JPH0451587A - Manufacture of wiring board - Google Patents

Manufacture of wiring board

Info

Publication number
JPH0451587A
JPH0451587A JP16024690A JP16024690A JPH0451587A JP H0451587 A JPH0451587 A JP H0451587A JP 16024690 A JP16024690 A JP 16024690A JP 16024690 A JP16024690 A JP 16024690A JP H0451587 A JPH0451587 A JP H0451587A
Authority
JP
Japan
Prior art keywords
layer
aluminum nitride
conductor circuit
adhesion
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16024690A
Other languages
Japanese (ja)
Inventor
Sotaro Ito
宗太郎 伊藤
Yasuaki Fukatsu
深津 康昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP16024690A priority Critical patent/JPH0451587A/en
Publication of JPH0451587A publication Critical patent/JPH0451587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the close contact property of a conductor circuit with an insulating layer and to enhance an electricityfeeding property by a method wherein an adhesion layer of titanium or the like, a conductive layer of copper or the like and a protective layer of nickel or the like are laminated sequentially on an aluminum nitride board and the conductor layer is formed and covered with the insulating layer. CONSTITUTION:An adhesion layer 4 by at least one kind of metal selected from titanium, chromium, silver and niobium is laminated on the surface of an aluminum nitride board 2; a conductive layer 5 by at least one kind of metal selected from copper, silver and aluminum is laminated on the adhesion layer 4; a protective layer 6 by at least one kind of metal selected from nickel, chrominum and niobium is laminated sequentially on the conductive layer 5. Thereby, a conductor circuit is formed. After that, an insulating layer 9 which is composed of a polyimide resin and with which at least one part of the conductor circuit is covered is formed on the surface of the aluminum nitride metal 2. By this constitution, the close contact property of the conductor circuit with the surface of the board is increased by the adhesion layer, an electricity-feeding property is ensured and the close contact property with the insulating layer is increased by the protective layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体パッケージ等に使用する配線基板の製造
方法に関し、特に、窒化アルミニウムとポリイミド樹脂
とを絶縁材料として使用する配線基板の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a wiring board used for semiconductor packages, etc., and particularly relates to a method of manufacturing a wiring board using aluminum nitride and polyimide resin as insulating materials. .

[従来の技術] 従来、ピングリッドアレイ等の半導体パッケージを構成
する配線基板用材料としては、一般にアルミナ等のセラ
ミックスが使用されている。そして、このようなセラミ
ックス製グリーンシートの表面にタングステン等の導電
性粒子を含むペーストで導体回路を印刷し、かかるシー
トを積層して一体焼成することにより、幾層もの導体回
路を備えた多層配線基板を製造している。
[Prior Art] Conventionally, ceramics such as alumina have generally been used as materials for wiring boards constituting semiconductor packages such as pin grid arrays. Then, a conductor circuit is printed on the surface of such a ceramic green sheet using a paste containing conductive particles such as tungsten, and the sheets are laminated and fired together to create a multilayer wiring with many layers of conductor circuits. Manufactures circuit boards.

[発明が解決しようとする課題] しかしながら、例えばハイブリッドIC用の配線基板等
のように小ロツト生産の基板については、既存の製造設
備に大きな改変を加えることなく、簡便かつ迅速、安価
に多品種を量産することの可能な製造方法が望まれてい
た。その要請に応えるべく、本発明者らは、外部引出し
ピンを予めロウ付けした窒化アルミニウム基板上に導体
回路を形成すると共に、その上にポリイミド樹脂による
絶縁層を形成し、更にその絶縁層上に導体回路及び絶縁
層を形成するというビルドアップ形式の多層配線基板の
製造方法の開発に取り組んでいる。
[Problem to be solved by the invention] However, for small-lot production boards such as wiring boards for hybrid ICs, it is possible to easily, quickly, and inexpensively produce a wide variety of boards without making major changes to existing manufacturing equipment. There was a desire for a manufacturing method that would allow for mass production. In order to meet this demand, the present inventors formed a conductive circuit on an aluminum nitride substrate to which external extraction pins had been brazed in advance, formed an insulating layer of polyimide resin on it, and then We are working on the development of a build-up method for manufacturing multilayer wiring boards that forms conductor circuits and insulating layers.

ところが、前述のような従来の方法で形成される導体回
路では、窒化アルミニウム及びポリイミド樹脂の両紙縁
材料に対する密着性が十分でな(、特に、ポリイミド樹
脂との間で導体回路が剥離するという問題を生じた。更
に、導体回路自体、必ずしも十分な通電性を有している
とは言えなかった。
However, in the conductor circuit formed by the conventional method as described above, the adhesion of aluminum nitride and polyimide resin to both paper edge materials is insufficient (in particular, there is a problem that the conductor circuit peels off between the polyimide resin and the paper). Moreover, the conductor circuit itself could not necessarily be said to have sufficient electrical conductivity.

本発明は上記事情に鑑みなされたものであり、その目的
は、窒化アルミニウム及びポリイミド樹脂を絶縁材料と
して使用すると共に、これら絶縁材料への密着性に優れ
、かつ通電性に優れた導体回路を有する配線基板の製造
方法を提供することにある。
The present invention was made in view of the above circumstances, and its object is to use aluminum nitride and polyimide resin as insulating materials, and to have a conductor circuit that has excellent adhesion to these insulating materials and has excellent electrical conductivity. An object of the present invention is to provide a method for manufacturing a wiring board.

[課題を解決するための手段及び作用]上記課題を解決
するために本発明は、窒化アルミニウム基板の表面に、
チタン、クロム、銀、ニオブから選択される何れか少な
くとも一種の金属による付着層と、この付着層上に、銅
、銀、アルミニウムから選択される何れか少なくとも一
種の金属による導電層と、この導電層上に、ニッケル、
クロム、ニオブから選択される何れか少なくとも一種の
金属による保護層とを順次積層形成してなる導体回路を
形成した後、この窒化アルミニウム基板の表面に、ポリ
イミド樹脂からなると共に、前記導体回路の少なくとも
一部を被覆する絶縁層を形成している。
[Means and effects for solving the problems] In order to solve the above problems, the present invention provides the following features:
an adhesion layer made of at least one metal selected from titanium, chromium, silver, and niobium; a conductive layer made of at least one metal selected from copper, silver, and aluminum on the adhesion layer; and a conductive layer made of at least one metal selected from copper, silver, and aluminum. On the layer, nickel,
After a conductor circuit is formed by sequentially laminating a protective layer made of at least one metal selected from chromium and niobium, a conductor circuit made of polyimide resin and a protective layer of at least one metal selected from chromium and niobium are formed on the surface of the aluminum nitride substrate. An insulating layer is formed to partially cover the surface.

この構成によれば、窒化アルミニウム基板上に形成され
た導体回路は、付着層によって窒化アルミニウム基板表
面との密着性を高められる。また、導電層によって導体
回路としての通電性が確保される。更に、保護層によっ
て該導体回路とその少なくとも一部を被覆する絶縁層と
の密着性が高められ、絶縁層が導体回路表面から剥離す
るという事態が未然に防止される。
According to this configuration, the adhesion of the conductive circuit formed on the aluminum nitride substrate to the surface of the aluminum nitride substrate can be improved by the adhesion layer. Furthermore, the conductive layer ensures conductivity as a conductor circuit. Furthermore, the protective layer enhances the adhesion between the conductive circuit and the insulating layer covering at least a portion thereof, thereby preventing the insulating layer from peeling off from the surface of the conductive circuit.

前記付着層の金属としては、チタン(Ti) 、クロム
(Cr) 、銀(Ag)、ニオブ(Nb)があげられる
が、これらは熱力学的に窒化アルミニウムとの親和性が
高い金属であり、高温状況下において窒化アルミニウム
と固溶体を形成し易い金属である。
Examples of the metal of the adhesion layer include titanium (Ti), chromium (Cr), silver (Ag), and niobium (Nb), which are metals that thermodynamically have a high affinity with aluminum nitride, It is a metal that easily forms a solid solution with aluminum nitride under high temperature conditions.

前記導電層の金属としては、銅(Cu) 、銀(Ag)
、アルミニウム(AI)があげられるが、これらは極め
て通電性に優れた金属であると共に、前配付着層との密
着性に優れた金属である。
The metal of the conductive layer includes copper (Cu) and silver (Ag).
, aluminum (AI), which are metals with extremely excellent electrical conductivity and excellent adhesion to the pre-adhesion layer.

前記保護層の金属としては、ニッケル(Ni)、ニオブ
(Nb)、クロム(Cr)があげられるが、これらは前
記導電層との密着性に優れた金属であると共に、ポリイ
ミド樹脂との密着性にも優れた金属である。
Examples of metals for the protective layer include nickel (Ni), niobium (Nb), and chromium (Cr), which are metals that have excellent adhesion to the conductive layer and also have good adhesion to the polyimide resin. It is also an excellent metal.

前記各層の形成手段としては、スパッタリング、化学蒸
着、イオンブレーティング、メツキがあげられ、いずれ
の手段をも適用可能である。
Examples of means for forming each of the layers include sputtering, chemical vapor deposition, ion blasting, and plating, and any of these methods can be applied.

尚、窒化アルミニウムは、一般に電気絶縁性、熱伝導性
、耐熱性、寸法安定性、機械的強度に優れ、基板用材料
として優れた適性を有するものである。
Note that aluminum nitride generally has excellent electrical insulation, thermal conductivity, heat resistance, dimensional stability, and mechanical strength, and has excellent suitability as a substrate material.

ところで、前記付着層の厚さは0.05〜2゜0μmの
範囲であることが好ましい。
Incidentally, the thickness of the adhesive layer is preferably in the range of 0.05 to 2.0 μm.

この膜厚が0.05μm未満では、窒化アルミニウム基
板表面の微細な凹凸の影響を受けて、基板表面全体に連
続した付着層を形成することができなくなり、導電層と
の密着強度が低下する。−方、2.0μmを超えると、
付着層における残留応力が大きくなりクラックが入り易
くなって好ましくない。
If the film thickness is less than 0.05 μm, a continuous adhesion layer cannot be formed over the entire substrate surface due to the influence of fine irregularities on the aluminum nitride substrate surface, and the adhesion strength with the conductive layer decreases. - On the other hand, if it exceeds 2.0 μm,
This is not preferable because the residual stress in the adhesive layer becomes large and cracks are likely to occur.

前記導電層の厚さは1.0〜10.0μmの範囲である
ことが好ましい。
The thickness of the conductive layer is preferably in the range of 1.0 to 10.0 μm.

この膜厚が1.0μm未満では、電気抵抗が大きくなっ
て良好な通電性を確保することができない。一方、10
.0μmを超えると、後述するエツチング等による除去
が困難となり回路パターンの形成に支障を来す。
If the film thickness is less than 1.0 μm, the electrical resistance becomes large and good electrical conductivity cannot be ensured. On the other hand, 10
.. If it exceeds 0 .mu.m, it becomes difficult to remove by etching or the like, which will be described later, and this will hinder the formation of a circuit pattern.

前記保護層の厚さは0.05〜1. 0μmの範囲であ
ることが好ましい。
The thickness of the protective layer is 0.05 to 1. A range of 0 μm is preferable.

この膜厚が0.05μm未満では、前記導電層上に連続
した保護層を形成することができず、電気絶縁性、絶縁
層との密着強度が低下する。一方、1.0μmを超える
と、保護層における残留応力が大きくなりクラックが入
り易くなって好ましくない。
If the film thickness is less than 0.05 μm, a continuous protective layer cannot be formed on the conductive layer, and the electrical insulation properties and adhesion strength with the insulating layer decrease. On the other hand, if it exceeds 1.0 μm, residual stress in the protective layer becomes large and cracks are likely to occur, which is not preferable.

一般に、前記三層構造の薄膜を窒化アルミニウム基板上
に形成した後、フォトレジスト等によってマスクを形成
し、エツチングを施すことにより、基板上に所望の回路
パターンが形成される。あるいは、窒化アルミニウム基
板表面に、回路を形成しない部位を被覆するマスクを予
め形成しておき、表面が露出された部位に対して前記薄
膜を形成することにより、所望するパターンの導体回路
を形成してもよい。
Generally, after the three-layer thin film is formed on an aluminum nitride substrate, a mask is formed using photoresist or the like, and etching is performed to form a desired circuit pattern on the substrate. Alternatively, a conductor circuit in a desired pattern can be formed by forming a mask in advance on the surface of the aluminum nitride substrate to cover areas where no circuit will be formed, and forming the thin film on the exposed areas. You can.

続いて、前記三層構造の導体回路を形成した窒化アルミ
ニウム基板の表面には、前記導体回路の少なくとも一部
を被覆するポリイミド樹脂からなる絶縁層が形成され、
これによって導体回路の少なくとも一部か外部と絶縁さ
れる。
Subsequently, on the surface of the aluminum nitride substrate on which the three-layer conductor circuit is formed, an insulating layer made of polyimide resin is formed to cover at least a portion of the conductor circuit,
This insulates at least a portion of the conductor circuit from the outside.

前記ポリイミド樹脂による絶縁層は、ポリイミド前駆体
からなるワニスを前記基板の表面に塗布した後、300
〜400℃で加熱して、前記ポリイミド前駆体を基板上
にて脱水縮合させることにより形成される。
The insulating layer made of the polyimide resin is formed by applying a varnish made of a polyimide precursor to the surface of the substrate, and then
It is formed by heating at ~400°C to dehydrate and condense the polyimide precursor on the substrate.

ポリイミド樹脂は一般に、電気絶縁性のみならず耐熱性
にも優れるが、その耐熱限界は400°C程度である。
Polyimide resins generally have excellent not only electrical insulation properties but also heat resistance, but their heat resistance limit is about 400°C.

そのため、この方法で製造される配線基板をピングリッ
ドアレイ等に加工して使用する場合には、ピンのロウ付
は時の熱<soa℃以上)による樹脂の分解等を回避す
るため、外部引出しピンを予めロウ付けした窒化アルミ
ニウム基板に対して、前記絶縁層を形成することが好ま
しい。
Therefore, when processing a wiring board manufactured by this method into a pin grid array, etc., it is necessary to braze the pins with an external drawer to avoid decomposition of the resin due to the heat of the time <soa℃ or higher). Preferably, the insulating layer is formed on an aluminum nitride substrate to which pins have been brazed in advance.

この後、前記ポリイミド樹脂の絶縁層上に、更に導体回
路及び絶縁層を順次形成してい(ことによって、窒化ア
ルミニウム基板を最下層の基材としたポリイミド樹脂に
よる多層配線基板を製造することができる。
Thereafter, a conductor circuit and an insulating layer are sequentially formed on the polyimide resin insulating layer (thereby, a multilayer wiring board made of polyimide resin with the aluminum nitride substrate as the bottom layer base material can be manufactured). .

以下に、本発明を具体化した実施例及び比較例について
説明する。
Examples and comparative examples embodying the present invention will be described below.

[実施例] 第1図に示すように、外部引出しピン1が予めロウ付け
され、かつ導体が充填されたスルーホール3を有する窒
化アルミニウム基板2の上面に対し、この基板2を10
0℃に加熱した状態で、IKWの出力で10分間、逆ス
パツタリングを施した後、チタンをターゲットとしてス
パッタリングを施した。そして、窒化アルミニウム基板
2の上面に付着層としてのチタン層4(膜厚0. 1μ
m)を形成した。
[Example] As shown in FIG. 1, this substrate 2 is placed on the top surface of an aluminum nitride substrate 2 having a through hole 3 filled with a conductor and to which an external lead pin 1 is pre-brazed.
After being heated to 0° C., reverse sputtering was performed for 10 minutes at the output of IKW, and then sputtering was performed using titanium as a target. Then, a titanium layer 4 (film thickness 0.1 μm) is formed as an adhesion layer on the upper surface of the aluminum nitride substrate 2.
m) was formed.

以下同様にして、銅、クロムをターゲットとして順次ス
パッタリングを施すことにより、前記チタン層4上に導
電層としての銅層5(膜厚3.0μm)、保護層として
のクロム層6(膜厚0゜5μm)をそれぞれ形成し、三
層構造の薄膜7を形成した。
Similarly, sputtering is performed sequentially using copper and chromium as targets, thereby depositing a copper layer 5 (thickness 3.0 μm) as a conductive layer and a chromium layer 6 (thickness 0 μm) as a protective layer on the titanium layer 4. 5 μm) to form a three-layered thin film 7.

続いて、前記薄膜7を形成した窒化アルミニウム基板l
の表面に、ネガ型のフォトレジストを均一に塗布し、回
路形成部分に紫外線を照射して該部位を光硬化させた。
Subsequently, the aluminum nitride substrate l on which the thin film 7 was formed
A negative photoresist was uniformly applied to the surface of the substrate, and the circuit forming portion was irradiated with ultraviolet rays to photocure the portion.

この基板lをアルカリ溶液に浸漬して、未硬化のフォト
レジストを溶解除去し、薄膜7の一部を露出させた。そ
して、該基板lの表面に、フッ化水素酸(HF)と硝酸
(HNO3)の混合溶液を使用してエツチングを施し、
薄膜7の露出部位を除去した。その後、硬化された前記
フォトレジストを有機溶剤で処理して除去することによ
り、基板1の表面に前記薄膜7を露出させて所望するパ
ターンの導体回路8を形成した。
This substrate 1 was immersed in an alkaline solution to dissolve and remove the uncured photoresist, thereby exposing a portion of the thin film 7. Then, the surface of the substrate l is etched using a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO3),
The exposed portion of the thin film 7 was removed. Thereafter, the hardened photoresist was treated with an organic solvent and removed, thereby exposing the thin film 7 on the surface of the substrate 1 and forming a conductive circuit 8 in a desired pattern.

次に、ポリイミド前駆体(株式会社東し製部品名:フォ
トニースUR3140)のワニスを前記基板の表面に塗
布した後、300〜400℃の加熱を施すことにより、
前記導体回路8の一部が露出するように、ポリイミド樹
脂による絶縁層9を形成した。
Next, after applying a varnish of polyimide precursor (part name: Photonice UR3140 manufactured by Toshi Co., Ltd.) to the surface of the substrate, heating at 300 to 400 ° C.
An insulating layer 9 made of polyimide resin was formed so that a portion of the conductor circuit 8 was exposed.

このようにして得られた配線基板においては、導体回路
8が窒化アルミニウム基板2及びポリイミド絶縁層9に
、堅牢に密着した。また、導体回路のシート抵抗は10
mΩという低い値を示した。
In the wiring board thus obtained, the conductive circuit 8 was tightly adhered to the aluminum nitride substrate 2 and the polyimide insulating layer 9. Also, the sheet resistance of the conductor circuit is 10
It showed a low value of mΩ.

[比較例] 前記実施例と同じ窒化アルミニウム基板2の上面に、下
記配合処方のタングステンペーストを塗布することによ
り、前記実施例と同じパターン形状の導体回路(膜厚l
Oμm)を形成した。
[Comparative Example] By applying a tungsten paste having the following formulation on the upper surface of the aluminum nitride substrate 2, which is the same as that of the above embodiment, a conductor circuit having the same pattern shape as that of the above embodiment (with a film thickness of l
0 μm) was formed.

タングステンペーストの配合処方 タングステン粒子   100.0重量部α−テルピネ
オール   4.8重量部エチルセルロース    0
.6重量部ひまし油         0.4重量部こ
の窒化アルミニウム基板2上に、前記実施例と同様にし
てポリイミド樹脂による絶縁層9を形成した。
Tungsten paste formulation Tungsten particles 100.0 parts by weight α-terpineol 4.8 parts by weight Ethyl cellulose 0
.. 6 parts by weight Castor oil 0.4 parts by weight On this aluminum nitride substrate 2, an insulating layer 9 made of polyimide resin was formed in the same manner as in the previous example.

このようにして得られた配線基板では、導体回路とポリ
イミド絶縁層との間で剥離を生じ、導体回路の絶縁が必
要な部分を被覆することができなかった。また、導体回
路のシート抵抗は20mΩという高い値を示した。
In the wiring board thus obtained, peeling occurred between the conductor circuit and the polyimide insulating layer, and the portions of the conductor circuit that required insulation could not be covered. Further, the sheet resistance of the conductor circuit showed a high value of 20 mΩ.

[発明の効果] 以上詳述したように本発明によれば、窒化アルミニウム
及びポリイミド樹脂を絶縁材料として使用すると共に、
これら絶縁材料への密着性に優れ、かつ通電性に優れた
導体回路を有する配線基板を製造することができるとい
う優れた効果を奏する。
[Effects of the Invention] As detailed above, according to the present invention, aluminum nitride and polyimide resin are used as insulating materials, and
An excellent effect is achieved in that a wiring board having a conductive circuit that has excellent adhesion to these insulating materials and excellent current conductivity can be manufactured.

【図面の簡単な説明】 第1図は本発明の実施例における配線基板を示す概略断
面図である。 2・・・窒化アルミニウム基板、4・・・付着層として
のチタン層、5・・・導電層としての銅層、6・・・保
護層としてのクロム層、8・・・導体回路、9・・・絶
縁層。 特許出願人  イビデン 株式会社
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a wiring board in an embodiment of the present invention. 2... Aluminum nitride substrate, 4... Titanium layer as an adhesion layer, 5... Copper layer as a conductive layer, 6... Chromium layer as a protective layer, 8... Conductor circuit, 9. ...Insulating layer. Patent applicant IBIDEN Co., Ltd.

Claims (1)

【特許請求の範囲】 1 窒化アルミニウム基板(2)の表面に、チタン、ク
ロム、銀、ニオブから選択される何れか少なくとも一種
の金属による付着層(4)と、前記付着層(4)上に、
銅、銀、アルミニウムから選択される何れか少なくとも
一種の金属による導電層(5)と、 前記導電層(5)上に、ニッケル、クロム、ニオブから
選択される何れか少なくとも一種の金属による保護層(
6)とを順次積層形成してなる導体回路(8)を形成し
た後、 この窒化アルミニウム基板(2)の表面に、ポリイミド
樹脂からなると共に、前記導体回路(8)の少なくとも
一部を被覆する絶縁層(9)を形成することを特徴とす
る配線基板の製造方法。 2 前記付着層(4)の厚さは0.05〜2.0μmで
あり、前記導電層(5)の厚さは1.0〜10.0μm
であり、前記保護層(6)の厚さは0.05〜1.0μ
mであることを特徴とする請求項1に記載の配線基板の
製造方法。
[Claims] 1. On the surface of the aluminum nitride substrate (2), an adhesive layer (4) made of at least one metal selected from titanium, chromium, silver, and niobium, and on the adhesive layer (4). ,
A conductive layer (5) made of at least one metal selected from copper, silver, and aluminum, and a protective layer made of at least one metal selected from nickel, chromium, and niobium on the conductive layer (5). (
After forming a conductor circuit (8) by sequentially laminating 6) and 6), the surface of the aluminum nitride substrate (2) is made of polyimide resin and at least a part of the conductor circuit (8) is coated. A method for manufacturing a wiring board, comprising forming an insulating layer (9). 2. The thickness of the adhesion layer (4) is 0.05 to 2.0 μm, and the thickness of the conductive layer (5) is 1.0 to 10.0 μm.
and the thickness of the protective layer (6) is 0.05 to 1.0μ
2. The method of manufacturing a wiring board according to claim 1, wherein m.
JP16024690A 1990-06-19 1990-06-19 Manufacture of wiring board Pending JPH0451587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16024690A JPH0451587A (en) 1990-06-19 1990-06-19 Manufacture of wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16024690A JPH0451587A (en) 1990-06-19 1990-06-19 Manufacture of wiring board

Publications (1)

Publication Number Publication Date
JPH0451587A true JPH0451587A (en) 1992-02-20

Family

ID=15710861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16024690A Pending JPH0451587A (en) 1990-06-19 1990-06-19 Manufacture of wiring board

Country Status (1)

Country Link
JP (1) JPH0451587A (en)

Similar Documents

Publication Publication Date Title
JP3587884B2 (en) Method for manufacturing multilayer circuit board
EP0074605B1 (en) Method for manufacturing multilayer circuit substrate
US4294009A (en) Method of manufacturing a hybrid integrated circuit
JP4558776B2 (en) Circuit board manufacturing method
TWI362234B (en) Method for forming a photoresist-laminated substrate, method for plating an insulating substrate, method for surface treating of a metal layer of a circuit board, and method for manufacturing a multi layer ceramic condenser using metal nanoparticles aero
JPH06318672A (en) Forming method of thin film capacitor, manufacture of thin film capacitor, manufacture of thin film bypass capacitor, and thin film capacitor
JPH0426239B2 (en)
JP2013165180A (en) Electronic component and method of manufacturing electronic component
JPH09130051A (en) Multilayer circuit board and its manufacture
JPH10510954A (en) Method for preparing an insulated multilayer structure
TW201143569A (en) Manufacturing method of metal ceramics multi-layer circuit heat-dissipation substrate
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JP2006287063A (en) Electronic part
JPH0451587A (en) Manufacture of wiring board
JPH0363237B2 (en)
JP2001196746A (en) Printed wiring substrate and method for manufacturing printed wiring substrate
WO2011086796A1 (en) Method of manufacturing substrate with built-in capacitor
JP4454663B2 (en) COMPOSITE PLATING RESISTANCE ELEMENT AND METHOD FOR PRODUCING PRINTED CIRCUIT BOARD INCLUDING THE SAME
TW594813B (en) Manufacture for a lamination capacity
JP4109348B2 (en) Electronic parts and manufacturing method thereof
JP3559310B2 (en) Manufacturing method of multilayer ceramic circuit board
JPH081987B2 (en) Manufacturing method of wiring board
JPH0451585A (en) Aluminum nitride wiring board
KR101088062B1 (en) A build-up printed circuit board of stack type using bump structure and manufacturing method of the same
JP2843422B2 (en) Aluminum nitride wiring board