JP3680087B2 - Communication pipe settlement meter - Google Patents
Communication pipe settlement meter Download PDFInfo
- Publication number
- JP3680087B2 JP3680087B2 JP22746195A JP22746195A JP3680087B2 JP 3680087 B2 JP3680087 B2 JP 3680087B2 JP 22746195 A JP22746195 A JP 22746195A JP 22746195 A JP22746195 A JP 22746195A JP 3680087 B2 JP3680087 B2 JP 3680087B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- tank
- water tank
- communication pipe
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は構造物や地盤表面の沈下量を水位の変化で計測するための連通管式沈下計に関する。
【0002】
【従来の技術】
従来より、構造物や地盤表面の沈下量は、基準点に対する複数箇所の測定点の相対的な沈下量を水位の変化に置換してフロートの変動で検出する方法が行われている。近年は、稼働部品を必要としない長所を生かして、水位を水圧計で測定する方法が多くなっている。この種の沈下量の計測装置は、いわゆる連通管式沈下計と呼ばれ、図6に示すように、基準水槽50と検出水槽群60と連通管70とからなるものが知られている。
【0003】
基準水槽50は水槽本体51と循環保水タンク52とポンプ53とからなり、順次、循環パイプ54,55により連通されている。水槽本体51内に排水管56を上部開口を一定の高さに位置させて設け、下部に連通管70に開口した連通口を設けている。ポンプ53により水槽本体51内に水を供給し、基準水槽50から検出水槽群60へ水を供給しても、基準水槽50の水位を一定に保持するようにしている。また、検出水槽群60から水が戻ったり、ポンプ53からの供給が過剰になった場合は、上部開口から余分な水をオーバフローさせて、水位を一定に保持するようにしている。
【0004】
検出水槽群60は複数の検出水槽60a,60b,60cからなり、各検出水槽60a,60b,60cはそれぞれ下部で連通管70に連結され、基準水槽50に連通している。各検出水槽60a,60b,60cはそれぞれ水圧計61a,61b,61cを有している。また、各検出水槽60a,60b,60cの上部はガス連通管71に連通し、空気等のガスにより各水槽の水面に加わる圧力が各検出水槽で同じになるようにしている。
水圧計61a,61b,61cにより検出された水位の測定値は、図7に示すように、スキャンニングボックス62,アンプ63,A/D変換器64を介してパソコン65に収録されるようになっている。
【0005】
そして、測定点が沈下すると、基準水槽50から水が供給されて検出水槽の水位が上がり、水圧計により圧力が増加して検出される。基準水槽50の水位はポンプ53から水が供給されて一定に保持される。逆に、測定点が相対的に上昇すると、基準水槽50へ水が戻り、水圧計により圧力が減少して検出される。この場合、基準水槽50の水位は排水管56の上部開口から水がオーバフローして水位が一定に保持される。
【0006】
【発明が解決しようとする課題】
前記のように水位検出センサとして使用している水圧計は、経時的に無負荷時の出力が変化する、いわゆるゼロドリフトが発生する。従って、真の水位(水頭)に対応した水圧計の測定値を得るには、ゼロドリフトによる誤差を補正する必要がある。この場合、従来の沈下計では検出水槽内の水を全て排出して水圧計を読み、ゼロドリフトを確認するという方法が取られる。
【0007】
しかしながら、検出水槽は、一般的な使用状態では多くの台数を備えており、これらをそれぞれ排水し、手を加えることは多大の労力を必要とするという実用上の問題があった。そのため、検出水槽の水を排出することは通常されておらず、ゼロドリフトによる誤差の補正がなされていない。
また、全て水を排出して水位をゼロにして水圧計を補正する場合、水圧計の検知部が空気に触れると、温度的等の影響を受けて精度や耐久性に悪影響を受けるおそれがある。さらに、全ての水を排出すると気泡が入り込みシステム全体の再調整までも必要となる。
【0008】
本発明は従来の問題を解決し、構造が簡単でゼロドリフト値を確認することができる連通管式沈下計を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するための手段としての本発明の連通管式沈下計は、基準位置に設置され、水槽の水位を一定に保持する機構と循環保水タンクとからなる基準水槽と、測定部位の沈下量を水位の変化量で検知する水圧計を備えた検出水槽とからなる連通管式沈下計であって、基準水槽と検出水槽とを連通する連通管を設け、前記検出水槽の上部に計測水位変動部を、下部に水圧計を収容した貯水部と連通管に開口する連通管口を有する給排水部とを貯水部の水位を一定に保持する仕切手段で区画構成し、検出水槽の給排水部に連通する水を排出する開閉自在の排水手段を設けていることを特徴とする。
【0010】
前記連通管式沈下計においては、既製作又は既設計器に後設する場合、前記検出水槽を水圧計を収容する貯水部を有する第1の槽と、基準水槽と連通する連通管口のある給排水部と貯水部を仕切手段により区画構成してなる第2の槽と、これら両槽を連結し、かつ両貯水部を連通する連通部とから構成することが好ましい。
また、前記連通管式沈下計においては、給排水の一元化能率化のため、前記検出水槽内を一定水位に維持する仕切り手段で仕切り、水圧計を収容する貯水部と、連通管口のある給排水部とに区画し、前記排水手段を基準水槽に連設することが好ましい。
【0011】
基準水槽としては水槽本体、循環保水タンク、ポンプ等を含んでなり、水槽の水位を一定に保持する機構は、オーバフロー部材、ポンプ等から構成される。
検出水槽としては槽本体、水圧計、貯水部、給排水部を含んでなり、貯水部の水位を維持するための仕切り部材を有する。
【0012】
【発明の実施の形態】
本発明の連通管式沈下計は、基準位置に設置される基準水槽と、複数の測定部にそれぞれ設置される検出水槽と、これらの水槽を連通させる連通管と、測定部の垂直方向の変化(沈下量)を水頭の変化で検知する水圧計とからなっている。
基準水槽は、水を貯留する循環保水タンクと水槽の水位を一定に保持するポンプ、オーバフロー管等からなる機構とを備え、基準とする建造物または地盤等に設置されて基準位置を維持するようにしている。
【0013】
測定部の垂直方向の変化は、基準水槽と検出水槽とを連通管により連通し、両水槽の水位を連動して一定に保持することにより、水頭で変化させる。これを検出水槽の水圧計によって、水圧の変化として測定する。
検出水槽は、上部を計測水位変動部とし、下部は水槽の水位を一定に保持する仕切りやオーバフロー壁のような仕切り部材で仕切り、水圧計を収容する区画(貯水部)と、基準水槽に連通する連通管に開口する連通管口を有する区画(給排水部)に区分する。この仕切り部材は検出水槽の貯水部の水位を所定の水位(水頭)に維持する仕切り手段として使用する。
【0014】
さらにゼロドリフトをチェックする際に、水圧計に作用する水頭を一定に保持するように、水圧計を収容する区画以外の検出槽の水を排出する開閉自在の排水手段を備える。この排水手段は、基準水槽に連設して全検出水槽の水を一か所で排出するか、または検出水槽毎に設けて検出水槽毎に排水するか、または数個の検出水槽毎に設けて数個の検出水槽毎に排水するようにようにする。
【0015】
そして、沈下量を測定するには、基準水槽と検出水槽とを連通管により連通し、基準水槽の水位を一定に保持し、複数の測定部にそれぞれ設置された検出水槽の水圧計によって、水圧をそれぞれ測定する。水圧の変化量に対応した値が沈下した量として測定される。
また、ゼロドリフトをチェックするには、開閉自在の排水手段を開放して前記検出水槽から水を排出し、水位維持機構により水圧計にかかる水位を所定の一定の水位にする。仕切りの高さで決まる水頭と水圧計で測定した検出値とを比較してゼロドリフトをチェックする。この水圧の水頭との誤差を補正することにより、ゼロドリフトを補正することができる。
【0016】
また、前記連通管式沈下計において、前記排水手段を基準水槽に設け、前記検出水槽内を所定水位に維持する仕切り手段で仕切り、水圧計を収容する貯水部と連通管口のある給排水部とからなる構成にすれば、沈下計を簡単な構造にてゼロドリフト補正することができる。さらに、一箇所で操作して排水することにより全ての検出水槽の水位を一定にできるので、ゼロドリフトのチェックの作業が一か所で集中して簡単に行うことができ、労力を少なくすることができる。
【0017】
また、前記連通管式沈下計において、水圧計を収容する貯水部を有する第1の槽と、基準水槽と連通する連通管口のある給排水部と貯水部を有する第2の槽とから検出水槽を構成し、両室を連通する連通部と、該水圧計に負荷する水位を所定値に維持する仕切り手段とを備えた構成によれば、既製の沈下計を簡単な構造にてゼロドリフト補正することができる。また、現存の検出水槽にゼロドリフトをチェックする機構を簡単に付加することができる。
【0018】
【実施例】
以下、図面を参照しながら、本発明を具体化した実施例について説明する。図1は本発明に係る連通管式沈下計の一実施例の構成を示す図である。
本実施例の連通管式沈下計は、基準位置に設置される基準水槽1と、複数の測定部にそれぞれ設置される検出水槽2と、これらの水槽を連通する連通管3と、測定部の相対的変化を水位の変化で検知する各検出水槽2に設けた水圧計22とからなっている。検出水槽2の水位を所定値に保持する仕切手段(仕切り部材)23を備え、検出水槽2の仕切り部材23の外側の水を排出する開閉自在の排水手段17を備えている。
【0019】
基準水槽1は、水槽本体11と、水を貯留している循環保水タンク12と、貯留している水を水槽本体11内へ送るポンプ13と、ポンプ13を介在させた供給管15と、水槽本体11内の水位を一定に保持するオーバフロー管16とを備えている。
【0020】
水槽本体11の上部と循環保水タンク12とはポンプ13を介在させた供給管15で連通している。また、オーバフロー管16の下部は循環保水タンク12に開口し、上部は所定の高さに開口して水槽本体11内と循環保水タンク12とを連通している。そして、水槽本体11内の水位が上がればオーバフローさせて循環保水タンク12に排水して水位を一定のLaに保持し、水位が下がればポンプ13から水を供給し、水位を上昇させて一定のLaに保持する。
【0021】
また、開閉自在の排水手段(バルブ)17を有する排水管14で循環保水タンク12と水槽本体11の下部とを連通し、排水手段17を開放して水槽本体11内の水位をLbに下げることができるようにしている。そして、ポンプ13を止めて水の供給を止めると共に、排水手段17を閉じて水槽本体11内の水位をLbに保持する。
【0022】
基準水槽1の底部と複数の検出水槽2,2の底部とは連通管3により連通し、水槽1,2のそれぞれの上部と上部とはエア管4で連通している。
各々の検出水槽2は槽本体21と水圧計22とからなっている。槽本体21内は上部の計測水位変動部7と、下部の仕切り手段である仕切り部材23により区画された水圧計22を収容する貯水部24と、連通管口26のある給排水部25とで構成される。
槽本体21は筒状に形成し、小型化を図るとともに水位が広範囲に変化できるようにしている。
【0023】
測定部の沈下量を測定するには、連通管3およびエア管4で基準水槽1と検出水槽2,2とを連通し、排水手段17を閉じ、ポンプ13を運転して循環保水タンク12から水槽本体11へ水を供給する。水槽本体11および槽本体21の水位(水面)は計測水位変動部7の範囲であるLaに保持される。この場合、検出水槽の槽本体21が沈下すると、水面から水圧計22までの深さ(水頭)が増えて水圧が増え、沈下量を水圧の変化で測定できる。
【0024】
図2は連通管式沈下計の検出水槽の他の例を示す図である。
本実施例の検出水槽5は水圧計32を設けた貯水部31aを有する第1の槽33と、基準水槽と連通する連通管口36のある給排水部38および貯水部31bとを有する第2の槽39とからなり、連通部35で貯水部31aと31bとを連通させて構成し、給排水部33には水位を所定値に維持する仕切り手段34を設けている。
第1の槽33と第2の槽39は筒状に形成し、小型化を図るとともに水位が広範囲に変化できるようにしている。
【0025】
仕切り手段34は管状部材から一定の高さに形成し、第2の槽39の底部に設けた連通管口36の周囲を包囲するように設けている。
この構成によれば、従来の検出水槽に仕切り手段34を設けた第2の槽39を連結することにより、本発明の連通管式沈下計を形成することができる。そして、ゼロドリフトの補正が可能となり、精度のよい沈下量の計測値を得ることができる。
【0026】
図3は検出水槽のさらに他の例を示す図である。本実施例の検出水槽6は、図2の例と仕切り手段が異なるが、その他は同様に形成できるので、同一の構成部分には同一符号を付して、詳細な説明は省略する。
仕切り手段37は板状部材から一定の高さに形成し、第2の槽39の底部に設けた連通管口36と連通部35とを区画するように設けている。
この構成によっても、従来の検出水槽に仕切り手段37を設けた第2の槽39を連結することにより、本発明の連通管式沈下計を形成することができ、同様な効果を得ることができる。
【0027】
なお、前記実施例において、エア管又はエア抜きを設けることについて説明していないが、空気等のガスにより水圧計に作用する圧力がどの部分においても一定になるように、これらを設けることはもちろんである。ガスによる作用を大気圧とする場合は基準水槽、連通管又は検出水槽などを開放した状態としてよいことは勿論である。その他、本発明は前記実施例に限られないことは勿論で、本発明の要旨を変更しない範囲内で変形実施できる構成を含む。例えば排水手段を、図4に示すように、所要の検出水槽毎に設けてもよい。
【0028】
図4は連通管式沈下計の検出水槽の構成を示す図である。この図の例では前記実施例と同様の部分には同一符号を付して、詳細な説明は省略する。
本実施例の検出水槽5は水圧計32を設けた貯水部31aを有する第1の槽33と、基準水槽と連通する連通管口36のある給排水部38と貯水部31bを有する第2の槽39とからなり、連通部35で貯水部31a,31bを連通させて構成し、第2の槽39には水位を所定値に維持する仕切り手段37を設けている。そして、給排水部38から連通管3に連通する接続部41に開閉自在の排出手段42を設けている。排水手段(排出手段)42の切り換えにより排水管43へ給排水部38の貯留水を排水するようにしている。
【0029】
排出手段42は、例えば三方弁で構成し、排水管43方向の開閉を可能とするとともに、連通管3との開閉も可能に構成している。そして、ゼロドリフトの補正の際には、排出手段42により、給排水部38と連通管3との連通を遮断し、放水管43を開放して、給排水部38内の水を排出する。仕切り手段34で仕切られた貯水部31a.31bの水位は仕切り手段34の高さに保持され、この既知の高さに対する水圧と、その測定値からゼロドリフトを知ることができ、これから常時の測定値を補正する。
この図4の例によれば、仕切り手段34を設けた検出水槽で個々にゼロドリフトを補正することができるから、必要な測定部位のみの沈下量を正確に測定することができる。
【0030】
図5は連通管式沈下計の図2、図3のタイプとは異なる一槽型の検出水槽の他の例を示す図である。
本実施例の検出水槽2は、水圧計22位置より高位置に設けた連通管口26の口端縁に仕切り手段23により形成された貯水部24と給排水部25を有してなる。
この構成によっても、貯水部24の水位は仕切り手段23の高さに保持され、前記と同様、既知の高さに対する水圧と、測定値からゼロドリフトを知ることができる。
仕切り手段をすこぶる簡単な構造としたことで、コスト的にも有効である。
なお、図1による実施例と同様の部分には同一符号を付して、詳細な説明を省略する。
【0031】
【発明の効果】
以上の説明より明らかなように、本発明の連通管式沈下計によれば、単純な構造を製作時に付加するのみで、簡単な操作で確実なゼロドリフトのチェックができる。
請求項2の連通管式沈下計によれば、従来の装置をそのまま利用して容易にシステム装置を付加することができ、簡単な操作でゼロドリフトのチェックができる。
また、請求項3の連通管式沈下計によれば、検出水槽を仕切り部材で仕切ってあるため、複数の検出水槽を同時に基準水槽側の1箇所から、集中的に一定の水頭を作用させることができる。連通管式沈下計の排水手段を単純な構造とすることができ、さらに簡単な操作でゼロドリフトのチェックができる。
【図面の簡単な説明】
【図1】 本発明の連通管式沈下計の一実施例の構成を示す説明図である。
【図2】 連通管式沈下計の他の実施例の構成の一部を示す説明図である。
【図3】 さらに他の実施例の構成の一部を示す説明図である。
【図4】 さらに他の実施例の構成の一部を示す説明図である。
【図5】 さらに一槽型の他の実施例の構成の一部を示す説明図である。
【図6】 従来の連通管式沈下計の構成を示す説明図である。
【図7】 連通管式沈下計による沈下量の測定装置を示すブロック図である。
【符号の説明】
1 基準水槽
2,5,6 検出水槽
3 連通管
4 エア管
7 計測水位変動部
11 水槽本体
12 循環保水タンク
13 ポンプ
14 排水管
15 供給管
16 オーバフロー管
17 排水手段
21 槽本体
22,32 水圧計
23,34,37 仕切り手段(部材)
24,31a.31b 貯水部
25,38 給排水部
26,36 連通管口
33 第1の槽
39 第2の槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a communication pipe type subsidence meter for measuring the amount of subsidence on a structure or ground surface by changing the water level.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a method of detecting the amount of settlement on a structure or ground surface by detecting the change in float by replacing the relative amount of settlement at a plurality of measurement points with respect to a reference point with a change in water level. In recent years, taking advantage of the advantage of not requiring moving parts, there are many methods for measuring the water level with a hydrometer. This type of subsidence measuring device is called a so-called communication tube type subsidence meter, and as shown in FIG. 6, a device comprising a
[0003]
The
[0004]
The detection
The measured values of the water levels detected by the
[0005]
And if a measurement point sinks, water will be supplied from the
[0006]
[Problems to be solved by the invention]
As described above, the water pressure gauge used as the water level detection sensor generates a so-called zero drift in which the output at no load changes with time. Therefore, it is necessary to correct an error due to zero drift in order to obtain a measurement value of the water pressure gauge corresponding to the true water level (water head). In this case, the conventional subsidence meter takes a method of discharging all the water in the detection water tank, reading the water pressure gauge, and confirming zero drift.
[0007]
However, there are a large number of detection water tanks in a general use state, and there has been a practical problem that draining and modifying each of them requires a lot of labor. Therefore, the water in the detection water tank is not normally discharged, and the error due to zero drift is not corrected.
Also, when correcting the water pressure gauge by draining all water and making the water level zero, if the water pressure gauge's detector touches the air, it may be affected by temperature and other factors, which may adversely affect accuracy and durability. . Furthermore, when all the water is discharged, air bubbles enter and it is necessary to readjust the entire system.
[0008]
An object of the present invention is to solve the conventional problems and to provide a communication pipe type subsidence meter which has a simple structure and can confirm a zero drift value.
[0009]
[Means for Solving the Problems]
The communication pipe type subsidence meter of the present invention as a means for achieving the above object is a reference water tank, which is installed at a reference position and is composed of a mechanism for keeping the water level of the water tank constant and a circulating water holding tank, and the subsidence of the measurement site It is a communication pipe type subsidence meter consisting of a detection water tank equipped with a water pressure gauge that detects the amount by the amount of change in the water level, provided with a communication pipe that connects the reference water tank and the detection water tank, and the measurement water level above the detection water tank The fluctuating part is divided into a water storage part containing a water pressure gauge at the lower part and a water supply / drainage part having a communication pipe opening that opens to the communication pipe with partition means that keeps the water level of the water storage part constant. An openable / closable drainage means for discharging the communicating water is provided.
[0010]
In the communication pipe type subsidence meter, when it is installed in an already manufactured or already designed device, the detection water tank has a first tank having a water storage section for accommodating a water pressure gauge, and a communication pipe port communicating with the reference water tank. It is preferable to configure a second tank formed by partitioning the water supply / drainage section and the water storage section with a partitioning means, and a communication section that connects both the tanks and communicates the two water storage sections.
Further, in the communication pipe type subsidence meter, in order to improve the efficiency of centralized supply and drainage, the detection water tank is partitioned by a partitioning means for maintaining a constant water level, a water storage unit for storing the water pressure gauge, and a water supply and drainage unit having a communication pipe port It is preferable to divide the drainage means into a reference water tank.
[0011]
The reference water tank includes a water tank body, a circulating water holding tank, a pump, and the like, and a mechanism for keeping the water level of the water tank constant includes an overflow member, a pump, and the like.
The detection water tank includes a tank body, a water pressure gauge, a water storage part, and a water supply / drainage part, and has a partition member for maintaining the water level of the water storage part.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The communication pipe type subsidence meter of the present invention includes a reference water tank installed at a reference position, a detection water tank installed in each of a plurality of measurement units, a communication pipe communicating these water tanks, and a change in the vertical direction of the measurement unit. It consists of a water pressure gauge that detects the amount of subsidence by changing the head.
The reference water tank is equipped with a circulating water tank that stores water and a mechanism that consists of a pump, an overflow pipe, etc. that keeps the water level of the water tank constant, and is installed in the reference building or ground to maintain the reference position. I have to.
[0013]
The change in the vertical direction of the measurement unit is changed at the head of water by connecting the reference water tank and the detection water tank with a communication pipe and keeping the water levels of both water tanks constant in conjunction with each other. This is measured as a change in water pressure by a water pressure gauge in the detection water tank.
The upper part of the detection water tank is the measurement water level fluctuation part, and the lower part is partitioned by a partition member that keeps the water level of the water tank constant or a partition member such as an overflow wall, and communicates with the compartment (water storage part) that contains the water pressure gauge and the reference water tank It divides into the division (water supply / drainage part) which has the communication pipe port opened to the communication pipe which does. This partition member is used as partition means for maintaining the water level of the water storage section of the detection water tank at a predetermined water level (water head).
[0014]
Further, when checking for zero drift, an openable and closable drainage means for draining water from a detection tank other than the section accommodating the water pressure gauge is provided so as to keep the water head acting on the water pressure gauge constant. This drainage means is connected to the reference water tank to discharge the water from all the detection water tanks at one place, or provided for each detection water tank and drained for each detection water tank, or provided for every several detection water tanks. So that every few detection tanks are drained.
[0015]
Then, in order to measure the amount of settlement, the reference water tank and the detection water tank are connected by a communication pipe, the water level of the reference water tank is kept constant, and the water pressure is detected by the water pressure gauges of the detection water tanks respectively installed in a plurality of measurement units. Measure each. The value corresponding to the amount of change in water pressure is measured as the amount of sinking.
In order to check for zero drift, the openable drainage means is opened to discharge water from the detection water tank, and the water level applied to the water pressure gauge is set to a predetermined constant water level by the water level maintenance mechanism. Zero drift is checked by comparing the water head determined by the height of the partition with the detection value measured by the water pressure gauge. The zero drift can be corrected by correcting the error of the water pressure with the head.
[0016]
Further, in the communication pipe type settlement gauge, the drainage means is provided in a reference water tank, partitioned by a partition means for maintaining the inside of the detection water tank at a predetermined water level, a water storage section for storing a water pressure gauge, and a water supply / drainage section having a communication pipe port; If the structure is made of, the zero drift can be corrected with a simple structure for the settlement meter. Furthermore, since the water level of all the detection water tanks can be made constant by operating and draining at one location, the zero drift check work can be easily concentrated in one place, reducing labor. Can do.
[0017]
Further, in the communication pipe type subsidence meter, a detection water tank is formed from a first tank having a water storage section for accommodating a water pressure gauge, a water supply / drainage section having a communication pipe port communicating with a reference water tank, and a second tank having a water storage section. In accordance with the configuration comprising a communication part that communicates both chambers and a partition means that maintains the water level loaded on the water pressure gauge at a predetermined value, a ready-made subsidometer can be corrected with a simple structure. can do. In addition, a mechanism for checking zero drift can be easily added to the existing detection tank.
[0018]
【Example】
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an embodiment of a communication pipe type settlement meter according to the present invention.
The communication pipe type subsidence meter of the present embodiment includes a reference water tank 1 installed at a reference position, a
[0019]
The reference water tank 1 includes a
[0020]
The upper part of the water tank
[0021]
Further, the
[0022]
The bottom of the reference water tank 1 and the bottoms of the plurality of
Each
The
[0023]
In order to measure the amount of subsidence of the measuring unit, the reference water tank 1 and the
[0024]
FIG. 2 is a diagram showing another example of the detection water tank of the communication pipe type settlement meter.
The
The
[0025]
The partition means 34 is formed at a certain height from the tubular member, and is provided so as to surround the periphery of the
According to this configuration, the communication pipe type settlement meter of the present invention can be formed by connecting the
[0026]
FIG. 3 is a view showing still another example of the detection water tank. Although the
The partition means 37 is formed at a certain height from the plate-like member, and is provided so as to partition the
Even with this configuration, by connecting the
[0027]
In addition, in the said Example, although it does not explain providing an air pipe or air bleeding, of course, providing these so that the pressure which acts on a water pressure gauge with gas, such as air, may become constant in any part. It is. Of course, when the action of the gas is atmospheric pressure, the reference water tank, the communication pipe or the detection water tank may be opened. In addition, the present invention is not limited to the above-described embodiments, but includes configurations that can be modified and implemented without departing from the scope of the present invention. For example, drainage means may be provided for each required detection water tank as shown in FIG.
[0028]
FIG. 4 is a diagram showing a configuration of a detection water tank of the communication pipe type settlement meter. In the example of this figure, the same reference numerals are given to the same parts as in the previous embodiment, and the detailed description is omitted.
The
[0029]
The discharge means 42 is constituted by, for example, a three-way valve, and can be opened and closed in the direction of the
According to the example of FIG. 4, since the zero drift can be individually corrected by the detection water tank provided with the partitioning means 34, the subsidence amount of only the necessary measurement site can be accurately measured.
[0030]
FIG. 5 is a view showing another example of a single tank type detection water tank different from the type shown in FIGS.
The
Also with this configuration, the water level of the
Since the partition means has a simple structure, it is effective in terms of cost.
The same parts as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0031]
【The invention's effect】
As is clear from the above description, according to the communication pipe type subsidence meter of the present invention, it is possible to surely check for zero drift by simple operation only by adding a simple structure at the time of manufacture.
According to the communication pipe type settlement meter of
In addition, according to the communication pipe type settlement meter of
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a configuration of an embodiment of a communicating pipe type settlement meter of the present invention.
FIG. 2 is an explanatory view showing a part of the configuration of another embodiment of the communication pipe type settlement meter.
FIG. 3 is an explanatory diagram showing a part of the configuration of still another embodiment.
FIG. 4 is an explanatory diagram showing a part of the configuration of still another embodiment.
FIG. 5 is an explanatory view showing a part of the configuration of another embodiment of the one tank type.
FIG. 6 is an explanatory diagram showing the configuration of a conventional communication pipe type settlement meter.
FIG. 7 is a block diagram showing an apparatus for measuring the amount of settlement using a communicating pipe type settlement meter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reference |
24, 31a. 31b
Claims (3)
ことを特徴とする連通管式沈下計。Communication consisting of a reference water tank that is installed at the reference position and that maintains a constant water level in the water tank and a circulating water tank, and a detection water tank that has a water pressure gauge that detects the amount of subsidence at the measurement site by the amount of change in the water level It is a tube-type subsidence meter, and is provided with a communication pipe that connects the reference water tank and the detection water tank. The upper part of the detection water tank is a measurement water level fluctuation part, and the lower part is opened to a water storage part that houses the water pressure gauge and a communication pipe. A water supply / drainage part having a communication pipe opening, the water storage part and the water supply / drainage part are defined by partition means for holding the water level of the water storage part constant, and the drainage means that can be freely opened and closed to discharge water communicating with the water supply / drainage part of the detection water tank A communication pipe type subsidence meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22746195A JP3680087B2 (en) | 1995-08-10 | 1995-08-10 | Communication pipe settlement meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22746195A JP3680087B2 (en) | 1995-08-10 | 1995-08-10 | Communication pipe settlement meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0953933A JPH0953933A (en) | 1997-02-25 |
JP3680087B2 true JP3680087B2 (en) | 2005-08-10 |
Family
ID=16861243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22746195A Expired - Fee Related JP3680087B2 (en) | 1995-08-10 | 1995-08-10 | Communication pipe settlement meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3680087B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103884318A (en) * | 2014-04-03 | 2014-06-25 | 山东科技大学 | Surface subsidence monitoring method |
JP6507023B2 (en) * | 2015-05-08 | 2019-04-24 | 株式会社大林組 | Internal displacement measurement method |
CN113202149A (en) * | 2021-04-28 | 2021-08-03 | 保利长大工程有限公司 | Cofferdam lowering level control observation instrument |
-
1995
- 1995-08-10 JP JP22746195A patent/JP3680087B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0953933A (en) | 1997-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101526442B (en) | A high suction double-cell extractor | |
US20030131661A1 (en) | Method and apparatus for controlling the level of liquids | |
JP2643828B2 (en) | Tank fluid amount measuring method and tank liquid level measuring device | |
US6715349B2 (en) | Fluid-gauging systems and methods | |
JP3680087B2 (en) | Communication pipe settlement meter | |
EP4257956A1 (en) | Method and apparatus for calibrating optical dissolved oxygen sensor | |
CN102338631A (en) | Static leveling device and system | |
US4262531A (en) | Fluid-gauging methods and systems | |
JP4351790B2 (en) | Fluid metering system | |
US6434494B1 (en) | Pressure based fluid gauging system | |
CN105928491A (en) | Testing method for vertical displacement of building | |
US4627281A (en) | Tank gaging system | |
JPH10227633A (en) | Measuring device of shape of bridge | |
WO1987007876A1 (en) | Method and apparatus for ascertaining details of the load in a ship | |
US4181005A (en) | Hydrogen detector | |
US6148854A (en) | System for leak detection from underground and aboveground fuel storage tanks | |
CN112370941A (en) | Density measuring method of wet desulphurization absorption tower | |
JP2727513B2 (en) | Differential pressure measuring device | |
JPH06307894A (en) | Uneven settlement measuring device | |
JPH045125B2 (en) | ||
CN115540819B (en) | Differential pressure type fiber bragg grating static level settlement measuring device and monitoring method | |
SU1051371A1 (en) | Hydrostatic levelling instrument | |
JPH0814982A (en) | Method for measuring quantity of liquid | |
SU1099245A1 (en) | Hydrostatic densitometer | |
CN117168584A (en) | Simple calibration method for ship liquid level telemetry system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050308 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090527 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |