JPH045125B2 - - Google Patents

Info

Publication number
JPH045125B2
JPH045125B2 JP58079402A JP7940283A JPH045125B2 JP H045125 B2 JPH045125 B2 JP H045125B2 JP 58079402 A JP58079402 A JP 58079402A JP 7940283 A JP7940283 A JP 7940283A JP H045125 B2 JPH045125 B2 JP H045125B2
Authority
JP
Japan
Prior art keywords
liquid
tank
liquid level
valve
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58079402A
Other languages
Japanese (ja)
Other versions
JPS59204705A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7940283A priority Critical patent/JPS59204705A/en
Publication of JPS59204705A publication Critical patent/JPS59204705A/en
Publication of JPH045125B2 publication Critical patent/JPH045125B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/04Hydrostatic levelling, i.e. by flexibly interconnected liquid containers at separated points

Description

【発明の詳細な説明】 本発明は液体等を貯蔵するためのタンクの不等
沈下を測定する方法およびその測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring uneven settlement of a tank for storing liquid or the like.

石油の原油や重油等の液体を陸上にて貯蔵しよ
うとする場合、その貯蔵必要量は極めて大である
ため巨大なタンクを必要とする。このようなタン
クのうち大きなものでは直径が約100m、高さが
約20m、容量が水に換算して15万トンにも達する
ものがある。これらのタンクは原油をタンカー
(船)で運搬する関係上海浜の近くに設置する場
合が多い。そして、これら海浜は埋立、造成等の
ためにその地盤は軟弱である場合が多い。このよ
うな地盤上に巨大なタンクを設置すると、地盤1
m2あたり20トン程度の荷重となるため、地盤の沈
下を引き起こし易い。この沈下が、広い底面積を
もつタンク底部の各所において、均一ならば問題
はないが、不均一な、いわゆる不等沈下を生ずる
場合がある。この不等沈下を生ずると、タンク構
造にストレスがかかりタンク底部はもとより側面
や上部も変形や亀裂を生じ、タンク内容物の漏洩
の大きな原因となる。この漏洩が大きな場合に
は、設置された地区一帯を非常に広範囲に汚染す
ることになり、特にタンク内容物が可燃物あるい
は有害物であるときには、生命にも係るため極め
て重大な社会問題、公害問題ともなり得る。この
ような事態を未然に防止すべく従来から種々のタ
ンクの不等沈下を測定する方法や装置が提案され
ている。
When attempting to store liquids such as crude oil or heavy oil on land, the amount of storage required is extremely large, so a huge tank is required. Some of the largest tanks have a diameter of about 100 meters, a height of about 20 meters, and a capacity of up to 150,000 tons of water. These tanks are often installed near the relevant Shanghai beaches where crude oil is transported by tanker (ship). Furthermore, the ground on these beaches is often soft due to land reclamation and development. If a huge tank is installed on such ground, the ground 1
The load is approximately 20 tons per m 2 , which tends to cause ground subsidence. If this sinking is uniform throughout the bottom of a tank with a wide bottom area, there will be no problem, but uneven settling may occur. When this uneven settling occurs, stress is applied to the tank structure, causing deformation and cracking not only at the bottom of the tank but also at the sides and top, which becomes a major cause of leakage of tank contents. If this leakage is large, it will contaminate a very wide area in the area where the tank is installed, and especially if the contents of the tank are flammable or hazardous, it will cause extremely serious social problems and pollution as it can be life-threatening. It can also be a problem. In order to prevent such a situation from occurring, various methods and devices for measuring the uneven settlement of various tanks have been proposed.

従来、この不等沈下の測定方法の1つとして、
土木、建築等の測量機器としてのレベル(水準
儀)等を用いて、タンクの外周の所定箇所の基準
地点(水準点)よりの沈下状況を測定する方法が
実施されていた。これによる測定には多くの労力
と時間(通例、略一日)を要していた。ところが
タンクの不等沈下は、潮の干満でも撮影を受ける
といわれる程に、変動が著しい。したがつて、短
時間内の測定ができないレベルによる測定は、不
等沈下の測定には不向きである。
Conventionally, one method of measuring this uneven settlement is to
A method has been used to measure the subsidence from a reference point (benchmark) at a predetermined location on the outer periphery of a tank using a leveling device used as a surveying instrument for civil engineering, construction, etc. This measurement requires a lot of effort and time (usually about a day). However, the uneven settlement of the tank is so variable that it is said that it is photographed even during the ebb and flow of the tide. Therefore, measurements at levels that cannot be measured within a short period of time are not suitable for measuring uneven subsidence.

また、他の測定方法としてパスカルの原理を応
用したものがある。その一例を第1図および第2
図A〜Cに示す。第1図において、1は液体貯蔵
用タンクでありその周壁2上には水槽t0,t1
……tn,teが設置されており、各水槽t0,t1
……tn,teは連通管3により連通されている。こ
の水槽t0、t1……tn,teおよび連通管3はタ
ンク1の沈下によりタンク1の周壁2と共に降下
する。水槽t0を基準水槽とし、この基準水槽の
液面を一定に保持するため、第2図に示すように
排水口4を水槽t0の上部に設け、水槽t0にの
み常に水Wを流入させておく。第2図Aは基準水
槽t0および水槽tn(1=≦n≦e)を示したも
ので、5は水槽t0,t1,……tn,teの上下動
に影響を与えないための伸縮調整部である。第2
図Bは基準水槽t0に対して水槽tnが沈下したと
きの状態を示す。このとき水槽t0には水Wが常
時注入され且つ排水口4からオーバーフローして
いるためその水深h0は一定である。従つて、水
槽tnの沈下距離ln(水槽t0を基準とする)は、 ln=hn−h0 (1) として求まる。各水槽tl〜teの水深変動量hnを測
定する手段としては、従来、第2図Cに示すよう
にフロート6の上部にコアを有する連接棒7を連
接し、このコアを差動トランスのコイル8内に出
入させるように構成し、この差動トランスの出力
信号を適宜演算処理して水深変動量hnを求める
ようにしたものがある。この後者の従来方法によ
ると、自動的にしかも短時間内での測定が可能で
あるが、その反面次に述べる問題が生ずる。すな
わち、連通管3の引張、圧縮、膨張等による水面
の変化、水の蒸発による水量の変化、基準となる
水槽t0の沈下等による影響のため常時水Wの補
給が必要であり非常に不経済であること、連通管
3内、特に伸縮調整部5に空気が混入する場合が
あり圧力差が生じ水面の高さが揃わなくなるとい
つた問題があつた。さらに上述の差動トランス等
の自動測定手段を設けない場合は、各水槽t1〜
teの水位を読み取らなければならないため、非常
に手間のかかるものであつた。
In addition, there are other measurement methods that apply Pascal's principle. An example of this is shown in Figures 1 and 2.
Shown in Figures AC. In FIG. 1, 1 is a liquid storage tank, and on its peripheral wall 2 are water tanks t0, t1.
...tn and te are installed, and each water tank t0, t1
... tn and te are communicated through a communication pipe 3. The water tanks t0, t1...tn, te and the communication pipe 3 descend together with the peripheral wall 2 of the tank 1 as the tank 1 sinks. The water tank t0 is used as a reference tank, and in order to maintain a constant liquid level in this reference tank, a drain port 4 is provided at the top of the water tank t0 as shown in Fig. 2, and water W is always allowed to flow only into the water tank t0. . Figure 2A shows a reference water tank t0 and a water tank tn (1=≦n≦e), and 5 is an expansion/contraction adjustment section that does not affect the vertical movement of the water tanks t0, t1,...tn, te. It is. Second
Figure B shows the state when the water tank tn is submerged relative to the reference water tank t0. At this time, water W is constantly injected into the water tank t0 and overflows from the drain port 4, so the water depth h0 is constant. Therefore, the sinking distance ln of the water tank tn (based on the water tank t0) is determined as ln=hn-h0 (1). Conventionally, as a means of measuring the amount of water depth variation hn in each water tank tl to te, a connecting rod 7 having a core is connected to the upper part of a float 6 as shown in FIG. There is a system in which the differential transformer is configured to enter and exit the differential transformer, and the output signal of this differential transformer is appropriately processed to determine the amount of water depth variation hn. According to this latter conventional method, measurement can be carried out automatically and within a short period of time, but on the other hand, the following problems arise. That is, it is extremely uneconomical to constantly replenish water W due to the effects of changes in the water surface due to tension, compression, expansion, etc. of the communication pipe 3, changes in water volume due to water evaporation, and sinking of the reference water tank t0. As a result, there was a problem in that air may get mixed into the communication pipe 3, especially in the expansion/contraction adjustment part 5, resulting in a pressure difference and the height of the water surface becoming uneven. Furthermore, if automatic measuring means such as the above-mentioned differential transformer is not provided, each water tank t1 to
It was very time-consuming because the water level had to be read.

本発明は、上述した問題点に鑑みなされたもの
で、タンクの不等沈下の測定を簡便に且つ短時間
に行なうことができ、測定精度が高く維持費が極
めて少ないタンクの不等沈下測定方法およびその
装置を提供することを目的としたものである。
The present invention has been made in view of the above-mentioned problems, and is a method for measuring uneven settlement of a tank, which can easily and quickly measure uneven settlement of a tank, has high measurement accuracy, and has extremely low maintenance costs. The purpose of this invention is to provide a device for the same.

以下、本発明の実施例を図に基づいて詳述す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図は、本発明に係るタンクの不等沈下測定
装置の一実施例の構成を示す模式図である。
FIG. 3 is a schematic diagram showing the configuration of an embodiment of the uneven settlement measuring device for a tank according to the present invention.

同図において、9はタンク1の外周壁の沈下の
基準とする基準箇所に設置された直筒状(この例
の場合、円筒状)の基準液柱管であり、上端は2
つに分岐され、一方の支管9aは、大気開放用バ
ルブとしてのバルブV0を介して大気と連通可能
とされ、他方の支管9bは、シリンダ10の圧縮
室と連通されている。T1,T2……Tn,Te
は、それぞれ測定対象物であるタンク1の周壁に
設置された直筒状(この例の場合、直円筒状)の
小液槽であり、その内径は、前記基準液柱管9よ
りかなり大径とされている。これらの小液槽T1
〜Teの底部はそれぞれバルブV1〜Veを介して
共通の連通管11と連通可能とされ、さらにこの
連通管11は、上記基準液柱管9の下端とも連通
されている。上記シリンダ10の内部には、ピス
トン12が摺動自在に嵌入しており、このピスト
ン12は、その中心部に連結された連接杆13を
介しサーボモータMにより上下動されるようにな
つている。小液槽Teは、基準液柱管9の近傍、
すなわち、タンク1における基準液柱管9と一体
的に上下動をするとみなし得る箇所に設置されて
いる。各小液槽T1〜Te、基準液柱管9および
連通管11の内部には、不活性液体が貯溜されて
いる。この不活性液体の基準液柱管9内における
液面の高さを検出(測定)するための液面高さ検
出手段14が、基準液柱管9に対峙するようにし
て設けられている。この液面高さ検出手段14
は、詳細な図示は省略したが、例えば、多数の発
光素子と受光素子とをライン状に構成してなる光
電検出装置を基準液柱管9に沿わせるようにして
配設するか、液柱圧力計を基準液柱管9の底部に
連結するか、または基準液柱管9自体に長さを計
測する目盛を設ける(またはいわゆる物差を付設
する)等の手段があり得る。
In the figure, 9 is a straight cylindrical (in this example, cylindrical) reference liquid column pipe installed at a reference point to be used as a reference for sinking of the outer peripheral wall of the tank 1, and the upper end is 2
One branch pipe 9a is communicated with the atmosphere through a valve V0 serving as an atmosphere release valve, and the other branch pipe 9b is communicated with the compression chamber of the cylinder 10. T1, T2...Tn, Te
are small liquid tanks in the shape of a straight cylinder (in this example, a right cylinder) installed on the peripheral wall of the tank 1, which is the object to be measured, and the inner diameter thereof is considerably larger than the reference liquid column pipe 9. has been done. These small liquid tanks T1
The bottoms of ~Te can be communicated with a common communication pipe 11 via valves V1 to Ve, respectively, and this communication pipe 11 is also communicated with the lower end of the reference liquid column pipe 9. A piston 12 is slidably fitted into the cylinder 10, and the piston 12 is moved up and down by a servo motor M via a connecting rod 13 connected to the center thereof. . The small liquid tank Te is located near the reference liquid column pipe 9,
That is, it is installed at a location in the tank 1 that can be considered to move up and down integrally with the reference liquid column pipe 9. An inert liquid is stored inside each of the small liquid tanks T1 to Te, the reference liquid column pipe 9, and the communication pipe 11. Liquid level detection means 14 for detecting (measuring) the height of the liquid level of this inert liquid in the reference liquid column tube 9 is provided so as to face the reference liquid column tube 9. This liquid level detection means 14
Although detailed illustrations are omitted, for example, a photoelectric detection device consisting of a large number of light emitting elements and light receiving elements arranged in a line may be arranged along the reference liquid column tube 9, or Possible means include connecting a pressure gauge to the bottom of the reference liquid column tube 9, or providing a scale for measuring the length on the reference liquid column tube 9 itself (or attaching a so-called ruler).

15、液面高さ調整手段であり、例えば、液面
高さ検出手段14が液面の高さを検出し、その検
出値(測定値)が基準値より高いときサーボモー
タMを一方の方向に回転させ、基準値より低いと
きサーボモータMを他方の方向に回転させ、検出
値が基準値と一致したときサーボモータMを停止
させる機能を有する。
15. Liquid level height adjustment means, for example, when the liquid level detection means 14 detects the height of the liquid level and the detected value (measured value) is higher than the reference value, the servo motor M is moved in one direction. When the detected value is lower than the reference value, the servo motor M is rotated in the other direction, and when the detected value matches the reference value, the servo motor M is stopped.

次に、上記構成よりなる実施例を用いて本発明
のタンクの不等沈下測定方法の一実施例を第3図
を参照しつつ説明する。
Next, an embodiment of the method for measuring uneven settlement of a tank according to the present invention will be explained using the embodiment having the above configuration with reference to FIG.

タンクの不等沈下測定装置は、上述したように
して被測定対象であるタンク1に設置されている
ものとする。
It is assumed that the tank uneven settlement measuring device is installed in the tank 1, which is the object to be measured, as described above.

(1) 測定初期において、全てのバルブV0,V
1,V2……Veを開放する。各小液槽T1〜
Teおよび基準液柱管9は、連通管11により
連通されているため不活性液体の液面は、すべ
て同一高さの面となる。
(1) At the beginning of measurement, all valves V0, V
1, V2...Open Ve. Each small liquid tank T1~
Since Te and the reference liquid column pipe 9 are connected through the communication pipe 11, the liquid levels of the inert liquid are all at the same height.

(2) 上記状態において、基準液柱管9の液面の高
さまたは液柱圧力の値を測定(検出)し記録し
ておく(または液面高さ検出手段14の出力信
号をメモリに記憶しておく。以下同様)。ここ
での測定値を基準値m0とする。
(2) In the above state, measure (detect) and record the value of the liquid level height or liquid column pressure in the reference liquid column tube 9 (or store the output signal of the liquid level height detection means 14 in the memory). (The same applies hereafter). The measured value here is defined as the reference value m0.

(3) 上記測定が終了したら、直ちにバルブV1〜
Veの全てを閉鎖する。
(3) Immediately after completing the above measurement, valve V1~
Close everything on Ve.

(4) 適宜時間の経過後の次回測定時において、そ
の測定に先立ち、基準箇所の近傍に配置された
小液槽TeのバルブVeと支管9aのバルブV0
とを開放し、基準液柱管9の液面の高さまた
は、この高さに対応する情報を測定または記録
する。このとき基準液柱管9の液面が、測定初
期の液面と同じでない場合、すなわちその測定
値mが基準値m0と同じでない場合には、バル
ブV0を閉鎖した上液面高さ調整手段15によ
いサーボモータMを回動させ、ピストン12を
上下動させつつ液面の高さが基準値と同一にな
るように調整した後、バルブVeを閉鎖する。
なお、この液面を調整するには、上述の液面高
さ調整手段15、サーボモータM、ピストン1
2、支管9b等を用いなくても可能である。例
えば、小液槽Teの液体を排出または補給をし
て液量を調整してもよいし、機械的に小液槽
Teを上下動して調整をするようにしてもよい。
(4) At the time of the next measurement after an appropriate amount of time has elapsed, prior to the measurement, the valve Ve of the small liquid tank Te and the valve V0 of the branch pipe 9a placed near the reference point are
is opened, and the height of the liquid level in the reference liquid column tube 9 or information corresponding to this height is measured or recorded. At this time, if the liquid level in the reference liquid column pipe 9 is not the same as the liquid level at the initial stage of measurement, that is, if the measured value m is not the same as the reference value m0, the upper liquid level height adjusting means closes the valve V0. After adjusting the liquid level to be the same as the reference value while moving the piston 12 up and down by rotating the servo motor M at 15, the valve Ve is closed.
In addition, in order to adjust this liquid level, the above-mentioned liquid level height adjusting means 15, servo motor M, and piston 1 are used.
2. It is possible without using the branch pipe 9b or the like. For example, you can adjust the liquid level by draining or replenishing the liquid in the small tank Te, or you can mechanically adjust the liquid level by draining or replenishing the liquid in the small tank Te.
Adjustments may be made by moving Te up and down.

(5) 次に、測定すべき箇所の小液槽、例えば基準
液柱管9と隣接する小液槽T1のバルブV1お
よびバルブV0を開放し、基準液柱管9の液面
の高さm1を測定する。
(5) Next, open the valves V1 and V0 of the small liquid tank at the location to be measured, for example, the small liquid tank T1 adjacent to the reference liquid column pipe 9, and raise the liquid level m1 of the reference liquid column pipe 9. Measure.

(6) バルブV0を閉鎖して、基準液柱管9の液面
の高さを基準値m0と等しくなるように液面高
さ調整手段15(または他の手段)により調整
した後バルブV1を閉鎖する。
(6) After closing the valve V0 and adjusting the height of the liquid level in the reference liquid column pipe 9 to be equal to the reference value m0 using the liquid level height adjusting means 15 (or other means), close the valve V1. Close.

(7) 引続き、第2番目、第3番目……第n番目の
測定すべき箇所についても、それぞれ上記(5)、
(6)に記述した主順に準じて、測定値m2,m3…
…mnを得る。
(7) Continuing, for the second, third...nth measurement points, perform the above (5) and
According to the main order described in (6), the measured values m2, m3...
…get mn.

上述のようにして得た測定値m1〜mnからそ
れぞれ基準値m0を引き、各測定箇所毎に基準液
柱管9上の基準値に対する変化量H1,H2……
Hnを求める。このようにして求めた変化量H1
〜Hnから基準液柱管9(基準箇所)を基準とし
た各小液槽の相対変位(上下動)Lnは、次のよ
うにして求まる。
The reference value m0 is subtracted from each of the measured values m1 to mn obtained as described above, and the amount of change H1, H2... with respect to the reference value on the reference liquid column pipe 9 is calculated for each measurement location.
Find Hn. The amount of change H1 obtained in this way
From ~Hn, the relative displacement (vertical movement) Ln of each small liquid tank with respect to the reference liquid column pipe 9 (reference location) is determined as follows.

すなわち、第4図において、基準液柱管9の断
面積をA0、小液槽Tnの断面積をAn(A0<An)
とし、小液槽Tnが基準液柱管9よりも相対変位
Lnだけ下降し、同図において破線の位置より実
線の位置となつたとする。そして、小液槽Tnの
バルブVnを開けると基準液柱管9の液面がHnだ
け下降(変化)し、小液槽Tnの液面の高さ(底
部からの深さ)はhnからhn′に変化する。
That is, in FIG. 4, the cross-sectional area of the reference liquid column pipe 9 is A0, and the cross-sectional area of the small liquid tank Tn is An (A0<An).
Assuming that the small liquid tank Tn is displaced relative to the reference liquid column pipe 9,
Suppose that the position is lowered by Ln and the position is changed from the position of the broken line to the position of the solid line in the figure. Then, when the valve Vn of the small liquid tank Tn is opened, the liquid level in the reference liquid column pipe 9 drops (changes) by Hn, and the height of the liquid level (depth from the bottom) of the small liquid tank Tn changes from hn to hn. ′.

これらの変数の間には、 Hn・A0=(hn′−hn)・An ……(2) の関係があるので、小液槽Tnの相対変位Lnは Ln=Hn+(hn′−hn) ……(3) 上記(2)、(3)式より、相対変位Lnは Ln=Hn(1+A0/An) ……(4) として求めることができる。 Between these variables, Hn・A0=(hn′−hn)・An……(2) Because of the relationship, the relative displacement Ln of the small liquid tank Tn is Ln=Hn+(hn′−hn) ……(3) From equations (2) and (3) above, the relative displacement Ln is Ln=Hn(1+A0/An)...(4) It can be found as

この相対変位L1…Lnは、各測定値m1〜m
nの測定の都度演算してもよいが、各測定が終了
してからまとめて演算してもよいことは勿論であ
る。
This relative displacement L1...Ln is determined by each measured value m1 to m
The calculation may be performed each time n is measured, but it goes without saying that the calculation may be performed all at once after each measurement is completed.

上記の如く構成された実施例および測定方法に
よれば、タンクの不等沈下の測定を行なう直前に
基準液柱管9の液面変化を修正しているので各小
液槽T1〜Teおよびこれらの連通している連通
管11等に貯溜されている液体の蒸発、液もれ、
温度変化等による液体や連通管の膨脹、収縮等に
基づく誤差は、完全に除去することができ、非常
に高精度な不等沈下の測定が可能となる。
According to the embodiment and measurement method configured as described above, the liquid level change in the reference liquid column pipe 9 is corrected immediately before measuring the uneven settlement of the tank, so that each of the small liquid tanks T1 to Te and these Evaporation or leakage of liquid stored in the communication pipe 11 etc. that communicates with
Errors caused by expansion, contraction, etc. of the liquid or communication pipe due to temperature changes can be completely eliminated, making it possible to measure uneven settlement with extremely high accuracy.

また、各バルブV1〜VeおよびV0を例えば、
電磁弁で構成し、基準箇所からその開閉を遠隔操
作できるようにしておけば、測定者は、基準箇所
にいて、基準液柱管9の液面の高さの測定(記
録)だけをすれば足りるから、測定効率が向上さ
れ、ごく短時間のうちに全測定を完了することが
できる。
In addition, each valve V1 to Ve and V0, for example,
If it is configured with a solenoid valve and its opening/closing can be controlled remotely from the reference point, the measurer only needs to be at the reference point and measure (record) the height of the liquid level in the reference liquid column pipe 9. Because of this, the measurement efficiency is improved and all measurements can be completed in a very short time.

さらに、測定手順も上述したように複雑な手段
を含まないので、特に熟練者でなくとも簡単に測
定することができる。特に、液面高さ検出手段1
4の出力信号を液面高さ調整手段15に入力し、
液面高さmが基準値m0に一致するまで、サーボ
モータMを駆動制御するように構成し且つ所定の
シーケンスでバルブV0,V1……Vnの開閉を
制御するコントロール装置を付設することによ
り、完全自動測定も可能となる。また、基準液柱
管9の横断面積A0を、各小液槽T1〜Teの横
断面積Anに対し、かなり小さく設定してあるた
め、各小液槽の上下変動量(タンクの沈下量)に
対し両者が同一横断面積である場合に比べ、基準
液柱管9における液面変化量Hnが大きく現われ、
その分液面高さの検出精度(分解能)を向上させ
得る効果が得られる。
Furthermore, since the measurement procedure does not involve complicated means as described above, even those who are not particularly skilled can easily perform the measurement. In particular, the liquid level detection means 1
Input the output signal of 4 to the liquid level height adjustment means 15,
By attaching a control device configured to drive and control the servo motor M until the liquid level height m matches the reference value m0, and controlling the opening and closing of the valves V0, V1...Vn in a predetermined sequence, Fully automatic measurement is also possible. In addition, since the cross-sectional area A0 of the reference liquid column pipe 9 is set to be considerably smaller than the cross-sectional area An of each small liquid tank T1 to Te, the vertical fluctuation amount of each small liquid tank (tank sinking amount) On the other hand, compared to the case where both have the same cross-sectional area, the amount of liquid level change Hn in the reference liquid column pipe 9 appears larger,
The effect of improving the detection accuracy (resolution) of the liquid separation surface height can be obtained.

尚、本発明は、上述し且つ図面に示した実施例
にのみ限定されるものではなく、その要旨に含ま
れる範囲内で種々の変形実施が可能である。
Note that the present invention is not limited to the embodiments described above and shown in the drawings, and various modifications can be made within the scope of the invention.

例えば、液面高さ検出手段として圧力式液柱計
を用いた場合、液柱を形成する液体によつては密
度(または比重)が温度変化に大きく影響を受け
その温度変化による誤差が混入することがある。
そこで、上記測定手順中に次の手順を加えること
が望ましい。
For example, when a pressure-type liquid column meter is used as a means for detecting the liquid level height, the density (or specific gravity) of the liquid forming the liquid column is greatly affected by temperature changes, and errors due to temperature changes may be introduced. Sometimes.
Therefore, it is desirable to add the following procedure to the above measurement procedure.

すなわち、各回の測定の直前の段階、例えば、
上記測定手順4にて測定致mを基準値m0に一致
させバルブVeを閉鎖した後の段階で、支管9a
のバルブV0を開放して圧力式液柱計にて測定を
行ない該液柱計の指示器の指示がmとなるように
指示器の感度調整を行なう。
That is, at the stage just before each measurement, e.g.
At the stage after the measured value m is made to match the reference value m0 in the above measurement procedure 4 and the valve Ve is closed, the branch pipe 9a
Valve V0 is opened and measurement is performed with a pressure type liquid column meter, and the sensitivity of the indicator is adjusted so that the indicator of the liquid column meter indicates m.

また、各小液槽T1〜Te内および基準液柱管
9内等に貯溜しておく液体は、一般には水が用い
られる場合が多いが、不活性液体を用いることが
望ましい。すなわち、連通管や小液槽の腐食、液
もれ、蒸発、気泡混入等が少ないからである。因
に、本発明に適用して大きな有効性を発揮するも
のとして、フロリナート(Fluorinert:米国
Minnesota Mining and Manufacturing Co.の
登録商標)と称されるものが既に市場に供給され
ている。この液体は、フツソ系液体で、完全に不
活性であるため特に小液槽や連通管を侵すことが
なく、比重が大きく浸透性が強いため空気を追い
出す力が強く連通管内に気泡を発生させず、従つ
て、気泡の混入による液面変化(誤差)が生じな
い。また、粘性が低いので、各小液槽の高低差が
速やかに伝達され、測定時間のロスが少なく、不
燃性、無毒、無臭であるので、仮令漏洩したとし
ても、何ら危険性がない。さらに、水よりも氷点
がかなり低く寒冷地においても充分使用できる。
Although water is generally used as the liquid stored in each of the small liquid tanks T1 to Te and in the reference liquid column pipe 9, it is preferable to use an inert liquid. That is, there is less corrosion, leakage, evaporation, air bubbles, etc. of the communication pipes and small liquid tanks. Incidentally, Fluorinert (USA) has been shown to be highly effective when applied to the present invention.
(registered trademark of Minnesota Mining and Manufacturing Co.) is already available on the market. This liquid is a soft liquid and is completely inert, so it does not attack small liquid tanks or communication pipes, and has a high specific gravity and strong permeability, so it has a strong force to expel air and does not cause bubbles to form in communication pipes. Therefore, no liquid level change (error) occurs due to the inclusion of air bubbles. In addition, since the viscosity is low, the difference in height between each small liquid tank is quickly transmitted, there is little loss in measurement time, and since it is non-flammable, non-toxic, and odorless, there is no danger even if it leaks. Furthermore, its freezing point is much lower than that of water, making it suitable for use even in cold regions.

また、蒸発量が少ないから水に比べて補充量が
少なくてすむが、長期にわたつて使用する場合に
は液面上にシリコン等の不発揮性液体の膜を形成
することが望ましい。
Further, since the amount of evaporation is small, the amount of replenishment is smaller than that of water, but when used for a long period of time, it is desirable to form a film of a nonvolatile liquid such as silicone on the liquid surface.

以上詳述したように本発明によれば、タンクの
不等沈下の測定を行なう直前に、基準箇所に設置
された基準液柱管とこの基準箇所とみなせる箇所
に設置された小液槽とを測定の直前に連通管とバ
ルブを介して連通させて、基準液柱管の液面の高
さが当初の基準値に対し変化している場合は、こ
れを修正するようにしているので、各小液槽およ
びこれらを連通している連通管等に貯溜されてい
る液体の蒸発、液もれ、温度変化等による液体や
連通管の膨張、収縮等に基づく誤差を完全に除去
することができ、非常に高精度な不等沈下が可能
となる。
As described in detail above, according to the present invention, immediately before measuring the uneven settlement of a tank, the reference liquid column pipe installed at the reference point and the small liquid tank installed at the point that can be considered as the reference point are measured. Immediately before measurement, we connect the communication pipe via a valve, and if the height of the liquid level in the reference liquid column pipe changes from the initial reference value, we correct this. It is possible to completely eliminate errors caused by evaporation of liquid stored in small liquid tanks and communication pipes connecting these, liquid leakage, expansion and contraction of liquid and communication pipes due to temperature changes, etc. , it becomes possible to perform uneven settlement with extremely high precision.

また、各小液槽のバルブおよび大気開放用バル
ブとを基準箇所にて遠隔操作し得るように構成し
てあるので、測定者は、基準箇所にいて、基準液
柱管の液面の高さの測定または記録だけをすれば
よいから、上記液面の修正作業も含めて測定作業
効率が向上され、ごく短時間のうちに全測定を完
了することができる。
In addition, the valves of each small liquid tank and the atmosphere release valve are configured to be remotely controlled from the reference point, so the measurer can be at the reference point and check the height of the liquid level in the reference liquid column tube. Since it is only necessary to measure or record the above-mentioned liquid level, the efficiency of the measurement work including the work of correcting the liquid level is improved, and all measurements can be completed in a very short time.

さらにまた、基準液柱管の横断面積を、各小液
槽の横断面積に対しかなり小さく(すなわち、細
く)設定してあるので、各小液槽の上下変動量に
対し、両者が同一の横断面積である場合に比べ、
基準液柱量における液面変化量が大きく現われ、
その分液面高さの検出精度を向上させることがで
き、タンクのより微小な沈下量を検出するのに、
非常に有効となる。
Furthermore, since the cross-sectional area of the reference liquid column pipe is set to be considerably smaller (that is, thinner) than the cross-sectional area of each small liquid tank, both of them have the same cross-sectional area in response to the amount of vertical fluctuation of each small liquid tank. Compared to the case where the area is
The amount of liquid level change in the standard liquid column volume appears large,
The detection accuracy of the liquid level height can be improved, and even smaller amounts of sinking in the tank can be detected.
Very effective.

また、特許請求の範囲第2項に記載の発明のよ
うに、測定に先立つ基準液柱管の液面変化の修正
を、大気開放用バルブを閉鎖してシリンダ、ピス
トン等から成る液面調整手段で行い得るように構
成することにより、液体の無駄な排出をせずにす
むから非常に経済的であり、しかもこの液面調整
手段を液面高さ検出手段の出力に応じて制御する
ようにしたから、測定作業の自動化が実現できる
ようになつた。
In addition, as in the invention set forth in claim 2, liquid level adjusting means comprising a cylinder, piston, etc., closes an atmosphere opening valve to correct liquid level changes in a reference liquid column pipe prior to measurement. By configuring the system so that the liquid level adjustment means can be controlled in accordance with the output of the liquid level detecting means, it is very economical because there is no need for wasteful discharge of liquid. This has made it possible to automate measurement work.

さらにまた、特許請求の範囲第4項に記載の発
明のように、各小液槽や基準液柱管内に貯溜する
液体として、完全に不活性で比重が大きく、浸透
性が強いフツソ系液体を用いることで、気泡の混
入による液面変化が生じず、各小液槽の高低差が
速やかに基準液柱管に伝達され、不燃性、無毒、
無臭であるから仮令漏洩したとしても何ら危険性
がなく、また小液槽や連通管を侵すことがない。
Furthermore, as in the invention set forth in claim 4, a completely inert, highly permeable, and highly permeable liquid is used as the liquid stored in each small liquid tank and the reference liquid column pipe. By using this, there is no change in liquid level due to the inclusion of air bubbles, and the difference in height between each small liquid tank is quickly transmitted to the reference liquid column pipe, making it non-flammable, non-toxic, and
Since it is odorless, there is no danger even if it leaks, and it will not damage small liquid tanks or communication pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のタンクの不等沈下測定装置を
タンク周壁に設置した例を示す平面図、第2図
A,BおよびCは、それぞれ従来の測定方法を説
明するための図、第3図は、本発明の一実施例の
構成を示す模式図、第4図は、本発明の測定原理
を説明するための模式図である。 1……タンク、9……基準液柱管、10……シ
リンダ、11……連通管、12……ピストン、M
……サーボモータ、14……液面高さ検出手段、
15……液面高さ調整手段、V0,V1,V2…
Vn,Ve……バルブ、T1〜Tn,Te……小液槽。
Fig. 1 is a plan view showing an example of a conventional tank unequal settlement measuring device installed on the tank peripheral wall; Figs. 2 A, B, and C are diagrams for explaining the conventional measurement method; and Fig. 3 The figure is a schematic diagram showing the configuration of an embodiment of the present invention, and FIG. 4 is a schematic diagram for explaining the measurement principle of the present invention. 1...Tank, 9...Reference liquid column pipe, 10...Cylinder, 11...Communication pipe, 12...Piston, M
...Servo motor, 14...Liquid level height detection means,
15...Liquid level height adjustment means, V0, V1, V2...
Vn, Ve...Valve, T1~Tn, Te...Small liquid tank.

Claims (1)

【特許請求の範囲】 1 タンクの不等沈下を測定する方法において、
前記タンクの上下動を測定すべき複数箇所にそれ
ぞれ横断面積Anの直筒状の小液槽を設置し、前
記小液槽のうちの1つの小液槽と同一設置箇所と
みなせる箇所であつて前記タンクの沈下の基準と
する基準箇所に前記小液槽の横断面積に対しかな
り小さな横断面積A0の直筒状の基準液柱管を設
置し、前記各小液槽と前記基準液柱管とを共通の
連通管および個所のバルブを介して連通し、且つ
これらの内部に液体を貯溜し、測定初期におい
て、前記バルブの全てを遠隔操作により開放し前
記基準液柱管と全ての前記小液槽との間を連通さ
せた状態で該基準液柱管内の前記液体の液面の高
さまたは該液面の高さに対応する情報を基準値と
して、測定もしくは記録した後、前記バルブの全
てを閉鎖し、適宜時間経過後の次回測定時におい
て、その測定に先立ち、前記基準箇所とみなせる
箇所に設置された小液槽の前記バルブを開放し前
記基準液柱管内の液面の高さまたは該液面の高さ
に対応する情報を測定または記録し、その値が前
記基準値に対し変化している場合には、前記基準
値と同じになるように液面高さ調整手段で修正し
てから当該小液槽のバルブを閉鎖し、次いで前記
タンクの沈下を測定する箇所のバルブを開放して
前記基準液柱管の液面の高さまたは該液面の高さ
に対応する情報を変化値として測定もしくは記録
してから該液面を再び基準値と同じになるように
修正した後当該小液槽のバルブを閉鎖し、以後同
様の手順で各測定箇所について変化値を測定もし
くは記録し、このようにして得た各測定箇所毎の
前記変化値と前記基準値との差により液面差Hn
を求め、 この液面差Hnから、 Ln={1+(A0/An)}・Hn なる演算式により相対変異量Lnを求めることに
よつてタンクの不等沈下を測定することを特徴と
するタンクの不等沈下測定方法。 2 タンクの不等沈下を測定する装置において、
直筒状を呈し前記タンクの上下動を測定すべき複
数箇所にそれぞれ設置される複数の小液槽と、横
断面積が前記小液槽の横断面積に対しかなり小さ
な直筒状を呈し、前記小液槽のうちの1つの小液
槽と同一設置箇所とみなせる箇所であつて前記タ
ンクの沈下の基準とする基準箇所に設置される基
準液柱管と、この基準液柱管と前記各小液槽とを
連通する連通管と、前記小液槽と前記連通管との
間に設けられ両者の間を連通、遮断するバルブ
と、前記基準液柱管の上方に設けられ大気との間
を連通、遮断する大気開放用バルブと、これら基
準液柱管、各小液槽および連通管の内部に貯溜さ
れる液体と、前記小液槽のうちの1つと前記基準
液柱管とを当該小液槽のバルブを開放し前記連通
管を介して連通させたとき前記大気開放用バルブ
を閉鎖した状態で該基準液柱管の内部の前記液体
の液面の高さを調整するための液面調整手段と、
前記基準液柱管の液面の高さを検出する液面高さ
検出手段とを具備し、前記バルブおよび大気開放
用バルブを1箇所で遠隔操作により同時的にまた
は各別のタイミングで開閉制御し得るように構成
したことを特徴とするタンクの不等沈下測定装
置。 3 前記液面調整手段は、シリンダとピストンか
ら成る加圧装置と、この加圧装置を駆動するモー
タと、液面高さ検出手段の出力に応じて前記モー
タの回転駆動を制御する液面高さ調整手段とを具
備し、シリンダの圧縮室が前記基準液柱管の上方
側と連通されて構成されていることを特徴とする
特許請求の範囲第2項に記載のタンクの不等沈下
測定装置。 4 前記液体は、完全に不活性で比重が大きく、
浸透性が強いフツソ系液体であることを特徴とす
る特許請求の範囲第2項に記載のタンクの不等沈
下測定装置。
[Claims] 1. A method for measuring uneven settlement of a tank, comprising:
A straight cylindrical small liquid tank with a cross-sectional area An is installed at each of a plurality of locations where the vertical movement of the tank is to be measured, and the location can be considered to be the same installation location as one of the small liquid tanks, and the above-mentioned A straight cylindrical reference liquid column pipe with a cross-sectional area A0 that is considerably smaller than the cross-sectional area of the small liquid tank is installed at a reference point that is used as a reference point for the sinking of the tank, and each of the small liquid tanks and the reference liquid column pipe are made common to each other. The reference liquid column pipe and all of the small liquid tanks are connected to each other through a communication pipe and a valve at each location, and liquid is stored inside these, and at the beginning of the measurement, all of the valves are opened by remote control to connect the reference liquid column pipe and all of the small liquid tanks. After measuring or recording the height of the liquid level in the reference liquid column pipe or information corresponding to the height of the liquid level as a reference value while communicating with the valves, all of the valves are closed. However, at the time of the next measurement after an appropriate period of time has elapsed, prior to the measurement, open the valve of the small liquid tank installed at the point that can be considered as the reference point and check the height of the liquid level in the reference liquid column tube or the liquid level. Measure or record information corresponding to the height of the surface, and if the value has changed from the reference value, correct it with the liquid level height adjustment means so that it becomes the same as the reference value, and then Close the valve of the small liquid tank, then open the valve at the point where the sinking of the tank is to be measured, and change the height of the liquid level in the reference liquid column pipe or the information corresponding to the height of the liquid level to a change value. After adjusting the liquid level to be the same as the reference value again, close the valve of the small liquid tank, and thereafter measure or record the change value at each measurement point using the same procedure, The liquid level difference Hn is determined by the difference between the change value for each measurement point obtained in this way and the reference value.
, and from this liquid level difference Hn, the relative variation amount Ln is determined by the calculation formula Ln={1+(A0/An)}・Hn, thereby measuring the uneven settlement of the tank. unequal settlement measurement method. 2. In a device for measuring uneven settlement of a tank,
a plurality of small liquid tanks each having a straight cylindrical shape and installed at a plurality of locations where the vertical movement of the tank is to be measured; A reference liquid column pipe that is installed at a reference point that can be considered to be the same installation location as one of the small liquid tanks and that is used as a reference point for sinking of the tank, and this reference liquid column pipe and each of the small liquid tanks. a communication pipe that communicates with the small liquid column and the communication pipe, a valve that is provided between the small liquid tank and the communication pipe that communicates and cuts off the two, and a valve that is provided above the reference liquid column pipe that communicates and cuts off the atmosphere. The atmosphere opening valve, the liquid stored inside these reference liquid column pipes, each small liquid tank and the communication pipe, and one of the small liquid tanks and the reference liquid column pipe in the small liquid tank. a liquid level adjusting means for adjusting the height of the liquid level inside the reference liquid column pipe with the atmosphere release valve closed when the valve is opened and communicated through the communication pipe; ,
and liquid level detection means for detecting the height of the liquid level in the reference liquid column pipe, and the valve and the atmosphere release valve are controlled to open and close simultaneously or at different timings at one location by remote control. An apparatus for measuring uneven settlement of a tank, characterized in that it is configured to be able to measure uneven settlement of a tank. 3. The liquid level adjusting means includes a pressurizing device consisting of a cylinder and a piston, a motor that drives the pressurizing device, and a liquid level adjusting device that controls the rotational drive of the motor according to the output of the liquid level detecting device. Measurement of uneven settlement of a tank according to claim 2, characterized in that the compression chamber of the cylinder is configured to communicate with the upper side of the reference liquid column pipe. Device. 4. The liquid is completely inert and has a high specific gravity;
The apparatus for measuring uneven settlement of a tank according to claim 2, characterized in that the fluid is a highly permeable liquid.
JP7940283A 1983-05-09 1983-05-09 Method and apparatus for measuring nonuniform settling of tank Granted JPS59204705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7940283A JPS59204705A (en) 1983-05-09 1983-05-09 Method and apparatus for measuring nonuniform settling of tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7940283A JPS59204705A (en) 1983-05-09 1983-05-09 Method and apparatus for measuring nonuniform settling of tank

Publications (2)

Publication Number Publication Date
JPS59204705A JPS59204705A (en) 1984-11-20
JPH045125B2 true JPH045125B2 (en) 1992-01-30

Family

ID=13688859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7940283A Granted JPS59204705A (en) 1983-05-09 1983-05-09 Method and apparatus for measuring nonuniform settling of tank

Country Status (1)

Country Link
JP (1) JPS59204705A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500977Y2 (en) * 1990-02-06 1996-06-12 カヤバ工業株式会社 Automatic level measuring device
JP2007263700A (en) * 2006-03-28 2007-10-11 Tokyo Keisoku:Kk Cross level monitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297759A (en) * 1976-02-13 1977-08-16 Eizou Yamashita Method of measuring nonnuniform settlement and measuring apparatus
JPS55152405A (en) * 1979-05-18 1980-11-27 Hitachi Ltd Displacement amount monitoring system for stand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297759A (en) * 1976-02-13 1977-08-16 Eizou Yamashita Method of measuring nonnuniform settlement and measuring apparatus
JPS55152405A (en) * 1979-05-18 1980-11-27 Hitachi Ltd Displacement amount monitoring system for stand

Also Published As

Publication number Publication date
JPS59204705A (en) 1984-11-20

Similar Documents

Publication Publication Date Title
CA2171801C (en) A level measurement method and apparatus using measurements of water column pressure therefor
US4955237A (en) Method and apparatus for measurement of in-situ horizontal stress by freezing of the ground in-situ
US4796469A (en) Apparatus and process for measuring change of liquid level in storage tanks
US4646560A (en) System and method for leak detection in liquid storage tanks
US4571987A (en) Leak detector
US3933031A (en) Submarine pipeline leak locator or the like
Boersma Field measurement of hydraulic conductivity above a water table
CN102338631B (en) Static leveling device and system
US4956993A (en) Soil infiltrometer
US4003263A (en) Tube profile gage
US4455869A (en) Method for determining borehole or cavity configuration through inert gas interface
US4720995A (en) Method of determining the volume of a section of an underground cavity
Constantz et al. An automated technique for flow measurements from Mariotte reservoirs
Yarnell et al. The flow of water in drain tile
US4561290A (en) Float valve apparatus for soil percolation measurements
JPH045125B2 (en)
US2537668A (en) Porosimeter and method of using same
CN105021507A (en) Field detection device of gas permeability coefficient of bridge structural concrete and application method thereof
RU2051333C1 (en) Method and device for measuring discharge of oil
JPH03150419A (en) Method and apparatus for detecting change in liquid surface of storage tank
Sweeten Jr Hydraulic Roughness of an Irrigation Channel with Decreasing Spatially Vaired Flow
JP3680087B2 (en) Communication pipe settlement meter
WO1992005408A1 (en) Apparatus for measuring water bottom level and leakage of a tank
GB1562689A (en) Pressure-responsive apparatus
JPH02128076A (en) Compensator for level of structure