JPH0337117B2 - - Google Patents

Info

Publication number
JPH0337117B2
JPH0337117B2 JP22373884A JP22373884A JPH0337117B2 JP H0337117 B2 JPH0337117 B2 JP H0337117B2 JP 22373884 A JP22373884 A JP 22373884A JP 22373884 A JP22373884 A JP 22373884A JP H0337117 B2 JPH0337117 B2 JP H0337117B2
Authority
JP
Japan
Prior art keywords
heat exchanger
inner layer
outer layer
layer heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22373884A
Other languages
Japanese (ja)
Other versions
JPS61101785A (en
Inventor
Takashi Takizawa
Tsutomu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22373884A priority Critical patent/JPS61101785A/en
Publication of JPS61101785A publication Critical patent/JPS61101785A/en
Publication of JPH0337117B2 publication Critical patent/JPH0337117B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は内層、外層の各々に熱交換器、送風機
を配置した強制循環式の低温シヨーケースの運転
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of operating a forced circulation type low-temperature show case in which a heat exchanger and a blower are arranged in each of the inner and outer layers.

(ロ) 従来の技術 特公昭42−24797号公報には、内層及び外層の
各々に熱交換器と送風機とを配置し、内層及び外
層を夫々通過する循環空気を冷却して開口に2層
のエアーカーテンを形成するオープンシヨーケー
スの構成が示されている。前記両熱交換器は並列
関係に接続され、内層用熱交換器のみホツトガス
除霜されるようになつている。
(b) Prior art Japanese Patent Publication No. 42-24797 discloses that a heat exchanger and an air blower are arranged in each of the inner layer and the outer layer, and the circulating air passing through the inner layer and the outer layer is cooled to form two layers in the opening. An open showcasing configuration forming an air curtain is shown. Both heat exchangers are connected in parallel so that only the inner layer heat exchanger is defrosted with hot gas.

(ハ) 発明が解決しようとする問題点 かゝるオープンシヨーケースの運転システム
は、冷却運転時には内層用、外層用両熱交換器に
液冷媒を流して蒸発気化させ、内層、外層を通過
する循環空気の冷却を図り、又、除霜運転時には
ホツトガスを内層用熱交換器に流し凝縮液化さ
せ、この熱交換によつて内層用熱交換器の霜を溶
かすために、下記に列挙する問題が生じる。
(c) Problems to be solved by the invention In the operating system of such an open case, during cooling operation, liquid refrigerant is passed through both the inner and outer layer heat exchangers to evaporate and vaporize, and then pass through the inner and outer layers. In order to cool the circulating air, and during defrosting operation, the hot gas is passed through the inner layer heat exchanger to condense and liquefy, and this heat exchange melts the frost on the inner layer heat exchanger. arise.

ホツトガスを内層用熱交換器に流して凝縮液
化している除霜運転時には、内層を通過中の循
環空気を冷却する冷熱源がないために、循環空
気及び貯蔵室の空気温度が上がり、貯蔵商品に
とつて好ましくない事態となる。
During defrosting operation, in which hot gas is passed through the inner layer heat exchanger to condense and liquefy, there is no cold source to cool the circulating air passing through the inner layer, so the temperature of the circulating air and the air in the storage room rises, causing the stored products to rise. This is an unfavorable situation for both.

除霜運転時、内層用熱交換器で得られた液冷
媒の圧縮機へのバツクを阻止するために、除霜
貯槽を設けて液冷媒を蒸発させねばならず、液
冷媒の有効利用を図れないがかりか、冷凍装置
の構成部品が増え高価なものとなつた。
During defrosting operation, in order to prevent the liquid refrigerant obtained from the inner layer heat exchanger from backing up to the compressor, a defrost storage tank must be provided to evaporate the liquid refrigerant, making effective use of the liquid refrigerant. Unfortunately, the number of components for refrigeration equipment has increased and it has become more expensive.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、内層1
3と外層7とを仕切る第1区画板4に、内外両槽
を連通させる窓4Cと、この窓を閉塞する開閉自
在なダンパ4Aとを設け、除霜運転時、内層用熱
交換器11で凝縮液化された冷媒を外層用熱交換
器5で蒸発気化させると共に、ダンパ4Aを開放
して内層用熱交換器11を通過した循環空気を窓
4Cを通して外層7に導き、外層用熱交換器5を
通過させた後、開口3に吹き出してエアーカーテ
ンCAを形成し、且つ除霜運転終了前には内層用
熱交換器11内の残留液冷媒を冷却運転中の外層
用熱交換器5で引き続き蒸発気化させるようにし
た低温シヨーケース1の運転方法である。
(d) Means for solving the problems In order to solve the above problems, the present invention provides a method for solving the problems described above.
3 and the outer layer 7 is provided with a window 4C that communicates both the inner and outer tanks, and a damper 4A that can be opened and closed to close this window. The condensed and liquefied refrigerant is evaporated in the outer layer heat exchanger 5, and the damper 4A is opened to guide the circulating air that has passed through the inner layer heat exchanger 11 to the outer layer 7 through the window 4C. After passing through, the liquid refrigerant is blown out through the opening 3 to form an air curtain CA, and before the defrosting operation ends, the residual liquid refrigerant in the inner layer heat exchanger 11 is continuously transferred to the outer layer heat exchanger 5 during the cooling operation. This is a method of operating a low-temperature show case 1 that performs evaporation.

(ホ) 作用 除霜運転時、高圧冷媒を、内層用熱交換器11
で霜及び循環空気と熱交換して凝縮液化し、次に
この液冷媒を外層用熱交換器5で前記循環空気と
熱交換して蒸発気化させると共に、除霜運転終了
前にも内層用熱交換器11内の残留液冷媒を外層
用熱交換器5で引き続き蒸発気化させ、一方内層
13を通過する前記循環空気を、内層用熱交換器
11で加熱した後、窓4Cから外層7に流し、外
層用熱交換器5で冷却して温度低下させた状態で
開口3において外気より温度の低いエアーカーテ
ンCAとして形成する。即ち、内層用熱交換器1
1の冷媒回収を含む除霜運転時、外層用熱交換器
5は液冷媒を蒸発気化する作用をなすと共に、内
層用熱交換器11で加熱された循環空気を冷却し
てその温度を引き下げる作用をなす。
(e) Effect During defrosting operation, high-pressure refrigerant is transferred to the inner layer heat exchanger 11.
The liquid refrigerant is condensed and liquefied by exchanging heat with the frost and circulating air, and then this liquid refrigerant is evaporated by exchanging heat with the circulating air in the outer layer heat exchanger 5, and the inner layer heat is also transferred before the end of the defrosting operation. The residual liquid refrigerant in the exchanger 11 is continuously evaporated and vaporized in the outer layer heat exchanger 5, while the circulating air passing through the inner layer 13 is heated in the inner layer heat exchanger 11 and then flows into the outer layer 7 through the window 4C. The outer layer heat exchanger 5 cools and lowers the temperature, and then forms an air curtain CA at the opening 3 with a temperature lower than that of the outside air. That is, the inner layer heat exchanger 1
During the defrosting operation including refrigerant recovery in step 1, the outer layer heat exchanger 5 has the function of evaporating the liquid refrigerant, and also has the function of cooling the circulating air heated by the inner layer heat exchanger 11 to lower its temperature. to do.

(ヘ) 実施例 第1図に示す1は前面に商品の収納及び取出用
の開口3を形成した断熱壁2にて本体を構成して
なる開放形の低温シヨーケースで、前記断熱壁の
内壁より適当間隔を存して後述する内層側に開く
第1ダンパ4A、後述する外層側に開く第2ダン
パ4B及びこの両ダンパにて夫々閉塞される第1
及び第2両窓4C,4Dを備えた断熱性の第1区
画板4を配設してプレートフイン型の外層用熱交
換器5と軸流型の外層用送風機6とを配置する外
層7と、前記開口の上縁に沿つて位置する外層用
吹出口8と、前記開口の下縁に沿つて位置し、前
記外層用吹出口に相対向する外層用吸込口9とを
形成し、又前記第1区画板の内壁より適当間隔を
存して金属製の第2区画板10を配設して、プレ
ートフイン型の内層用熱交換器11と軸流型の内
層用送風機12とを配置する内層13と、前記開
口の上縁で且つ外層用吹出口8の内方に並設され
た内層用吹出口14と、前記開口の下縁で外層用
吸込口9の内方に並設され、前記内層用吹出口に
相対向する内層用吸込口15と、複数段の棚16
を配置した貯蔵室17とを形成している。前記第
1、第2両ダンパは熱絶縁材、例えば樹脂からな
る板状のものであり、第1ダンパ4Aは第2ダン
パ4Bから見て循環空気の流れ方向上流側に設け
られており、開放時その先端が第2区画板10の
外壁に当接することが好ましく、又第2ダンパ4
Bは開放時その先端が断熱壁2の内壁に当接乃至
近接することが好ましい。前記外層用熱交換器は
第1、第2両ダンパ4A,4B間に位置する様、
外層5内に配置されており、又内層用熱交換器1
1は第1ダンパ4Aからみて循環空気の流れ方向
上流側となる位置に配置されている。尚、前記第
1、第2両ダンパはギヤモータ、シリンダー等を
利用した適宜な駆動装置によつて開閉されるもの
である。
(F) Embodiment 1 shown in Fig. 1 is an open-type low-temperature case whose main body is composed of an insulating wall 2 with an opening 3 for storing and taking out products on the front. A first damper 4A that opens toward the inner layer side (described later), a second damper 4B that opens toward the outer layer side (described later), and a first damper that is closed by these two dampers, respectively, at an appropriate interval.
and an outer layer 7 in which a heat insulating first partition plate 4 having second windows 4C and 4D is disposed, and a plate fin type outer layer heat exchanger 5 and an axial flow type outer layer blower 6 are disposed. , an outer layer air outlet 8 located along the upper edge of the opening, and an outer layer suction port 9 located along the lower edge of the opening and opposite to the outer layer air outlet; A second partition plate 10 made of metal is arranged at an appropriate distance from the inner wall of the first partition plate, and a plate fin type inner layer heat exchanger 11 and an axial flow type inner layer blower 12 are arranged. an inner layer 13, an inner layer air outlet 14 arranged in parallel at the upper edge of the opening and inside the outer layer air outlet 8, and an inner layer air outlet 14 arranged in parallel inside the outer layer suction port 9 at the lower edge of the opening, An inner layer suction port 15 facing the inner layer outlet and a plurality of shelves 16
A storage chamber 17 is formed. Both the first and second dampers are plate-shaped ones made of a heat insulating material, for example, resin, and the first damper 4A is provided upstream in the flow direction of the circulating air when viewed from the second damper 4B. At this time, it is preferable that the tip thereof abuts on the outer wall of the second partition plate 10, and the second damper 4
It is preferable that the tip of B is in contact with or close to the inner wall of the heat insulating wall 2 when opened. The outer layer heat exchanger is located between the first and second dampers 4A and 4B,
It is arranged in the outer layer 5, and the inner layer heat exchanger 1
1 is disposed at a position on the upstream side in the flow direction of the circulating air when viewed from the first damper 4A. Incidentally, both the first and second dampers are opened and closed by an appropriate drive device using a gear motor, cylinder, or the like.

第2図に示す18は、前記低温シヨーケースを
冷却するための冷凍装置で、冷媒圧縮機19、凝
縮器となる水冷又は空冷式の熱交換器20、受液
器21、感温部22Aを備えた膨張弁等の減圧弁
22、内層用熱交換器11、気液分離器23を高
圧ガス管24、高圧液管25、低圧液管26及び
低圧ガス管27でもつて環状に接続している。2
9は低圧ガス管27に配置された電磁弁、30は
高圧ガス管24に配置された1つの入口ポート
X、2つの出口ポートY,Zを有する三方電磁弁
等の流路切替弁、31は一端を前記流路切替弁の
出口ポートZ、他端を内層用熱交換器11と、電
磁弁29との間の低圧ガス管27に接続してなる
ホツトガス用バイパス管、32は高圧液管25に
配置された電磁弁である。又、前記外層用熱交換
器は、内層用熱交換器11に対し並列に配され、
高圧液枝管33、低圧液枝管34及び低圧ガス枝
管35によつて、高圧液管25と、低圧液管27
とに接続されている。36は高圧液枝管33に配
置された電磁弁、37は低圧ガス枝管35に配置
された逆止弁、38は外層用熱交換器5に減圧液
冷媒を供給する感温部38A付き減圧弁である。
39は除霜時熱交換器20、受液器21から冷媒
を回収する回収管、40は回収管39に設置され
た電磁弁、41はタイマー装置等からなる制御器
で流路切替弁30、電磁弁29,32,36,4
0を所定時間開又は閉信号をラインa,b,c,
d,eから送るものである。
Reference numeral 18 shown in FIG. 2 is a refrigeration system for cooling the low-temperature case, and includes a refrigerant compressor 19, a water-cooled or air-cooled heat exchanger 20 serving as a condenser, a liquid receiver 21, and a temperature sensing section 22A. A pressure reducing valve 22 such as an expansion valve, an inner layer heat exchanger 11, and a gas-liquid separator 23 are connected in an annular manner by a high pressure gas pipe 24, a high pressure liquid pipe 25, a low pressure liquid pipe 26, and a low pressure gas pipe 27. 2
9 is a solenoid valve disposed on the low pressure gas pipe 27; 30 is a flow path switching valve such as a three-way solenoid valve having one inlet port X and two outlet ports Y and Z disposed on the high pressure gas pipe 24; 31 is a solenoid valve A hot gas bypass pipe having one end connected to the outlet port Z of the flow path switching valve and the other end connected to the low pressure gas pipe 27 between the inner layer heat exchanger 11 and the solenoid valve 29; 32 is a high pressure liquid pipe 25; This is a solenoid valve located at Further, the outer layer heat exchanger is arranged in parallel to the inner layer heat exchanger 11,
High pressure liquid pipe 25 and low pressure liquid pipe 27 are connected by high pressure liquid branch pipe 33, low pressure liquid branch pipe 34 and low pressure gas branch pipe 35.
and is connected to. 36 is a solenoid valve arranged in the high pressure liquid branch pipe 33, 37 is a check valve arranged in the low pressure gas branch pipe 35, and 38 is a pressure reducing unit with a temperature sensing part 38A that supplies reduced pressure liquid refrigerant to the outer layer heat exchanger 5. It is a valve.
39 is a defrosting heat exchanger 20, a recovery pipe for recovering refrigerant from the liquid receiver 21, 40 is a solenoid valve installed in the recovery pipe 39, 41 is a controller consisting of a timer device, etc.; Solenoid valve 29, 32, 36, 4
0 to the lines a, b, c,
It is sent from d and e.

次に低温シヨーケース1の運転システムについ
て説明する。
Next, the operating system of the low-temperature show case 1 will be explained.

いま、第1ダンパ4A、第2ダンパ4Bは閉じ
ており、第1図に示すように内層13及び外層7
は夫々独立している。この時、流路切替弁30の
入口ボートXと出口ボートYとが通じ、電磁弁2
9と電磁弁32が開、電磁弁36と40が閉とな
つており、かゝる状態で、冷媒圧縮機19を稼働
させると、冷媒は圧縮機19−流路切替弁30−
凝縮器となる熱交換器20−受液器21−電磁弁
32−減圧弁22−蒸発器となる内層用熱交換器
11−電磁弁29−気液分離器23−圧縮機19
の第2図太線で示す周知のサイクルを形成し、こ
の間熱交換器20で凝縮液化、減圧弁22で減
圧、内層用熱交換器で蒸発気化さる。この冷却運
転において、内層用送風機12でもつて内層13
を通過中の循環空気は、内層用熱交換器11を通
過中の低圧液冷媒と熱交換されて冷却空気とな
り、第1図矢印に示す如く冷たいエアーカーテン
CAを形成して貯蔵室17の冷却を図る。一方、
外層用送風機6でもつて外層7を通過中の循環空
気は、第1図矢印の如く開口3において冷たいエ
アーカーテンCAの外側に沿つて流れ、この冷た
いエアーカーテンの影響を受けてオープンシヨー
ケース1を包囲する外気より漸低い温度となり、
前記の冷たいエアーカーテンCAと外気との接触
を阻止する保護エアーカーテンGAとして作用す
る。
Now, the first damper 4A and the second damper 4B are closed, and the inner layer 13 and the outer layer 7 are closed as shown in FIG.
are independent of each other. At this time, the inlet boat X and the outlet boat Y of the flow path switching valve 30 communicate with each other, and the solenoid valve 2
9 and solenoid valve 32 are open, and solenoid valves 36 and 40 are closed. When the refrigerant compressor 19 is operated in such a state, the refrigerant flows through the compressor 19 - flow path switching valve 30 -
Heat exchanger 20 serving as a condenser - Liquid receiver 21 - Solenoid valve 32 - Pressure reducing valve 22 - Inner layer heat exchanger 11 serving as an evaporator - Solenoid valve 29 - Gas-liquid separator 23 - Compressor 19
The well-known cycle shown by the bold line in FIG. 2 is formed, during which the heat exchanger 20 condenses and liquefies, the pressure reducing valve 22 reduces the pressure, and the inner layer heat exchanger evaporates and vaporizes. In this cooling operation, even if the inner layer blower 12
The circulating air passing through the inner layer heat exchanger 11 exchanges heat with the low pressure liquid refrigerant passing through and becomes cooling air, forming a cold air curtain as shown by the arrow in Fig. 1.
CA is formed to cool the storage chamber 17. on the other hand,
The circulating air passing through the outer layer 7 by the outer layer blower 6 flows along the outside of the cold air curtain CA at the opening 3 as shown by the arrow in FIG. The temperature gradually becomes lower than the surrounding outside air,
It acts as a protective air curtain GA that prevents the cold air curtain CA from coming into contact with the outside air.

冷却運転の進行に伴ない内層用熱交換器11へ
の着霜が多くなると、電磁弁36が所定時間例え
ば30秒間開き、高圧液枝管33に分流される。こ
の分流された液冷媒は、減圧弁38で減圧され、
蒸発器となる外層用熱交換器5で蒸発気化して低
圧ガス枝管35を通り、低圧ガス管27に流れ、
内層用熱交換器11を通過した低圧ガス冷媒と合
流し圧縮機19に戻る第3図太線で示すサイクル
となる。このサイクルは冷却運転終了前、即ち冷
却運転から除霜運転に切り替る直前に行なわれ、
この運転によつて、内層用熱交換器11と同様に
外層用熱交換器5も低温となり、外層7を通過中
の循環空気は、外層用熱交換器5を通過中の低圧
液冷媒と熱交換され、内層13を循環中の冷却空
気と略同じ乃至は若干高い温度に維持される。
As the cooling operation progresses and frost builds up on the inner layer heat exchanger 11, the solenoid valve 36 opens for a predetermined period of time, for example, 30 seconds, and the liquid is diverted to the high-pressure liquid branch pipe 33. This divided liquid refrigerant is depressurized by the pressure reducing valve 38,
It is evaporated in the outer layer heat exchanger 5, which serves as an evaporator, passes through the low pressure gas branch pipe 35, and flows into the low pressure gas pipe 27.
It joins with the low pressure gas refrigerant that has passed through the inner layer heat exchanger 11 and returns to the compressor 19, resulting in a cycle shown by the thick line in FIG. 3. This cycle is performed before the end of the cooling operation, that is, immediately before switching from the cooling operation to the defrosting operation,
Due to this operation, the outer layer heat exchanger 5 becomes low temperature as well as the inner layer heat exchanger 11, and the circulating air passing through the outer layer 7 is heated with the low pressure liquid refrigerant passing through the outer layer heat exchanger 5. The cooling air is exchanged and maintained at approximately the same or slightly higher temperature than the cooling air circulating through the inner layer 13.

この冷却運転中、除霜開始信号が出力される
と、電磁弁29,32が閉まると共に、電磁弁4
0が開き、流路切替弁30の出口ボートYがZに
切り替り、且つ第1及び第2両ダンパ4A,4B
が開くと、圧縮機19からのホツトガスは流路切
替弁30からホツトガス用バイパス管31−内層
用熱交換器11−逆止弁28−電磁弁36−減圧
弁38−蒸発器となる外層用熱交換器5−気液分
離器23−圧縮機19と流れ、又一方冷却運転
時、受液器21及び熱交換器20に貯えられた冷
媒(主として液冷媒)は、回収管39、電磁弁4
0を通り、気液分離器23に流れる第5図太線で
示すサイクルを形成する。このサイクルは冷媒回
収を含む除霜運転であり、ホツトガスは凝縮器と
なる内層用熱交換器11で凝縮液化されて高圧液
冷媒となり、減圧弁38で減圧され低圧液冷媒と
なつて外層用熱交換器5で蒸発気化される。前記
ホツトガスの凝縮液化に伴ない、内層用熱交換器
11に付着した霜は徐々に溶かされ、且つ内層用
熱交換器11を通過する循環空気の温度は徐々に
上昇する。この内層用熱交換器を通過した循環空
気は第1ダンパ4Aにより内層13における流れ
を中断されて第1窓4Cから外層7に流れ、外層
循環空気と合流する。この合流した循環空気は、
外層用熱交換器5を通過中の低圧液冷媒と熱交換
されて冷却される。この冷却された循環空気は第
2ダンパ4Bにより分流され、その大部分は第2
窓4Cから内層13に流れ、又その一部分は第2
ダンパ4Bと断熱壁2との間を通り外層5をその
まゝ流れ、夫々内層用吹出口14及び外層用吹出
口8から開口3に向けて吹き出され、冷却運転と
同様にエアーカーテンCA,GAを形成し、外層
用吸込口9と外層用吸用吸込口15から外層用送
風機6、内層用送風機12によりそれぞれ外層
7、内層13に帰還する第4図に示す空気循環経
路を辿る。
During this cooling operation, when the defrosting start signal is output, the solenoid valves 29 and 32 close, and the solenoid valve 4
0 opens, the outlet boat Y of the flow path switching valve 30 switches to Z, and both the first and second dampers 4A, 4B
When the compressor 19 opens, the hot gas from the compressor 19 is transferred from the flow path switching valve 30 to the hot gas bypass pipe 31 - the inner layer heat exchanger 11 - the check valve 28 - the solenoid valve 36 - the pressure reducing valve 38 - the outer layer heat that becomes the evaporator. The refrigerant (mainly liquid refrigerant) stored in the liquid receiver 21 and the heat exchanger 20 flows through the exchanger 5 - gas-liquid separator 23 - compressor 19, and during cooling operation, the refrigerant (mainly liquid refrigerant) flows through the recovery pipe 39 and the solenoid valve 4.
0 and flows to the gas-liquid separator 23, forming a cycle shown by the thick line in FIG. This cycle is a defrosting operation that includes refrigerant recovery, and the hot gas is condensed and liquefied in the inner layer heat exchanger 11, which serves as a condenser, to become a high-pressure liquid refrigerant, and the pressure is reduced by the pressure reducing valve 38 to become a low-pressure liquid refrigerant, which provides heat for the outer layer. It is evaporated in the exchanger 5. As the hot gas is condensed and liquefied, the frost adhering to the inner heat exchanger 11 is gradually melted, and the temperature of the circulating air passing through the inner heat exchanger 11 is gradually increased. The circulating air that has passed through the inner layer heat exchanger is interrupted from flowing in the inner layer 13 by the first damper 4A, flows through the first window 4C to the outer layer 7, and merges with the outer layer circulating air. This combined circulating air is
It is cooled by exchanging heat with the low-pressure liquid refrigerant passing through the outer layer heat exchanger 5. This cooled circulating air is divided by the second damper 4B, and most of it is distributed by the second damper 4B.
It flows from the window 4C to the inner layer 13, and a part of it flows into the second
It passes between the damper 4B and the heat insulating wall 2, flows through the outer layer 5, and is blown out from the inner layer outlet 14 and the outer layer outlet 8 toward the opening 3, and is connected to the air curtains CA, GA in the same way as in the cooling operation. The air circulation path shown in FIG. 4 is followed from the outer layer suction inlet 9 and the outer layer suction inlet 15 to the outer layer 7 and inner layer 13 by the outer layer blower 6 and the inner layer blower 12, respectively.

除霜運転の進行に伴ない内層用熱交換器11の
霜が溶けると、一定時間例えば30秒間電磁弁40
を閉じ、流路切替弁30の出口ボートZがYに切
り替ると、内層用熱交換器11と外層用熱交換器
5に残つている残留冷媒を逆止弁37、気液分離
器23を通過させ圧縮機19により熱交換器2
0、受液器21に回収する第6図の太線で示す冷
媒回収サイクルとなる。この冷媒回収サイクルの
開始から所定時間経して凝縮器20及び受液器2
1が所定圧力になつた時、即ち冷却運転待機状態
になつた時、電磁弁29,32が開き、電磁弁3
6が閉じると共に、第1、第2両ダンパ4A,4
Bが閉まり、第1図及び第2図に示した冷却運転
に復帰する。
When the frost on the inner layer heat exchanger 11 melts as the defrosting operation progresses, the solenoid valve 40 is activated for a certain period of time, for example, 30 seconds.
When the outlet boat Z of the flow path switching valve 30 is switched to Y, the residual refrigerant remaining in the inner layer heat exchanger 11 and the outer layer heat exchanger 5 is removed by the check valve 37 and the gas-liquid separator 23. The heat exchanger 2 is passed through the compressor 19.
0, the refrigerant recovery cycle shown by the bold line in FIG. After a predetermined period of time has elapsed from the start of this refrigerant recovery cycle, the condenser 20 and receiver 2
1 reaches a predetermined pressure, that is, when the cooling operation is in standby state, the solenoid valves 29 and 32 open, and the solenoid valve 3
6 closes, both the first and second dampers 4A, 4
B is closed and the cooling operation shown in FIGS. 1 and 2 is resumed.

上記低温シヨーケース1の運転方法によれば、
冷却運転時には、第1、第2両ダンパ4A,4B
が閉まつているので、従来技術と同様に開口3に
温度の異なる2層のエアーカーテンCA,GAを
形成することができる。又、除霜運転時には、第
1、第2両ダンパ4A,4Bを開けると共に、ホ
ツトガスを内層用熱交換器11で霜及び循環空気
と熱交換させて凝縮液化した後、この液冷媒を外
層用熱交換器5で前記循環空気と熱交換させて蒸
発気化した低温ガス冷媒とすることに併わせて、
内層用熱交換器11への冷媒供給を停止する除霜
運転終了前、即ち冷媒回収サイクル時には、内層
用熱交換器11内の残留液冷媒を外層用熱交換器
5で引き続き蒸発気化させるので、圧縮機19へ
の液バツク防止が図れるばかりでなく、外層用熱
交換器5における熱交換時間を長くして冷却運転
再開時迄循環空気を冷却することができると共
に、内層用熱交換器11の温度を引き下げ、冷却
運転再開時における熱交換の立上り特性を良好な
ものにすることができ、又、内層13の循環空気
を内層用熱交換器11で暖めた後、第1窓4Cを
通して外層7に迂回させて外層用熱交換器5で冷
した後、第2窓4Dから内層13に戻すので、冷
却運転時と同様に外気より温度の低いエアーカー
テンCAを開口3に形成することができ、貯蔵室
17の冷気団を外気から保護してこの貯蔵室17
の昇温幅を小さくすることができる。
According to the operating method of the low-temperature case 1,
During cooling operation, both the first and second dampers 4A, 4B
Since the opening 3 is closed, two layers of air curtains CA and GA having different temperatures can be formed in the opening 3 as in the prior art. Also, during defrosting operation, both the first and second dampers 4A and 4B are opened, and the hot gas is condensed and liquefied by exchanging heat with frost and circulating air in the inner layer heat exchanger 11, and then this liquid refrigerant is used for the outer layer. In addition to exchanging heat with the circulating air in the heat exchanger 5 to form a evaporated low-temperature gas refrigerant,
Before the end of the defrosting operation in which refrigerant supply to the inner layer heat exchanger 11 is stopped, that is, during the refrigerant recovery cycle, the residual liquid refrigerant in the inner layer heat exchanger 11 is continuously evaporated and vaporized in the outer layer heat exchanger 5. Not only can liquid backflow to the compressor 19 be prevented, but the heat exchange time in the outer layer heat exchanger 5 can be extended to cool the circulating air until the cooling operation is restarted, and the inner layer heat exchanger 11 can be cooled. It is possible to lower the temperature and improve the heat exchange start-up characteristics when restarting the cooling operation. In addition, after the circulating air in the inner layer 13 is warmed by the inner layer heat exchanger 11, it is passed through the first window 4C to the outer layer 7. After being cooled by the outer layer heat exchanger 5, it is returned to the inner layer 13 through the second window 4D, so that an air curtain CA having a lower temperature than the outside air can be formed in the opening 3, as in the cooling operation. This storage room 17 protects the cold air mass in the storage room 17 from outside air.
The width of the temperature increase can be reduced.

(ヘ) 発明の効果 以上の如く本発明は、内層用熱交換器の除霜運
転時には、高圧冷媒で内層用熱交換器の霜を溶か
しつつ、この内層用熱交換器で得られた液冷媒を
外層用熱交換器で蒸発気化させると共に、内層用
熱交換器への冷媒供給を停止する除霜運転終了前
には、内層用熱交換器内の残留液冷媒を外層用熱
交換器で引き続き蒸発気化させ、且つ内層用熱交
換器で暖められた循環空気を窓を通して外層に導
き、外層用熱交換器で冷却した後、開口に吹き出
してエアーカーテンを形成するため、下記に列挙
する効果が生じる。
(F) Effects of the Invention As described above, the present invention provides a method for melting frost on the inner heat exchanger with high-pressure refrigerant during defrosting operation of the inner heat exchanger, and melting the liquid refrigerant obtained in the inner heat exchanger. At the same time, the refrigerant supply to the inner layer heat exchanger is stopped. Before the end of the defrosting operation, the residual liquid refrigerant in the inner layer heat exchanger is continuously evaporated in the outer layer heat exchanger. Circulating air that has been evaporated and warmed by the inner layer heat exchanger is led to the outer layer through the window, cooled by the outer layer heat exchanger, and then blown out through the openings to form an air curtain, resulting in the effects listed below. arise.

暖かくなつた内層用熱交換器を通過する循環
空気を、外層用熱交換器により包囲空気、即ち
外気より低い温度に冷却してエアーカーテンと
するため、内層用熱交換器で暖められた循環空
気が直接開口に吹き出されることはなく、外気
より温度の低いエアーカーテンを開口に形成す
ることができ、この結果除霜時の貯蔵室の昇温
幅を小さくし、除霜時における貯蔵商品の品質
低下や変質を防止できる。
The circulating air passing through the inner layer heat exchanger, which has become warm, is cooled to a temperature lower than the surrounding air, that is, the outside air, by the outer layer heat exchanger to form an air curtain.The circulating air is then heated by the inner layer heat exchanger. is not directly blown out into the opening, and an air curtain with a lower temperature than the outside air can be formed at the opening. As a result, the range of temperature increase in the storage room during defrosting is reduced, and the temperature of stored products during defrosting is reduced. It can prevent quality deterioration and deterioration.

除霜運転中、内層用熱交換器を通過する循環
空気の加熱分を外層用熱交換器により冷却する
ため貯蔵室の昇温幅を小さくできるので、冷却
運転再開後において貯蔵室が所定の温度に冷却
される迄(プルダウン)の時間が短かくなり冷
却効果が向上する。
During defrosting operation, the heated portion of the circulating air passing through the inner layer heat exchanger is cooled by the outer layer heat exchanger, making it possible to reduce the range of temperature increase in the storage room, so that the temperature in the storage room remains at the specified temperature after cooling operation is restarted. The time it takes for the product to cool down (pulldown) is shortened, improving the cooling effect.

内層用熱交換器で凝縮液化された冷媒を外層
用熱交換器で蒸発気化させることに併わせ、冷
媒回収サイクル時も内層用熱交換器内の残溜液
冷媒を外層用熱交換器で引き続き蒸発気化させ
るので、外層用熱交換器による循環空気の冷却
時間を長くとれると共に、この間内層用熱交換
器の温度を引き下げて冷却運転再開時における
内層用熱交換器の立上り特性を良くすることが
でき、又除霜貯槽を使用することなく液バツク
防止が図れる。
In addition to evaporating the refrigerant condensed and liquefied in the inner layer heat exchanger in the outer layer heat exchanger, the residual liquid refrigerant in the inner layer heat exchanger continues to be used in the outer layer heat exchanger during the refrigerant recovery cycle. Since it is evaporated, the cooling time of the circulating air by the outer layer heat exchanger can be extended, and the temperature of the inner layer heat exchanger can be lowered during this time to improve the startup characteristics of the inner layer heat exchanger when cooling operation is restarted. In addition, liquid back-up can be prevented without using a defrosting storage tank.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は何れも本発明低温シヨーケースの運転方
法にかかる実施例を示し、第1図は低温シヨーケ
ースのダンパ閉時の縦断面図を、第4図は低温シ
ヨーケースのダンパ開時の縦断面図を示す、又第
2図、第3図、第5図、第6図は低温シヨーケー
スを冷却する冷凍装置の冷媒回路図である。 3……開口、4A,4B……第1、第2ダン
パ、4C,4D……第1、第2窓、5……外層用
熱交換器、6……外層用送風機、7……外層、1
1……内層用熱交換器、12……内層用送風機、
13……内層、CA,GA……エアーカーテン。
Each of the drawings shows an embodiment of the method of operating a low-temperature show case of the present invention, and FIG. 1 shows a longitudinal cross-sectional view of the low-temperature show case when the damper is closed, and FIG. 4 shows a longitudinal cross-sectional view of the low-temperature show case when the damper is open. , FIG. 2, FIG. 3, FIG. 5, and FIG. 6 are refrigerant circuit diagrams of a refrigeration system for cooling a low-temperature case. 3... Opening, 4A, 4B... First, second damper, 4C, 4D... First, second window, 5... Heat exchanger for outer layer, 6... Blower for outer layer, 7... Outer layer, 1
1... Inner layer heat exchanger, 12... Inner layer blower,
13...Inner layer, CA, GA...Air curtain.

Claims (1)

【特許請求の範囲】[Claims] 1 内層及び外層の各々に熱交換器と、送風機と
を配置し、内層用熱交換器の冷却運転時、開口に
循環空気による少なくとも2層のエアーカーテン
を形成してなる低温シヨーケースにおいて、内層
と外層とを仕切る第1区画板に、内外両層を連通
させる窓と、この窓を閉塞する開閉自在なダンパ
とを設け、除霜運転時、内層用熱交換器で凝縮液
化された冷媒を外層用熱交換器で蒸発気化させる
と共に、前記ダンパを開放して内層用熱交換器を
通過した循環空気を窓を通して外層に導き、外層
用熱交換器を通過させた後、前記開口に吹き出し
て少なくとも1層のエアーカーテンを形成し、且
つ除霜運転終了直前時、内層用熱交換器への冷媒
供給を停止すると共に、この内層用熱交換器の残
留液冷媒を外層用熱交換器を通して圧縮機に回収
してなる低温シヨーケースの運転方法。
1. In a low-temperature case where a heat exchanger and a blower are arranged in each of the inner layer and the outer layer, and when the inner layer heat exchanger is in cooling operation, at least two layers of air curtains are formed by circulating air at the openings. The first partition plate that separates the outer layer is provided with a window that communicates both the inner and outer layers, and a damper that can be opened and closed to close this window. During defrosting operation, the refrigerant condensed and liquefied by the inner layer heat exchanger is transferred to the outer layer. At the same time, the damper is opened and the circulating air that has passed through the inner layer heat exchanger is guided to the outer layer through the window, and after passing through the outer layer heat exchanger, it is blown out to the opening and at least One layer of air curtain is formed, and just before the end of the defrosting operation, the refrigerant supply to the inner layer heat exchanger is stopped, and the residual liquid refrigerant in the inner layer heat exchanger is passed through the outer layer heat exchanger to the compressor. How to operate a low-temperature case that is collected in
JP22373884A 1984-10-24 1984-10-24 Method of operating cryostatic showcase Granted JPS61101785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22373884A JPS61101785A (en) 1984-10-24 1984-10-24 Method of operating cryostatic showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22373884A JPS61101785A (en) 1984-10-24 1984-10-24 Method of operating cryostatic showcase

Publications (2)

Publication Number Publication Date
JPS61101785A JPS61101785A (en) 1986-05-20
JPH0337117B2 true JPH0337117B2 (en) 1991-06-04

Family

ID=16802915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22373884A Granted JPS61101785A (en) 1984-10-24 1984-10-24 Method of operating cryostatic showcase

Country Status (1)

Country Link
JP (1) JPS61101785A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176981A (en) * 1987-01-17 1988-07-21 株式会社デンソー Air-cooling refrigerator for car
JPH01100078U (en) * 1987-12-23 1989-07-05

Also Published As

Publication number Publication date
JPS61101785A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
KR960016578B1 (en) Operating method for showcase
US4964281A (en) Low-temperature showcase
KR100796452B1 (en) Heat pump and demist method
JPH0996484A (en) Cooling device
JPH0337117B2 (en)
JPH0450510B2 (en)
KR100231642B1 (en) Roll bond type evaporator of a cooling system
JP6998509B2 (en) refrigerator
JPH0229583A (en) Low-temperature showcase
JPH0451750B2 (en)
JPH0510591B2 (en)
JPH10288427A (en) Refrigerating device
JPH0356397B2 (en)
JPH07318229A (en) Defrosting method of refrigerating and cold storage showcase
JPH033146B2 (en)
JPH0663692B2 (en) Low temperature showcase
JPH0613947B2 (en) How to operate the low temperature showcase
KR930004393B1 (en) Operating method for refrigerating device
JPH0481102B2 (en)
JPS6255592B2 (en)
KR100413099B1 (en) system for preventing excess-frosting of evaporator of refrigerator using refrigerating circuit and method thereof
JPH089588Y2 (en) Cooling system
JPS625069A (en) Operation system of low-temperature showcase
JPS5919263Y2 (en) Freezer or refrigerated open showcase with air conditioner/heater
JPS5969680A (en) Refrigerator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term