JPH0450510B2 - - Google Patents

Info

Publication number
JPH0450510B2
JPH0450510B2 JP59223737A JP22373784A JPH0450510B2 JP H0450510 B2 JPH0450510 B2 JP H0450510B2 JP 59223737 A JP59223737 A JP 59223737A JP 22373784 A JP22373784 A JP 22373784A JP H0450510 B2 JPH0450510 B2 JP H0450510B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outer layer
inner layer
air
layer heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59223737A
Other languages
Japanese (ja)
Other versions
JPS61101784A (en
Inventor
Takashi Takizawa
Tsutomu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22373784A priority Critical patent/JPS61101784A/en
Priority to US06/790,268 priority patent/US4648247A/en
Priority to CA000493573A priority patent/CA1240165A/en
Publication of JPS61101784A publication Critical patent/JPS61101784A/en
Publication of JPH0450510B2 publication Critical patent/JPH0450510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は内層、外層の各々に熱交換器、送風機
を配置した強制循環式の低温シヨーケースの運転
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of operating a forced circulation type low-temperature show case in which a heat exchanger and a blower are arranged in each of the inner and outer layers.

(ロ) 従来の技術 特公昭42−24797号公報には、内層及び外層の
各々に熱交換器と送風機とを配置し、内層及び外
層を夫々通過する循環空気を冷却して開口に2層
のエアーカーテンを形成するオープンシヨーケー
スの構成が示されている。前記両熱交換器は並列
関係に接続され、内層用熱交換器のみホツトガス
除霜されるようになつている。
(b) Prior art Japanese Patent Publication No. 42-24797 discloses that a heat exchanger and an air blower are arranged in each of the inner layer and the outer layer, and the circulating air passing through the inner layer and the outer layer is cooled to form two layers in the opening. An open showcasing configuration forming an air curtain is shown. Both heat exchangers are connected in parallel so that only the inner layer heat exchanger is defrosted with hot gas.

(ハ) 発明が解決しようとする問題点 かゝるオープンシヨーケースの運転システム
は、冷却運転時には内層用、外層用両熱交換器に
液冷媒を流して蒸発気化させ、内層、外層を通過
する循環空気の冷却を図り、又、除霜運転時には
ホツトガスを内層用熱交換器に流し凝縮液化さ
せ、この熱交換によつて内層用熱交換器の霜を溶
かすために、下記に列挙する問題が生じる。
(c) Problems to be solved by the invention In the operating system of such an open case, during cooling operation, liquid refrigerant is passed through both the inner and outer layer heat exchangers to evaporate and vaporize, and then pass through the inner and outer layers. In order to cool the circulating air, and during defrosting operation, the hot gas is passed through the inner layer heat exchanger to condense and liquefy, and this heat exchange melts the frost on the inner layer heat exchanger. arise.

ホツトガスを内層用熱交換器に流して凝縮液
化している除霜運転時には、内層を通過中の循
環空気を冷却する冷熱源がないため、循環空気
及び貯蔵室の空気温度が上がり、貯蔵商品にと
つて好ましくない事態となる。そのために、内
層用送風機を停止させると、今度はエアーカー
テンの風量、並びに外層用熱交換器に流通する
空気量が確保できなくなるので、外気進入によ
る貯蔵室温度の上昇や、外層用熱交換器の蒸発
温度低下による冷凍装置の停止(通常の低圧ス
イツチによる。)が発生するため、別途格別な
送風機を設ける必要が出る。
During defrosting operation, in which hot gas is passed through the inner layer heat exchanger to condense and liquefy, there is no cold source to cool the circulating air passing through the inner layer, so the temperature of the circulating air and the air in the storage room rises, causing the temperature of the stored product to rise. This is an extremely undesirable situation. Therefore, when the inner layer blower is stopped, the air volume of the air curtain and the amount of air flowing to the outer layer heat exchanger cannot be secured, so the storage room temperature may rise due to outside air entering, and the outer layer heat exchanger may Because the refrigeration equipment stops (by a normal low-pressure switch) due to the drop in evaporation temperature, it becomes necessary to install a special blower separately.

除霜運転時、内層用熱交換器で得られた液冷
媒の圧縮機へのバツクを阻止するために、除霜
貯槽を設けて液冷媒を蒸発させねばならず、液
冷媒の有効利用を図れないばかりか、冷凍装置
の構成部品が増え高価なものとなつた。
During defrosting operation, in order to prevent the liquid refrigerant obtained from the inner layer heat exchanger from backing up to the compressor, a defrost storage tank must be provided to evaporate the liquid refrigerant, making effective use of the liquid refrigerant. Not only that, but the number of components of the refrigeration equipment has increased, making it more expensive.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、内層1
3と外層7とを仕切る第1区画板4の内層用熱交
換器11と外層用熱交換器5との間に位置する部
分に、内外両層を連通させる窓4Cと、この窓を
閉塞する開閉自在なダンパ4Aとを設け、除霜運
転時、内層用熱交換器11で凝縮液化された冷媒
を冷却運転中の外層用熱交換器5で蒸発気化させ
ると共に、ダンパ4Aを開放して内層用熱交換器
11を通過した循環空気を窓4Cを通して外層7
に導き、外層用熱交換器5を通過させた後、開口
3に吹き出してエアーカーテンを形成するように
した低温シヨーケースの運転方法である。
(d) Means for solving the problems In order to solve the above problems, the present invention provides
3 and the outer layer 7, a window 4C is provided in a portion located between the inner layer heat exchanger 11 and the outer layer heat exchanger 5, and this window is closed. A damper 4A that can be opened and closed is provided, and during defrosting operation, the refrigerant condensed and liquefied in the inner layer heat exchanger 11 is evaporated and vaporized in the outer layer heat exchanger 5 during cooling operation, and the damper 4A is opened to cool the inner layer. The circulating air that has passed through the heat exchanger 11 is passed through the window 4C to the outer layer 7.
This is a method of operating a low-temperature show case in which the air is introduced into the air, passed through the outer layer heat exchanger 5, and then blown out into the opening 3 to form an air curtain.

(ホ) 作用 除霜運転時、高圧冷媒は、内層用熱交換器11
で霜及び循環空気と熱交換されて凝縮液化し、次
に外層用熱交換器5で前記循環空気と熱交換され
て蒸発気化し、一方内層13を通過する前記循環
空気は、内層用熱交換器11で加熱された後、窓
4Cから外層7に流れ、外層用熱交換器5で冷却
されて温度低下した状態で開口3に吹き出され、
この開口3において外気より温度の低いエアーカ
ーテンとして形成される。即ち、除霜運転時、外
層用熱交換器5は液冷媒を蒸発気化する作用をな
すと共に、内層用熱交換器11で加熱された循環
空気を冷却してその温度を引き下げる作用をな
す。
(E) Action During defrosting operation, high-pressure refrigerant is transferred to the inner layer heat exchanger 11.
The circulating air is condensed and liquefied by exchanging heat with frost and circulating air at the outer layer heat exchanger 5, and then evaporated by exchanging heat with the circulating air at the outer layer heat exchanger 5, while the circulating air passing through the inner layer 13 is condensed and liquefied. After being heated in the container 11, it flows through the window 4C to the outer layer 7, is cooled in the outer layer heat exchanger 5, and is blown out to the opening 3 in a reduced temperature state.
This opening 3 is formed as an air curtain whose temperature is lower than that of the outside air. That is, during the defrosting operation, the outer layer heat exchanger 5 has the function of evaporating the liquid refrigerant, and also has the function of cooling the circulating air heated by the inner layer heat exchanger 11 to lower its temperature.

(ヘ) 実施例 第1図に示す1は全面に商品の収納及び取出用
の開口3を形成した断熱壁2にて本体を構成して
なる開放形の低温シヨーケースで、前記断熱壁の
内壁より適当間隔を存して後述する内層側に開く
第1ダンパ4A、後述する外層側に開く第2ダン
パ4B及びこの両ダンパにて夫々閉塞される第1
及び第2両窓4C,4Dを備えた断熱性の第1区
画板4を配設してプレートフイン型の外層用熱交
換器5と軸流型の外層用送風機6とを配置する外
層7と、前記開口の上縁に沿つて位置する外層用
吹出口8と、前記開口の下縁に沿つて位置し、前
記外層用吹出口に相対向する外層用吸込口9とを
形成し、又前記第1区画板の内壁より適当間隔を
存して金属製の第2区画板10を配設してプレー
トフイン型の内層用熱交換器11と軸流型の内層
用送風機12とを配置する内層13と、前記開口
の上縁で且つ外層用吹出口8の内方に並設された
内層用吹出口14と、前記開口の下縁で外層用吸
込口9の内方に並設され、前記内層用吹出口に相
対向する内層用吸込口15と、複数段の棚16を
配置した貯蔵室17とを形成している。前記第
1、第2両ダンパは熱絶縁材、例えば樹脂からな
る板状のものであり、第1ダンパ4Aは第2ダン
パ4Bから見て循環空気の流れ方向上流側に設け
られており、開放時その先端が第2区画板10の
外壁に当接することが好ましく、又第2ダンパ4
Bは開放時その先端が断熱壁2の内壁に当接乃至
近接することが好ましい。前記外層用熱交換器は
第1、第2両ダンパ4A,4B間に位置する様、
外層5内に配置されており、又内層用熱交換器1
1は第1ダンパ4Aからみて循環空気の流れ方向
上流側となる位置に配置されている。尚、前記第
1、第2両ダンパはギヤモータ、シリンダー等を
利用した適宜な駆動装置によつて開閉されるもの
である。
(F) Embodiment 1 shown in Fig. 1 is an open-type low-temperature case whose main body is composed of an insulating wall 2 with openings 3 for storing and taking out products formed on the entire surface. A first damper 4A that opens toward the inner layer side (described later), a second damper 4B that opens toward the outer layer side (described later), and a first damper that is closed by these two dampers, respectively, at an appropriate interval.
and an outer layer 7 in which a heat insulating first partition plate 4 having second windows 4C and 4D is disposed, and a plate fin type outer layer heat exchanger 5 and an axial flow type outer layer blower 6 are disposed. , an outer layer air outlet 8 located along the upper edge of the opening, and an outer layer suction port 9 located along the lower edge of the opening and opposite to the outer layer air outlet; An inner layer in which a second partition plate 10 made of metal is arranged at an appropriate interval from the inner wall of the first partition plate, and a plate fin type inner layer heat exchanger 11 and an axial flow type inner layer blower 12 are arranged. 13, an inner layer air outlet 14 which is arranged in parallel inside the outer layer air inlet 9 at the lower edge of the opening, and an inner layer air outlet 14 which is arranged in parallel inside the outer layer air inlet 9 at the lower edge of the opening; An inner layer suction port 15 facing the inner layer outlet and a storage chamber 17 in which a plurality of shelves 16 are arranged are formed. Both the first and second dampers are plate-shaped ones made of a heat insulating material, for example, resin, and the first damper 4A is provided upstream in the flow direction of the circulating air when viewed from the second damper 4B. At this time, it is preferable that the tip thereof abuts on the outer wall of the second partition plate 10, and the second damper 4
It is preferable that the tip of B is in contact with or close to the inner wall of the heat insulating wall 2 when opened. The outer layer heat exchanger is located between the first and second dampers 4A and 4B,
It is arranged in the outer layer 5, and the inner layer heat exchanger 1
1 is disposed at a position on the upstream side in the flow direction of the circulating air when viewed from the first damper 4A. Incidentally, both the first and second dampers are opened and closed by an appropriate drive device using a gear motor, cylinder, or the like.

第2図に示す18は、前記低温シヨーケースを
冷却するための冷凍装置で、冷媒圧縮機19、凝
縮器となる水冷又は空冷式の熱交換器20、受液
器21、感温部22Aを備えた膨張弁等の減圧弁
22、内層用熱交換器11、気液分離器23を高
圧ガス管24、高圧液管25、低圧液管26及び
低圧ガス管27でもつて環状に接続している。2
9は低圧ガス管27に配置された電磁弁、30は
高圧ガス管24に配置された1つの入口ポート
X、2つの出口ポートY,Zを有する三方電磁弁
等の流路切替弁、31は一端を前記流路切替弁の
出口ポートZ、他端を内層用熱交換器11と、電
磁弁29との間の低圧ガス管27に接続してなる
ホツトガス用バイパス管、32は高圧液管25に
配置された電磁弁である。又、前記外層用熱交換
器は、内層用熱交換器11に対し並列に配され、
高圧液枝管33、低圧液枝管34及び低圧ガス枝
管35によつて高圧液管25と、低圧液管27と
に接続されている。36は高圧液枝管33に配置
された電磁弁、37は低圧ガス枝管35に配置さ
れた逆止弁、38は外層用熱交換器5に減圧液冷
媒を供給する感温部38A付き減圧弁である。3
9は除霜時熱交換器20、受液器21から冷媒を
回収する回収管、40は回収管39に設置された
電磁弁、41はタイマー装置等からなる制御器で
流路切替弁30、電磁弁29,32,36,40
を所定時間開又は閉信号ラインa,b,c,d,
eから送るものである。
Reference numeral 18 shown in FIG. 2 is a refrigeration system for cooling the low-temperature case, and includes a refrigerant compressor 19, a water-cooled or air-cooled heat exchanger 20 serving as a condenser, a liquid receiver 21, and a temperature sensing section 22A. A pressure reducing valve 22 such as an expansion valve, an inner layer heat exchanger 11, and a gas-liquid separator 23 are connected in an annular manner by a high pressure gas pipe 24, a high pressure liquid pipe 25, a low pressure liquid pipe 26, and a low pressure gas pipe 27. 2
9 is a solenoid valve disposed in the low pressure gas pipe 27; 30 is a flow path switching valve such as a three-way solenoid valve having one inlet port X and two outlet ports Y and Z disposed in the high pressure gas pipe 24; 31 is a solenoid valve disposed in the low pressure gas pipe 27; A hot gas bypass pipe having one end connected to the outlet port Z of the flow path switching valve and the other end connected to the low pressure gas pipe 27 between the inner layer heat exchanger 11 and the solenoid valve 29; 32 is a high pressure liquid pipe 25; This is a solenoid valve located at Further, the outer layer heat exchanger is arranged in parallel to the inner layer heat exchanger 11,
It is connected to the high pressure liquid pipe 25 and the low pressure liquid pipe 27 by a high pressure liquid branch pipe 33, a low pressure liquid branch pipe 34, and a low pressure gas branch pipe 35. 36 is a solenoid valve disposed in the high-pressure liquid branch pipe 33, 37 is a check valve disposed in the low-pressure gas branch pipe 35, and 38 is a pressure reducing unit with a temperature sensing part 38A for supplying the reduced pressure liquid refrigerant to the outer layer heat exchanger 5. It is a valve. 3
Reference numeral 9 denotes a defrosting heat exchanger 20, a recovery pipe for recovering refrigerant from the liquid receiver 21, 40 a solenoid valve installed in the recovery pipe 39, 41 a controller consisting of a timer device, etc.; Solenoid valve 29, 32, 36, 40
open or close signal lines a, b, c, d, for a predetermined period of time.
It is sent from e.

次に低温シヨーケース1の運転システムについ
て説明する。
Next, the operating system of the low-temperature show case 1 will be explained.

いま第1ダンパ4A、第2ダンパ4Bは閉じて
おり、第1図に示すように、内層13及び外層7
は夫々独立している。この時、流路切替弁30の
入口ポートXと出口ポートYとが通じ、電磁弁2
9と電磁弁32が開、電磁弁36と40が閉とな
つており、かゝる状態で、冷媒圧縮機19を稼働
させると、冷媒は圧縮機19−流路切替弁30−
凝縮器となる熱交換器20−受液器21−電磁弁
32−減圧弁22−蒸発器となる内層用熱交換器
11−電磁弁29−気液分離器23−圧縮器19
の第2図太線で示す周知のサイクルを形成し、こ
の間熱交換器20で凝縮液化、減圧弁22で減
圧、内層用熱交換器で蒸発気化される。この冷却
運転において、内層用送風機12でもつて、内層
13を通過中の循環空気は、内層用熱交換器11
を通過中の低圧液冷媒と熱交換されて冷却空気と
なり、第1図矢印に示す如く冷たいエアーカーテ
ンCAを形成して貯蔵室17の冷却を図る。一方、
外層用送風機6でもつて外層7を通過中の循環空
気は、第1図矢印の如く開口3において冷たいエ
アーカーテンCAの外側に沿つて流れ、この冷た
いエアーカーテンの影響を受けてオープンシヨー
ケース1を包囲する外気より漸低い温度となり、
前記の冷たいエアーカーテンCAと外気との接触
を阻止する保護エアーカーテンGAとして作用す
る。
The first damper 4A and the second damper 4B are now closed, and as shown in FIG.
are independent of each other. At this time, the inlet port X and outlet port Y of the flow path switching valve 30 communicate with each other, and the solenoid valve 2
9 and solenoid valve 32 are open, and solenoid valves 36 and 40 are closed. When the refrigerant compressor 19 is operated in such a state, the refrigerant flows through the compressor 19 - flow path switching valve 30 -
Heat exchanger 20 serving as a condenser - Liquid receiver 21 - Solenoid valve 32 - Pressure reducing valve 22 - Inner layer heat exchanger 11 serving as an evaporator - Solenoid valve 29 - Gas-liquid separator 23 - Compressor 19
The well-known cycle shown by the thick line in FIG. 2 is formed, during which the water is condensed and liquefied in the heat exchanger 20, the pressure is reduced in the pressure reducing valve 22, and the water is vaporized in the inner layer heat exchanger. In this cooling operation, even with the inner layer blower 12, the circulating air passing through the inner layer 13 is transferred to the inner layer heat exchanger 11.
It exchanges heat with the low-pressure liquid refrigerant passing through and becomes cooling air, forming a cold air curtain CA as shown by the arrow in FIG. 1 to cool the storage chamber 17. on the other hand,
The circulating air passing through the outer layer 7 by the outer layer blower 6 flows along the outside of the cold air curtain CA at the opening 3 as shown by the arrow in FIG. The temperature gradually becomes lower than the surrounding outside air,
It acts as a protective air curtain GA that prevents the cold air curtain CA from coming into contact with the outside air.

冷却運転の進行に伴い内層用熱交換器11への
着霜が多くなると、電磁弁36が所定時間例えば
30秒間開き、高圧液枝管33に分流される。この
分流された液冷媒は、減圧弁38で減圧され、蒸
発器となる外層用熱交換器5で蒸発気化して低圧
ガス枝管35を通り、低圧ガス管27に流れ、内
層用熱交換器11を通過した低圧ガス冷媒と合流
し圧縮機19に戻る第3図太線で示すサイクルと
なる。このサイクルは冷却運転終了前、即ち冷却
運転から除霜運転に切り替る直前に行なわれ、こ
の運転によつて内層用熱交換器11と同様に外層
用熱交換器5も低温となり、外層7を通過中の循
環空気は、外層用熱交換器5を通過中の低圧液冷
媒と熱交換され、内層13を循環中の冷却空気と
略同じ乃至は若干高い温度に維持される。尚、こ
の冷却運転においては外層用送風機6の運転を停
止してもよい。
As the cooling operation progresses, as frost builds up on the inner layer heat exchanger 11, the solenoid valve 36 is activated for a predetermined period of time, for example.
It is opened for 30 seconds and the liquid is diverted to the high pressure liquid branch pipe 33. This divided liquid refrigerant is depressurized by the pressure reducing valve 38, evaporated in the outer layer heat exchanger 5 which serves as an evaporator, passes through the low pressure gas branch pipe 35, flows to the low pressure gas pipe 27, and is transferred to the inner layer heat exchanger. 11 and returns to the compressor 19, resulting in a cycle shown by the thick line in FIG. This cycle is performed before the end of the cooling operation, that is, immediately before switching from the cooling operation to the defrosting operation, and due to this operation, the outer layer heat exchanger 5 becomes low temperature as well as the inner layer heat exchanger 11, and the outer layer 7 The circulating air passing through the outer layer heat exchanger 5 exchanges heat with the low-pressure liquid refrigerant passing through the outer layer heat exchanger 5, and is maintained at approximately the same or slightly higher temperature than the cooling air circulating through the inner layer 13. Note that during this cooling operation, the operation of the outer layer blower 6 may be stopped.

この冷却運転中、除霜開始信号が出力される
と、電磁弁29,32が閉まると共に、電磁弁4
0が開き、流路切替弁30の出口ポートYがZに
切り替り、且つ、第1及び第2両ダンパ4A,4
Bが開くと、圧縮機19からのホツトガスは流路
切替弁30からホツトガス用バイパス管31−内
層用熱交換器11−逆止弁28−電磁弁36−減
圧弁38−蒸発器となる外層用熱交換器5−気液
分離器23−圧縮器19と流れ、又一方冷却運転
時、受液器21及び熱交換器20に貯えられた冷
媒(主として液冷媒)は、回収管39、電磁弁4
0を通り、気液分離器23に流れる第5図太線で
示すサイクルを形成する。このサイクルは冷媒回
収を含む除霜運転であり、ホツトガスは凝縮器と
なる内層用熱交換器11で凝縮液化されて高圧液
冷媒となり、減圧弁38で減圧され低圧液冷媒と
なつて外層用熱交換器5で蒸発気化される。前記
ホツトガスの凝縮液化に伴ない、内層用熱交換器
11に付着した霜は徐々に溶かされ、且つ内層用
熱交換器11を通過する循環空気の温度は徐々に
上昇する。この内層用熱交換器を通過した循環空
気は第1ダンパ4Aにより内層13における流れ
を中断されて第1窓4Cから外層7に流れ、外層
循環空気と合流する。この合流した循環空気は外
層用熱交換器5を通過中の低圧液冷媒と熱交換さ
れて冷却される。この冷却された循環空気は第2
ダンパ4Bにより分流され、その大部分は第2窓
4Dから内層13に流れ、又その一部分は第2ダ
ンパ4Bと断熱壁2との間を通り外層5をその
まゝ流れ、夫々内層用吹出口14及び外層用吹出
口8から開口3に向けて吹き出され、冷却運転時
と同様にエアーカーテンCA,GAを形成し、外
層用吸込口9と内層用吸込口15から外層用送風
機6、内層用送風機12によりそれぞれ外層7、
内層13に帰還する第4図に示す空気循環経路を
辿る。
During this cooling operation, when the defrosting start signal is output, the solenoid valves 29 and 32 close, and the solenoid valve 4
0 opens, the outlet port Y of the flow path switching valve 30 switches to Z, and both the first and second dampers 4A, 4
When B is opened, the hot gas from the compressor 19 is transferred from the flow path switching valve 30 to the hot gas bypass pipe 31 - the inner layer heat exchanger 11 - the check valve 28 - the solenoid valve 36 - the pressure reducing valve 38 - the outer layer which becomes the evaporator. The refrigerant (mainly liquid refrigerant) stored in the liquid receiver 21 and the heat exchanger 20 flows through the heat exchanger 5 - gas-liquid separator 23 - compressor 19, and during cooling operation, the refrigerant (mainly liquid refrigerant) flows through the recovery pipe 39 and the solenoid valve. 4
0 and flows to the gas-liquid separator 23, forming a cycle shown by the thick line in FIG. This cycle is a defrosting operation that includes refrigerant recovery, and the hot gas is condensed and liquefied in the inner layer heat exchanger 11, which serves as a condenser, to become a high-pressure liquid refrigerant, and the pressure is reduced by the pressure reducing valve 38 to become a low-pressure liquid refrigerant, which provides heat for the outer layer. It is evaporated in the exchanger 5. As the hot gas is condensed and liquefied, the frost adhering to the inner heat exchanger 11 is gradually melted, and the temperature of the circulating air passing through the inner heat exchanger 11 is gradually increased. The circulating air that has passed through the inner layer heat exchanger is interrupted from flowing in the inner layer 13 by the first damper 4A, flows through the first window 4C to the outer layer 7, and merges with the outer layer circulating air. The combined circulating air exchanges heat with the low-pressure liquid refrigerant passing through the outer layer heat exchanger 5 and is cooled. This cooled circulating air
The flow is divided by the damper 4B, and most of it flows from the second window 4D to the inner layer 13, and a part of it passes between the second damper 4B and the heat insulating wall 2, and flows as it is through the outer layer 5, and is sent to the inner layer outlet, respectively. 14 and the outer layer air outlet 8 toward the opening 3, forming air curtains CA and GA in the same way as during cooling operation, and the outer layer air blower 6 and the inner layer air blower 6 from the outer layer suction port 9 and the inner layer suction port 15. The outer layer 7,
The air circulation path shown in FIG. 4 is followed returning to the inner layer 13.

除霜運転の進行に伴ない内層用熱交換器11の
霜が溶けると、一定時間例えば30秒間電磁弁40
を閉じ、流路切替弁30の出口ポートZがYに切
り替ると、内層用熱交換器11と外層用熱交換器
5に残つている残留冷媒を逆止弁37、気液分離
器23を通過させ圧縮機19により、熱交換機2
0、受液器21に回収する第6図に太線で示す冷
媒回収サイクルとなる。この冷媒回収サイクルの
所定時間経過後、電磁弁29,32が開き電磁弁
36が閉じ、第1、第2両ダンパ4A,4Bが閉
まると第1図及び第2図で示した冷却運転とな
る。
When the frost on the inner layer heat exchanger 11 melts as the defrosting operation progresses, the solenoid valve 40 is activated for a certain period of time, for example, 30 seconds.
When the outlet port Z of the flow path switching valve 30 is switched to Y, the residual refrigerant remaining in the inner layer heat exchanger 11 and the outer layer heat exchanger 5 is removed by the check valve 37 and the gas-liquid separator 23. The heat exchanger 2 is passed through the compressor 19.
0, the refrigerant recovery cycle is shown by the thick line in FIG. After a predetermined period of time in this refrigerant recovery cycle, the solenoid valves 29 and 32 open, the solenoid valve 36 closes, and both the first and second dampers 4A and 4B close, resulting in the cooling operation shown in FIGS. 1 and 2. .

上記低温シヨーケース1の運転方法によれば、
冷却運転時には、第1、第2両ダンパ4A,4B
が閉じているので、開口3に温度の異なるエアー
カーテンCA,GAを形成することができる。又
除霜運転時には、第1、第2両ダンパ4A,4B
を開け、ホツトガスを内層用熱交換器11で、霜
及び循環空気と熱交換させて凝縮液化した後、こ
の液冷媒を外層用熱交換器5で前記循環空気と熱
交換させて蒸発気化するので、圧縮機19への液
バツク防止が図れ、又、内層13の循環空気は内
層用熱交換器11で暖められた後、第1窓4Cか
ら外層7に流れ、外層用熱交換器5で冷却されて
外気より低い温度となつた後、第2窓4Dから内
層13に戻りエアーカーテンCAとして形成され
るので、冷却運転時と同様に温度の低いエアーカ
ーテンCAで貯蔵室17の冷気団を外気から保護
して貯蔵室17の昇温幅を小さくすることができ
る。
According to the operating method of the low-temperature case 1,
During cooling operation, both the first and second dampers 4A, 4B
Since the openings 3 are closed, air curtains CA and GA having different temperatures can be formed in the openings 3. Also, during defrosting operation, both the first and second dampers 4A and 4B
After the hot gas is condensed and liquefied by exchanging heat with frost and circulating air in the inner layer heat exchanger 11, this liquid refrigerant is evaporated and vaporized by exchanging heat with the circulating air in the outer layer heat exchanger 5. In addition, the circulating air in the inner layer 13 is heated by the inner layer heat exchanger 11, flows through the first window 4C to the outer layer 7, and is cooled by the outer layer heat exchanger 5. After the temperature becomes lower than the outside air, the air returns to the inner layer 13 from the second window 4D and is formed as an air curtain CA, so the cold air mass in the storage room 17 is transferred to the outside air using the low temperature air curtain CA, as in the case of cooling operation. It is possible to reduce the range of temperature increase in the storage chamber 17 by protecting the storage chamber 17 from damage.

又、第1ダンパ4Aを内層側に開放、第2両ダ
ンパ4Bを外層側に開放することにより、この両
タンパを循環空気の指向板として作用させること
ができ、循環空気の流れ特性が良くなる。
Furthermore, by opening the first damper 4A toward the inner layer side and opening both second dampers 4B toward the outer layer side, these two dampers can act as directing plates for circulating air, improving the flow characteristics of the circulating air. .

(ヘ) 発明の効果 以上の如く本発明は、内層用熱交換器の除霜運
転時には、高圧冷媒で内層用熱交換器の霜を溶か
しつつ、この内層用熱交換器で得られた液冷媒を
冷却運転中の外層用熱交換器で蒸発気化させ、内
層用熱交換器で暖められた循環空気を窓を通して
外層に導き、外層用熱交換器で冷却し、開口に吹
き出して貯蔵室の冷気団に接する冷たいエアーカ
ーテンとするため下記に列挙する効果が生じる。
(F) Effects of the Invention As described above, the present invention provides a method for melting frost on the inner heat exchanger with high-pressure refrigerant during defrosting operation of the inner heat exchanger, and melting the liquid refrigerant obtained in the inner heat exchanger. is evaporated by the outer layer heat exchanger during cooling operation, and the circulating air warmed by the inner layer heat exchanger is guided to the outer layer through the window, cooled by the outer layer heat exchanger, and blown out through the opening to cool the storage room. Since a cold air curtain is formed in contact with the air, the effects listed below are produced.

暖かくなった内層用熱交換器を通過する循環
空気を、外層用熱交換器により包囲空気、即ち
外気より低い温度に冷却してエアーカーテンと
するため、内層用熱交換器で暖められた循環空
気が直接開口に吹き出されることはなく、外気
より温度の低いエアーカーテンを開口に形成す
ることができ、この結果除霜時の貯蔵室の昇温
幅を小さくし、除霜時における貯蔵商品の品質
低下や変質を防止できる。更に、エアーカーテ
ンの風量確保、並びに外層用熱交換器の流通風
量確保のために、格別な送風機を設ける必要も
ない。
The heated circulating air passing through the inner layer heat exchanger is cooled by the outer layer heat exchanger to a temperature lower than the surrounding air, that is, the outside air, to form an air curtain. is not directly blown out into the opening, and an air curtain with a lower temperature than the outside air can be formed at the opening. As a result, the range of temperature increase in the storage room during defrosting is reduced, and the temperature of stored products during defrosting is reduced. It can prevent quality deterioration and deterioration. Furthermore, there is no need to provide a special blower to ensure the air volume of the air curtain and the flow volume of the outer layer heat exchanger.

除霜運転中、内層用熱交換器を通過する循環
空気の加熱分を外層用熱交換器により冷却する
ため貯蔵室の昇温幅を小さくできるので、再冷
却運転開始後において貯蔵室が所定の温度に冷
却される迄(プルダウン)の時間が短くなり冷
却効果が向上する。
During defrosting operation, the heated portion of the circulating air passing through the inner layer heat exchanger is cooled by the outer layer heat exchanger, so the temperature increase width of the storage room can be reduced, so that the storage room remains at the specified level after the recooling operation starts. The time it takes to cool down to the desired temperature (pulldown) is shortened, improving the cooling effect.

内層用熱交換器で凝縮液化された冷媒を外層
用熱交換器で蒸発気化させるので、除霜貯槽を
使用することなく液バツク防止が図れ、冷凍装
置の構成が簡単となる。
Since the refrigerant condensed and liquefied in the inner layer heat exchanger is evaporated in the outer layer heat exchanger, liquid backflow can be prevented without using a defrosting storage tank, and the configuration of the refrigeration system is simplified.

【図面の簡単な説明】[Brief explanation of drawings]

図面は何れも本発明低温シヨーケースの運転方
法にかかる実施例を示し、第1図は低温シヨーケ
ースのダンパ閉時の縦断面図を、第4図は低温シ
ヨーケースのダンパ開時の縦断面図を示す。又第
2図、第3図、第5図、第6図は低温シヨーケー
スを冷却する冷凍装置の冷媒回路図である。 3……開口、4A,4B……ダンパ、5……外
層用熱交換器、6……外層用送風機、7……外
層、11……内層用熱交換器、12……内層用送
風機、13……内層、CA,GA……エアーカー
テン。
Each of the drawings shows an embodiment of the method of operating a low-temperature show case of the present invention, and FIG. 1 shows a longitudinal cross-sectional view of the low-temperature show case when the damper is closed, and FIG. 4 shows a longitudinal cross-sectional view of the low-temperature show case when the damper is open. . 2, 3, 5, and 6 are refrigerant circuit diagrams of a refrigeration system for cooling a low-temperature show case. 3... Opening, 4A, 4B... Damper, 5... Heat exchanger for outer layer, 6... Blower for outer layer, 7... Outer layer, 11... Heat exchanger for inner layer, 12... Blower for inner layer, 13 ...Inner layer, CA, GA...Air curtain.

Claims (1)

【特許請求の範囲】 1 内層及び外層の各々に熱交換器と、送風機と
を配置し、内層用熱交換器の冷却運転時、開口に
循環空気による少なくとも2層のエアーカーテン
を形成してなる低温シヨーケースにおいて、外層
用熱交換器を内層用熱交換器よりも空気循環方向
下流側に配置し、且つ内層と外層とを仕切る第1
区画板の前記内層用、外層用熱交換器の間に位置
する部分に、内外両層を連通させる窓と、この窓
を閉塞する開閉自在なダンパとを設け、除霜運転
時、内層用熱交換器で凝縮液化された冷媒を外層
用熱交換器で蒸発気化させると共に、前記内外両
層用送風機を運転し、前記ダンパを開放して内層
用熱交換器を通過した循環空気を窓を通して外層
に導き、外層用熱交換器を通過させた後、開口に
吹き出して少なくとも1層のエアーカーテンを形
成してなる低温シヨーケースの運転方法。 2 前記ダンパは内装側に開放される特許請求の
範囲第1項記載の低温シヨーケースの運転方法。
[Claims] 1. A heat exchanger and a blower are arranged in each of the inner layer and the outer layer, and at least two layers of air curtains are formed by circulating air at the openings during cooling operation of the inner layer heat exchanger. In the low-temperature case, the outer layer heat exchanger is disposed downstream of the inner layer heat exchanger in the air circulation direction, and the first layer partitions the inner layer and the outer layer.
A window that communicates both the inside and outside layers and a damper that can be opened and closed to close this window are provided in the portion of the partition plate located between the inner layer heat exchanger and the outer layer heat exchanger, so that during defrosting operation, the heat exchanger for the inner layer is provided. The refrigerant condensed and liquefied in the exchanger is evaporated and vaporized in the heat exchanger for the outer layer, and the blower for both the inner and outer layers is operated, the damper is opened, and the circulating air that has passed through the heat exchanger for the inner layer is passed through the window and transferred to the outer layer. A method of operating a low-temperature show case, in which air is introduced into the air, passed through an outer layer heat exchanger, and then blown out through an opening to form at least one layer of air curtain. 2. The method of operating a low temperature show case according to claim 1, wherein the damper is opened to the interior side.
JP22373784A 1984-10-24 1984-10-24 Method of operating cryostatic showcase Granted JPS61101784A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22373784A JPS61101784A (en) 1984-10-24 1984-10-24 Method of operating cryostatic showcase
US06/790,268 US4648247A (en) 1984-10-24 1985-10-22 Low-temperature showcase
CA000493573A CA1240165A (en) 1984-10-24 1985-10-22 Low-temperature showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22373784A JPS61101784A (en) 1984-10-24 1984-10-24 Method of operating cryostatic showcase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18051888A Division JPH0229583A (en) 1988-07-20 1988-07-20 Low-temperature showcase

Publications (2)

Publication Number Publication Date
JPS61101784A JPS61101784A (en) 1986-05-20
JPH0450510B2 true JPH0450510B2 (en) 1992-08-14

Family

ID=16802899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22373784A Granted JPS61101784A (en) 1984-10-24 1984-10-24 Method of operating cryostatic showcase

Country Status (1)

Country Link
JP (1) JPS61101784A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663692B2 (en) * 1986-09-08 1994-08-22 三洋電機株式会社 Low temperature showcase
JPH0229583A (en) * 1988-07-20 1990-01-31 Sanyo Electric Co Ltd Low-temperature showcase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770371A (en) * 1980-10-21 1982-04-30 Fuji Electric Co Ltd Refrigerated open show case

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770371A (en) * 1980-10-21 1982-04-30 Fuji Electric Co Ltd Refrigerated open show case

Also Published As

Publication number Publication date
JPS61101784A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
KR960016578B1 (en) Operating method for showcase
KR930004398B1 (en) Method of operating low temperature snow case
US4648247A (en) Low-temperature showcase
JPH0450510B2 (en)
JPH09264650A (en) Refrigerator
JPH08254385A (en) Defrosting system for freezing/refrigerating showcase
JPH0337117B2 (en)
JPH0451750B2 (en)
JPH0534589B2 (en)
JP2547703B2 (en) Refrigeration equipment
JP6998509B2 (en) refrigerator
JPH07318229A (en) Defrosting method of refrigerating and cold storage showcase
JPS61280368A (en) Operation system of cold showcase
JPH0356397B2 (en)
JPS6365273A (en) Low-temperature showcase
JPH033146B2 (en)
JPS621670Y2 (en)
JPS6255592B2 (en)
JPH0613947B2 (en) How to operate the low temperature showcase
KR930004393B1 (en) Operating method for refrigerating device
JPH0663691B2 (en) Operation control method for freezing / refrigerating open showcase
JPH0481102B2 (en)
JPH089588Y2 (en) Cooling system
JPH065586Y2 (en) Freezer / Refrigerator Open Showcase
JPS6012542B2 (en) refrigerated case

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees