forming an air curtain is shown. Both heat exchangers are connected in parallel so that only the inner layer heat exchanger is defrosted with hot gas.

(ハ) 発明が解決しようとする課題 かゝるオープンシヨーケースの運転システム
は、冷却運転時には内層用、外層用両熱交換器に
液冷媒を流して蒸発気化させ、内層、外層を通過
する循環空気の冷却を図り、又、除霜運転時には
外層用熱交換器への冷媒供給を停止する一方で、
ホツトガスを内層用熱交換器に流し凝縮液化さ
せ、この熱交換によつて内層用熱交換器の霜を溶
かすために、下記に列挙する課題が生じる。
(c) Problems to be Solved by the Invention The operation system of such an open show case is such that during cooling operation, liquid refrigerant is passed through both the inner and outer layer heat exchangers to evaporate and vaporize, and the circulating system passes through the inner and outer layers. While cooling the air and stopping the refrigerant supply to the outer layer heat exchanger during defrosting operation,
In order to cause the hot gas to flow through the inner layer heat exchanger and condense and liquefy it, and to melt the frost on the inner layer heat exchanger through this heat exchange, the following problems occur.

ホツトガスを内層用熱交換器に流して凝縮液
化している除霜運転時には、内層を通過中の循
環空気を冷却する冷熱源がないために、循環空
気及び貯蔵室の空気温度が上がり、貯蔵商品に
とつて好ましくない事態となる。
During defrosting operation, in which hot gas is passed through the inner layer heat exchanger to condense and liquefy, there is no cold source to cool the circulating air passing through the inner layer, so the temperature of the circulating air and the air in the storage room rises, causing the stored products to rise. This is an unfavorable situation for both.

外層用熱交換器の冷却運転時に付着した霜が
除霜運転時には溶かされるために、外層を通過
する循環空気の温度が徐々に上昇し、外気の温
度と同じ乃至は若干高い温度となる。
Since the frost that adheres during the cooling operation of the outer layer heat exchanger is melted during the defrosting operation, the temperature of the circulating air passing through the outer layer gradually rises to a temperature that is the same as or slightly higher than the temperature of the outside air.

本発明は上記課題を解決することを目的とす
る。
The present invention aims to solve the above problems.

(ニ) 課題を解決するための手段 本発明は上記課題を解決するために、内層と外
層とを仕切る第1区画板に、内外両層を連通させ
る窓と、この窓を閉塞する開閉自在なダンパとを
設け、除霜運転の直前には内層用熱交換器に加え
外層用熱交換器も冷却運転し、除霜運転には、ダ
ンパを開放して内層用熱交換器を通過した循環空
気を窓を通して外層に導き、冷却運転中の外層用
熱交換器を通過させるようにした低温シヨーケー
スの運転方法である。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a first partition plate that partitions the inner layer and the outer layer with a window that communicates both the inner and outer layers, and a window that can be opened and closed to close this window. Immediately before defrosting operation, the outer layer heat exchanger as well as the inner layer heat exchanger are cooled, and for defrosting operation, the damper is opened and the circulating air that has passed through the inner layer heat exchanger is cooled. This is a method of operating a low-temperature show case in which the heat exchanger is introduced into the outer layer through a window and passed through a heat exchanger for the outer layer during cooling operation.

(ホ) 作用 外層用熱交換器の冷却運転は内層用熱交換器の
冷却運転終了前、即ち冷却運転から除霜運転に切
り替る直前に行なわれ、この運転によつて内層用
熱交換器と同様に外層用熱交換器も低温となり、
外層を通過中の循環空気は、外層用熱交換器を通
過中の低圧液冷媒と熱交換され、内層を循環中の
冷却空気と略同じ乃至は若干高い温度に維持され
た後、内層用熱交換器の除霜運転が開始され、内
層用熱交換器を通過した循環空気は窓を通り冷却
運転中の外層用熱交換器で冷却される。
(E) Effect The cooling operation of the outer layer heat exchanger is performed before the cooling operation of the inner layer heat exchanger ends, that is, immediately before switching from cooling operation to defrosting operation. Similarly, the heat exchanger for the outer layer also becomes low temperature,
The circulating air passing through the outer layer exchanges heat with the low-pressure liquid refrigerant passing through the outer layer heat exchanger, and is maintained at approximately the same or slightly higher temperature than the cooling air circulating in the inner layer. Defrosting operation of the exchanger is started, and the circulating air that has passed through the inner layer heat exchanger passes through the window and is cooled by the outer layer heat exchanger that is in cooling operation.

(ヘ) 実施例 第1図に示す1は前面に商品の収納及び取出用
の開口3を形成した断熱壁2にて本体を構成して
なる開放形の低温シヨーケースで、前記断熱壁の
内壁より適当間隔を存して後述する内層側に開く
第1ダンパ4A、後述する外層側に開く第2ダン
パ4B及びこの両ダンパにて夫々閉塞される第1
及び第2両窓4C,4Dを備えた断熱性の第1区
画板4を配設してプレートフイン型の外層用熱交
換器5と軸流型の外層用送風機6とを配置する外
層7と、前記開口の上縁に沿つて位置する外層用
吹出口8と、前記開口の下縁に沿つて位置し、前
記外層用吹出口に相対向する外層用吸込口9とを
形成し、又前記第1区画板の内壁より適当間隔を
存して金属製の第2区画板10を配設してプレー
トフイン型の内層用熱交換器11と軸流型の内層
用送風機12とを配置する内層13と、前記開口
の上縁で且つ外層用吹出口8の内方に並設された
内層用吹出口14と、前記開口の下縁で外層用吸
込口9の内方に並設され、前記内層用吹出口に相
対向する内層用吹出口15と、複数段の棚16を
配置した貯蔵室17とを形成している。前記第
1、第2両ダンパは熱絶縁材、例えば樹脂からな
る板状のものであり、第1ダンパ4Aは第2ダン
パ4Bから見て循環空気の流れ方向上流側に設け
られており、開放時その先端が第2区画板10の
外壁に当接することが好ましく、又第2ダンパ4
Bは開放時その先端が断熱壁2の内壁に当接乃至
近接することが好ましい。前記外層用熱交換器は
第1、第2両ダンパ4A,4B間に位置する様、
外層5内に配置されており、又内層用熱交換器1
1は第1ダンパ4Aからみて循環空気の流れ方向
上流側となる位置に配置されている。尚、前記第
1、第2両ダンパはギヤモータ、シリンダー等を
利用した適宜な駆動装置によつて開閉されるもの
である。
(F) Embodiment 1 shown in Fig. 1 is an open-type low-temperature case whose main body is composed of an insulating wall 2 with an opening 3 for storing and taking out products on the front. A first damper 4A that opens toward the inner layer side (described later), a second damper 4B that opens toward the outer layer side (described later), and a first damper that is closed by these two dampers, respectively, at an appropriate interval.
and an outer layer 7 in which a heat insulating first partition plate 4 having second windows 4C and 4D is disposed, and a plate fin type outer layer heat exchanger 5 and an axial flow type outer layer blower 6 are disposed. , an outer layer air outlet 8 located along the upper edge of the opening, and an outer layer suction port 9 located along the lower edge of the opening and opposite to the outer layer air outlet; An inner layer in which a second partition plate 10 made of metal is arranged at an appropriate interval from the inner wall of the first partition plate, and a plate fin type inner layer heat exchanger 11 and an axial flow type inner layer blower 12 are arranged. 13, an inner layer air outlet 14 which is arranged in parallel inside the outer layer air inlet 9 at the lower edge of the opening, and an inner layer air outlet 14 which is arranged in parallel inside the outer layer air inlet 9 at the lower edge of the opening; An inner layer outlet 15 facing the inner layer outlet and a storage chamber 17 in which a plurality of shelves 16 are arranged are formed. Both the first and second dampers are plate-shaped ones made of a heat insulating material, for example, resin, and the first damper 4A is provided upstream in the flow direction of the circulating air when viewed from the second damper 4B. At this time, it is preferable that the tip thereof abuts on the outer wall of the second partition plate 10, and the second damper 4
It is preferable that the tip of B is in contact with or close to the inner wall of the heat insulating wall 2 when opened. The outer layer heat exchanger is located between the first and second dampers 4A and 4B,
It is arranged in the outer layer 5, and the inner layer heat exchanger 1
1 is disposed at a position on the upstream side in the flow direction of the circulating air when viewed from the first damper 4A. Incidentally, both the first and second dampers are opened and closed by an appropriate drive device using a gear motor, cylinder, or the like.

第2図に示す18は、前記低温シヨーケースを
冷却するための冷凍装置で、冷媒圧縮機19、凝
縮器となる水冷又は空冷式の熱交換器20、受液
器21、感温部22Aを備えた膨張弁等の減圧弁
22、内層用熱交換器11、気液分離器23を高
圧ガス管24、高圧液管25、低圧液管26及び
低圧ガス管27でもつて環状に接続している。2
9は低圧ガス管27に配置された電磁弁、30は
高圧ガス管24に配置された1つの入口ポート
X、2つの出口ポートX,Zを有する三方電磁弁
等の流路切替弁、31は一端を前記流路切替弁の
出口ポートZ、他端を内層用熱交換器11と、電
磁弁29との間の低圧ガス管27に接続してなる
ホツトガス用バイパス管、32は高圧液管25に
配置された電磁弁である。又、前記外層用熱交換
器は、内層用熱交換器11に対し並列に配され、
高圧液枝管33、低圧液枝管34及び低圧ガス枝
管35によつて高圧液管25と、低圧液管27と
に接続されている。36は高圧液枝管33に配置
された電磁弁、37は低圧ガス枝管35に配置さ
れた逆止弁、38は外層用熱交換器5に減圧液冷
媒を供給する感温部38A付き減圧弁である。3
9は除霜時熱交換器20、受液器21から冷媒を
回収する回収管、40は回収管39に設置された
電磁弁、41はタイマー装置等からなる制御器
で、流路切替弁30、電磁弁29,32,36,
40を所定時間開又は閉信号をラインa,b,
c,d,eから送るものである。
Reference numeral 18 shown in FIG. 2 is a refrigeration system for cooling the low-temperature case, and includes a refrigerant compressor 19, a water-cooled or air-cooled heat exchanger 20 serving as a condenser, a liquid receiver 21, and a temperature sensing section 22A. A pressure reducing valve 22 such as an expansion valve, an inner layer heat exchanger 11, and a gas-liquid separator 23 are connected in an annular manner by a high pressure gas pipe 24, a high pressure liquid pipe 25, a low pressure liquid pipe 26, and a low pressure gas pipe 27. 2
9 is a solenoid valve disposed in the low pressure gas pipe 27; 30 is a flow path switching valve such as a three-way solenoid valve having one inlet port X and two outlet ports X and Z disposed in the high pressure gas pipe 24; 31 is a A hot gas bypass pipe having one end connected to the outlet port Z of the flow path switching valve and the other end connected to the low pressure gas pipe 27 between the inner layer heat exchanger 11 and the solenoid valve 29; 32 is a high pressure liquid pipe 25; This is a solenoid valve located at Further, the outer layer heat exchanger is arranged in parallel to the inner layer heat exchanger 11,
It is connected to the high pressure liquid pipe 25 and the low pressure liquid pipe 27 by a high pressure liquid branch pipe 33, a low pressure liquid branch pipe 34, and a low pressure gas branch pipe 35. 36 is a solenoid valve disposed in the high-pressure liquid branch pipe 33, 37 is a check valve disposed in the low-pressure gas branch pipe 35, and 38 is a pressure reducing unit with a temperature sensing part 38A for supplying the reduced pressure liquid refrigerant to the outer layer heat exchanger 5. It is a valve. 3
9 is a defrosting heat exchanger 20, a recovery pipe for recovering refrigerant from the liquid receiver 21, 40 is a solenoid valve installed in the recovery pipe 39, 41 is a controller consisting of a timer device, etc.; , solenoid valves 29, 32, 36,
40 to the lines a, b,
These are sent from c, d, and e.

次に低温シヨーケース1の運転システムについ
て説明する。
Next, the operating system of the low-temperature show case 1 will be explained.

いま第1ダンパ4A、第2ダンパ4Bは閉じて
おり、第1図に示すように、内層13及び外層7
は夫々独立している。この時、流路切替弁30の
入口ポートXと出口ポートYとが通じ、電磁弁2
9と電磁弁32が開、電磁弁36と40が閉とな
つており、かゝる状態で、冷媒圧縮機19を稼働
させると、冷媒は圧縮機19−流路切替弁30−
熱交換器20−受液器21−電磁弁32−減圧弁
22−蒸発器となる内層用熱交換器11−電磁弁
29−気液分離器23−圧縮機19の第2図太線
で示す周知のサイクルを形成し、この間熱交換器
20で凝縮液化、減圧弁22で減圧、内層用熱交
換器で蒸発気化される。この冷却運転において、
内層用送風機12でもつて、内層13を通過中の
循環空気は、内層用熱交換器11を通過中の低圧
液冷媒と熱交換されて冷却空気となり、第1図矢
印に示す如く冷たいエアーカーテンCAを形成し
て貯蔵室17の冷却を図る。一方、外層用送風機
6でもつて外層7を通過中の循環空気は、第1図
矢印の如く開口3において冷たいエアーカーテン
CAの外側に沿つて流れ、この冷たいエアーカー
テンの影響を受けてオープンシヨーケース1を包
囲する外気より漸低い温度となり、前記の冷たい
エアーカーテンCAと外気との接触を阻止する保
護エアーカーテンGAとして作用する。
The first damper 4A and the second damper 4B are now closed, and as shown in FIG.
are independent of each other. At this time, the inlet port X and outlet port Y of the flow path switching valve 30 communicate with each other, and the solenoid valve 2
9 and solenoid valve 32 are open, and solenoid valves 36 and 40 are closed. When the refrigerant compressor 19 is operated in such a state, the refrigerant flows through the compressor 19 - flow path switching valve 30 -
Heat exchanger 20 - liquid receiver 21 - electromagnetic valve 32 - pressure reducing valve 22 - inner layer heat exchanger 11 serving as evaporator - electromagnetic valve 29 - gas-liquid separator 23 - compressor 19 as shown in bold lines in FIG. During this cycle, it is condensed and liquefied in the heat exchanger 20, depressurized in the pressure reducing valve 22, and evaporated in the inner layer heat exchanger. In this cooling operation,
In the inner layer blower 12, the circulating air passing through the inner layer 13 exchanges heat with the low pressure liquid refrigerant passing through the inner layer heat exchanger 11 and becomes cooling air, creating a cold air curtain CA as shown by the arrow in FIG. is formed to cool the storage chamber 17. On the other hand, the circulating air passing through the outer layer 7 by the outer layer blower 6 is circulated through a cold air curtain at the opening 3 as shown by the arrow in FIG.
Flowing along the outside of CA, under the influence of this cold air curtain, the temperature becomes gradually lower than the outside air surrounding the open case 1, and serves as a protective air curtain GA that prevents contact between the cold air curtain CA and the outside air. act.

冷却運転の進行に伴ない内層用熱交換器11へ
の着霜が多くなると、電磁弁36が所定時間例え
ば30秒間開き、高圧液枝管33に分流される。こ
の分流された液冷媒は、減圧弁38で減圧され、
蒸発器となる外層用熱交換器5で蒸発気化して低
圧ガス枝管35を通り、低圧ガス管27に流れ、
内層用熱交換器11を通過した低圧ガス冷媒と合
流し圧縮機19に戻る第3図太線で示すサイクル
となる。このサイクルは冷却運転終了前、即ち冷
却運転から除霜運転に切り替る直前に行なわれ、
この運転によつて内層用熱交換器11と同様に外
層用熱交換器5も低温となり、外層7を通過中の
循環空気は、外層用熱交換器5を通過中の低圧液
冷媒と熱交換され、内層13を循環中の冷却空気
と略同じ乃至は若干高い温度に維持される。尚、
この冷却運転においては外層用送風機6の運転を
停止してもよい。
As the cooling operation progresses and frost builds up on the inner layer heat exchanger 11, the solenoid valve 36 opens for a predetermined period of time, for example, 30 seconds, and the liquid is diverted to the high-pressure liquid branch pipe 33. This divided liquid refrigerant is depressurized by the pressure reducing valve 38,
It is evaporated in the outer layer heat exchanger 5, which serves as an evaporator, passes through the low pressure gas branch pipe 35, and flows into the low pressure gas pipe 27.
It joins with the low pressure gas refrigerant that has passed through the inner layer heat exchanger 11 and returns to the compressor 19, resulting in a cycle shown by the thick line in FIG. 3. This cycle is performed before the end of the cooling operation, that is, immediately before switching from the cooling operation to the defrosting operation,
Due to this operation, the temperature of the outer layer heat exchanger 5 becomes low as well as the inner layer heat exchanger 11, and the circulating air passing through the outer layer 7 exchanges heat with the low pressure liquid refrigerant passing through the outer layer heat exchanger 5. The cooling air is maintained at approximately the same or slightly higher temperature than the cooling air circulating through the inner layer 13. still,
During this cooling operation, the operation of the outer layer blower 6 may be stopped.

この冷却運転中、除霜開始信号が出力される
と、電磁弁29,32が閉まると共に、電磁弁4
0が開き、流路切替弁30の出口ポートYがZに
切り替り、且つ、第1及び第2両ダンパ4A,4
Bが開くと、圧縮機19からのホツトガスは流路
切替弁30からホツトガス用バイパス管31−内
層用熱交換器11−逆止弁28−電磁弁36−減
圧弁38−外層用熱交換器5−気液分離器23−
圧縮機19と流れ、又一方冷却運転時、受液器2
1及び熱交換器20に貯えられた冷媒(主として
液冷媒)は、回収管39、電磁弁40を通り、気
液分離器23に流れる第5図太線で示すサイクル
を形成する。このサイクルは冷媒回収を含む除霜
運転であり、ホツトガスは凝縮器となる内層用熱
交換器11で凝縮液化されて高圧液冷媒となり、
減圧弁38で減圧され低圧液冷媒となつて外層用
熱交換器5で蒸発気化される。前記ホツトガスの
凝縮液化に伴ない、内層用熱交換器11に付着し
た霜は徐々に溶かされ、且つ内層用熱交換器11
を通過する循環空気の温度は徐々に上昇する。こ
の内層用熱交換器を通過した循環空気は第1ダン
パ4Aにより内層13における流れを中断されて
第1窓4Cから外層7に流れ、外層循環空気と合
流する。この合流した循環空気は外層用熱交換器
5を通過中の低圧液冷媒と熱交換されて冷却され
る。この冷却された循環空気は第2ダンパ4Bに
より分流され、その大部分は第2窓4Cから内層
13に流れ、又その一部分は第2ダンパ4Bと断
熱壁2との間を通り外層5をそのまゝ流れ、夫々
内層用吹出口14及び外層用吹出口8から開口3
に向けて吹き出され、冷却運転時と同様にエアー
カーテンCA,GAを形成し、外層用吸込口9と
内層用吸込口15から外層用送風機6、内層用送
風機12により夫々外層7、内層13に帰還する
第4図に示す空気循環経路を辿る。
During this cooling operation, when the defrosting start signal is output, the solenoid valves 29 and 32 close, and the solenoid valve 4
0 opens, the outlet port Y of the flow path switching valve 30 switches to Z, and both the first and second dampers 4A, 4
When B is opened, the hot gas from the compressor 19 is transferred from the flow path switching valve 30 to the hot gas bypass pipe 31 - the inner layer heat exchanger 11 - the check valve 28 - the solenoid valve 36 - the pressure reducing valve 38 - the outer layer heat exchanger 5 -Gas-liquid separator 23-
Flows into the compressor 19, and during cooling operation, on the other hand, the liquid receiver 2
1 and the refrigerant (mainly liquid refrigerant) stored in the heat exchanger 20 passes through the recovery pipe 39 and the electromagnetic valve 40 and flows to the gas-liquid separator 23, forming a cycle shown by the thick line in FIG. This cycle is a defrosting operation that includes refrigerant recovery, and the hot gas is condensed and liquefied in the inner layer heat exchanger 11, which serves as a condenser, and becomes a high-pressure liquid refrigerant.
The pressure is reduced by the pressure reducing valve 38, and the refrigerant becomes a low-pressure liquid refrigerant, which is evaporated in the outer layer heat exchanger 5. As the hot gas is condensed and liquefied, the frost adhering to the inner layer heat exchanger 11 is gradually melted, and the inner layer heat exchanger 11 is gradually melted.
The temperature of the circulating air passing through increases gradually. The circulating air that has passed through the inner layer heat exchanger is interrupted from flowing in the inner layer 13 by the first damper 4A, flows through the first window 4C to the outer layer 7, and merges with the outer layer circulating air. The combined circulating air exchanges heat with the low-pressure liquid refrigerant passing through the outer layer heat exchanger 5 and is cooled. This cooled circulating air is divided by the second damper 4B, and most of it flows through the second window 4C to the inner layer 13, and a part of it passes between the second damper 4B and the heat insulating wall 2 and the outer layer 5. The flow is from the inner layer outlet 14 and the outer layer outlet 8 to the opening 3, respectively.
The air is blown toward the outer layer 7 and the inner layer 13 from the outer layer suction port 9 and the inner layer suction port 15 by the outer layer blower 6 and the inner layer blower 12, forming air curtains CA and GA in the same way as during cooling operation. Follow the air circulation path shown in Figure 4 to return.

除霜運転の進行に伴ない内層用熱交換器11の
霜が溶けると、一定時間例えば30秒間電磁弁40
を閉じ、流路切替弁30の出口ポートZがYに切
り替ると、内層用熱交換器11と外層用熱交換器
5に残つている残留冷媒を逆止弁37、気液分離
器23を通過させ圧縮機19により、熱交換器2
0、受液器21に回収する第6図に太線で示す冷
媒回収サイクルとなる。この冷媒回収サイクルの
所定時間経過後、電磁弁29,32が開き電磁弁
36が閉じ、第1、第2両ダンパ4A,4Bが閉
まると第1図及び第2図で示した冷却運転とな
る。
When the frost on the inner layer heat exchanger 11 melts as the defrosting operation progresses, the solenoid valve 40 is activated for a certain period of time, for example, 30 seconds.
When the outlet port Z of the flow path switching valve 30 is switched to Y, the residual refrigerant remaining in the inner layer heat exchanger 11 and the outer layer heat exchanger 5 is removed by the check valve 37 and the gas-liquid separator 23. The heat exchanger 2 is passed through the compressor 19.
0, the refrigerant recovery cycle is shown by the thick line in FIG. After a predetermined period of time in this refrigerant recovery cycle, the solenoid valves 29 and 32 open, the solenoid valve 36 closes, and both the first and second dampers 4A and 4B close, resulting in the cooling operation shown in FIGS. 1 and 2. .

上記低温シヨーケース1の運転方法によれば、
冷却運転の進行に伴ない内層用熱交換器11への
着霜が多くなる冷却運転終了直前には、減圧液冷
媒が外層用熱交換器5に供給され、蒸発器の作用
をなすこの外層用熱交換器5で蒸発気化される関
係上、外層7を循環する空気は冷却されることに
なり、このため内層用熱交換器11を冷却運転か
ら除霜運転に切り替えた直後においても開口3に
冷たいエアーカーテンを形成することができ、除
霜運転に切り替わつた後における急激な貯蔵室1
7の温度上昇を防止することができる。
According to the operating method of the low-temperature case 1,
Immediately before the end of the cooling operation, when the amount of frost on the inner layer heat exchanger 11 increases as the cooling operation progresses, reduced pressure liquid refrigerant is supplied to the outer layer heat exchanger 5, which acts as an evaporator. Since the air circulating in the outer layer 7 is evaporated by the heat exchanger 5, it is cooled, and therefore even immediately after switching the inner layer heat exchanger 11 from cooling operation to defrosting operation, the air circulating through the opening 3 is cooled. A cold air curtain can be formed in the storage room 1 after switching to defrosting operation.
7 temperature rise can be prevented.

又、除霜運転中、内層用熱交換器11を通過し
て温度上昇した空気は窓4Cから外層7に流れて
外層用熱交換器5で冷却される関係上、開口3に
は常に店内空気よりも温度の低い冷気によるエア
ーカーテンが形成されることになり、貯蔵室17
を常に冷却することができる。
In addition, during defrosting operation, the air whose temperature has increased after passing through the inner layer heat exchanger 11 flows through the window 4C to the outer layer 7 and is cooled by the outer layer heat exchanger 5, so the opening 3 is always filled with indoor air. An air curtain of cold air with a temperature lower than that of the storage room 17 is formed.
can be constantly cooled.

(ヘ) 発明の効果 上述した本発明では次に列挙する効果が生じ
る。
(f) Effects of the invention The present invention described above produces the effects listed below.

除霜運転前の冷却運転終了直前には、減圧液
冷媒が外層用熱交換器に供給され、蒸発器の作
用をなすこの外層用熱交換器で蒸発気化される
関係上、外層を循環する空気は冷却されること
になり、この結果、内層用熱交換器を冷却運転
から除霜運転に切り替えた直後においても開口
に冷たいエアーカーテンを連続して形成するこ
とができ、除霜運転に切り替わつた後における
急激な貯蔵室の温度上昇を防止することができ
る。
Immediately before the end of the cooling operation before the defrosting operation, the reduced pressure liquid refrigerant is supplied to the outer layer heat exchanger and is evaporated in this outer layer heat exchanger, which acts as an evaporator. As a result, even immediately after switching the inner layer heat exchanger from cooling operation to defrosting operation, a cold air curtain can be continuously formed at the opening, and the operation is switched to defrosting operation. It is possible to prevent a sudden temperature rise in the storage room after the storage room is heated.

除霜運転中、内層用熱交換器を通過して温度
上昇した空気は窓から外層に流れて外層用熱交
換器で冷却される関係上、開口には常に店内空
気よりも温度の低い冷気によるエアーカーテン
が形成されることになり、貯蔵室を常に冷却す
ることができ、この結果、貯蔵品の品温上昇の
抑制が図れる。
During defrosting operation, the air whose temperature has risen after passing through the inner layer heat exchanger flows through the window to the outer layer and is cooled by the outer layer heat exchanger, so the openings are always filled with cold air whose temperature is lower than the inside air. Since an air curtain is formed, the storage room can be constantly cooled, and as a result, an increase in the temperature of stored items can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は何れも本発明低温シヨーケースの運転方
法にかゝる実施例を示し、第1図は低温シヨーケ
ースのダンパ閉時の縦断面図を、第4図は低温シ
ヨーケースのダンパ開時の縦断面図を示す。又第
2図、第3図、第5図、第6図は低温シヨーケー
スを冷却する冷凍装置の冷媒回路図である。 3……開口、4A……ダンパ、4C……窓、5
……外層用熱交換器、6……外層用送風機、7…
…外層、11……内層用熱交換器、12……内層
用送風機、13……内層、CA,GA……エアー
カーテン。
The drawings all show an embodiment of the method of operating a low-temperature show case of the present invention, and FIG. 1 is a longitudinal cross-sectional view of the low-temperature show case when the damper is closed, and FIG. 4 is a longitudinal cross-sectional view of the low-temperature show case when the damper is open. shows. 2, 3, 5, and 6 are refrigerant circuit diagrams of a refrigeration system for cooling a low-temperature show case. 3...Opening, 4A...Damper, 4C...Window, 5
...Heat exchanger for outer layer, 6...Blower for outer layer, 7...
...Outer layer, 11... Heat exchanger for inner layer, 12... Blower for inner layer, 13... Inner layer, CA, GA... Air curtain.

Claims (1)

【特許請求の範囲】[Claims] 1 内層及び外層の各々に熱交換器と、送風機と
を配置し、この両送風機を運転すると共に、内層
用熱交換器のみを蒸発器として作用させる冷却運
転時、開口に循環空気による少なくも2層のエア
ーカーテンを形成してなる低温シヨーケースにお
いて、内層と、外層とを仕切る第1区画板に内外
両層を連通させる窓と、この窓を開閉自在に閉塞
する開閉自在なダンパとを設け、該タンパが閉塞
されているときには、内層用熱交換器の冷却運転
及び前記両送風機の運転を継続すると共に、前記
内層用熱交換器の冷却運転の終了直前に外層用熱
交換器も蒸発器として作用させて冷却運転し、前
記ダンパが開放されているときには、内層用熱交
換器を除霜運転、外層用熱交換器を冷却運転する
と共に、少なくとも内層用送風機を運転して内層
用熱交換器を通過した空気を窓から外層用熱交換
器に導くようにした低温シヨーケースの運転方
法。
1 A heat exchanger and a blower are arranged in each of the inner layer and the outer layer, and when both the blowers are operated and only the heat exchanger for the inner layer acts as an evaporator during cooling operation, at least two In a low-temperature show case formed by forming a layered air curtain, a first partition plate that partitions an inner layer and an outer layer is provided with a window that communicates both the inner and outer layers, and an openable and closable damper that freely opens and closes the window, When the tamper is blocked, the cooling operation of the inner layer heat exchanger and the operation of both the blowers are continued, and immediately before the end of the cooling operation of the inner layer heat exchanger, the outer layer heat exchanger is also operated as an evaporator. When the damper is open, the inner layer heat exchanger is operated for defrosting, the outer layer heat exchanger is operated for cooling, and at least the inner layer blower is operated to cool the inner layer heat exchanger. A method of operating a low-temperature case in which the air that has passed through the window is guided to the outer layer heat exchanger.
JP18051988A 1988-07-20 1988-07-20 Method of operating low-temperature showcase Granted JPS6446562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18051988A JPS6446562A (en) 1988-07-20 1988-07-20 Method of operating low-temperature showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18051988A JPS6446562A (en) 1988-07-20 1988-07-20 Method of operating low-temperature showcase

Publications (2)

Publication Number Publication Date
JPS6446562A JPS6446562A (en) 1989-02-21
JPH0451750B2 true JPH0451750B2 (en) 1992-08-19

Family

ID=16084685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18051988A Granted JPS6446562A (en) 1988-07-20 1988-07-20 Method of operating low-temperature showcase

Country Status (1)

Country Link
JP (1) JPS6446562A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607224B (en) * 2012-04-09 2014-03-26 合肥美的电冰箱有限公司 Refrigerator
CN105674658B (en) * 2015-03-31 2018-07-31 海信容声(广东)冷柜有限公司 A kind of refrigerator and its control method

Also Published As

Publication number Publication date
JPS6446562A (en) 1989-02-21

Similar Documents

Publication Publication Date Title
KR960016578B1 (en) Operating method for showcase
KR930004398B1 (en) Method of operating low temperature snow case
US4648247A (en) Low-temperature showcase
EP1426711A2 (en) Cooling apparatus and method for controlling the same
JP2005249313A (en) Heat exchanger
JPH08254385A (en) Defrosting system for freezing/refrigerating showcase
JPH0451750B2 (en)
JPH09264650A (en) Refrigerator
JPH0534589B2 (en)
JPH0450510B2 (en)
JP2547703B2 (en) Refrigeration equipment
JP3172265B2 (en) Low temperature showcase
JPH0337117B2 (en)
JPH07318229A (en) Defrosting method of refrigerating and cold storage showcase
JPS6255592B2 (en)
JPH0663691B2 (en) Operation control method for freezing / refrigerating open showcase
JPH0356397B2 (en)
JPS61280368A (en) Operation system of cold showcase
JPH033146B2 (en)
KR930004393B1 (en) Operating method for refrigerating device
JPH0613947B2 (en) How to operate the low temperature showcase
JPS6365273A (en) Low-temperature showcase
JPH065586Y2 (en) Freezer / Refrigerator Open Showcase
JP2583618B2 (en) Operation control method for freezing and refrigeration open case
JPS5888563A (en) Cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees