JPH0450859B2 - - Google Patents

Info

Publication number
JPH0450859B2
JPH0450859B2 JP60125644A JP12564485A JPH0450859B2 JP H0450859 B2 JPH0450859 B2 JP H0450859B2 JP 60125644 A JP60125644 A JP 60125644A JP 12564485 A JP12564485 A JP 12564485A JP H0450859 B2 JPH0450859 B2 JP H0450859B2
Authority
JP
Japan
Prior art keywords
exchange resin
acidic cation
cation exchange
strongly acidic
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60125644A
Other languages
Japanese (ja)
Other versions
JPS61283355A (en
Inventor
Keiichi Shibahara
Takayuki Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP60125644A priority Critical patent/JPS61283355A/en
Publication of JPS61283355A publication Critical patent/JPS61283355A/en
Publication of JPH0450859B2 publication Critical patent/JPH0450859B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は強酸性陽イオン交換樹脂の製造工程に
由来する強酸性陽イオン交換樹脂粒内に残留する
微量の溶媒および未反応モノマー等の不純物の遊
離を防止する方法に関する。 〔従来技術〕 強酸性陽イオン交換樹脂はボイラー用水の製造
工程、貴金属含有廃液の処理工程、糖液の精製工
程等に広く利用されているが、近年の工業の精密
化に伴い強酸性陽イオン交換樹脂もより精密な分
離・精製工程にも利用されるようになつた。 ところが、強酸性陽イオン交換樹脂については
強酸性陽イオン交換樹脂の化学的性質あるいは物
理的構造によらずに使用中に微量の不純物の遊離
があることが知られている。 これらの不純物は強酸性陽イオン交換樹脂の製
造工程に由来する強酸性陽イオン交換樹脂粒内の
微細孔に残留する微量の溶媒及び未反応のモノマ
ー等と考えられ、これらは強酸性陽イオン交換樹
脂粒の微細孔から使用中に徐々に粒外に遊離して
くる。 そのため特に入念かつ精密な精製・分離を必要
とする超純水の製造工程、医薬品の製造工程等で
はこれら強酸性陽イオン交換樹脂からの不純物の
処理液中への遊離は製品の収率に直接悪影響を及
ぼすため、不純物の遊離が極めて少ない強酸性陽
イオン交換樹脂の提供が要望されている。 そこでこれら不純物の遊離の少ない強酸性陽イ
オン交換樹脂を提供することの一つの方法とし
て、強酸性陽イオン交換樹脂内に残留する微量の
不純物を完全に除去する方法が種々検討されてき
た。現在では強酸性陽イオン交換樹脂に鉱酸溶液
とアルカリ溶液とを交互に数回接触させ強酸性陽
イオン交換樹脂を急激に膨潤、収縮させることに
より強酸性陽イオン交換樹脂粒内の微細孔に残留
する不純物を粒外に排出除去した不純物の遊離の
少ない強酸性陽イオン交換樹脂を提供する方法が
採用されている。 しかしながら、この方法においても微細孔の深
部に残存する極微量の不純物については完全に排
除することはできず不純物の遊離のない強酸性陽
イオン交換樹脂を提供する方法とはいえなかつ
た。 〔発明の目的〕 そこで本発明者等は不純物の遊離のない強酸性
陽イオン交換樹脂を提供することを目的として鋭
意検討した結果、従来の方法に特別の手段を付加
することにより強酸性陽イオン交換樹脂の微細孔
中に残留する不純物をほぼ完全に排除することが
でき、不純物の遊離のない強酸性陽イオン交換樹
脂を提供できることを見い出し本発明に到達し
た。 〔発明の構成〕 本発明は強酸性陽イオン交換樹脂に鉱酸溶液つ
いでアルカリ溶液をこの順序、あるいはそれとは
逆の順序で接触させる操作を少なくとも1回ある
いは2回以上繰返し行なつた後、該強酸性陽イオ
ン交換樹脂を常法により再生して再生形とし、つ
いで再生形となつた該強酸性陽イオン交換樹脂に
陰イオン交換樹脂を添加して混合状態にして純水
に浸漬することにより上記問題を解決しようとす
るものである。 以下、本発明をさらに詳細に説明する。 強酸性陽イオン交換樹脂粒内の微細孔には樹脂
の製造工程に由来する僅少の溶媒及び未反応のモ
ノマー等の不純物が残存しており、これら不純物
が残存している強酸性陽イオン交換樹脂を用いて
イオン交換処理を行うと、処理工程中に不純物は
微細孔より徐々に遊離して処理液に同伴されてく
る。 このような現象は超純水の製造工程、医薬品の
精製工程等高純度の精製を行う工程では甚だ不都
合である。 そこでこれら不純物を除去するため本発明では
まず強酸性陽イオン交換樹脂に鉱酸溶液ついでア
ルカリ溶液をこの順序で接触させる工程、あるい
はアルカリ溶液ついで鉱酸溶液をこの順序で接触
させる操作を少なくとも1回あるいは2回以上繰
返して行う。その操作方法としては強酸性陽イオ
ン交換樹脂をカラムに充填し、鉱酸溶液(アルカ
リ溶液)通液、水洗、アルカリ溶液(鉱酸溶液)
通液、水洗の操作を1回あるいは数回繰返すこと
により行う。その際の鉱酸溶液は100〜600g・鉱
酸/−樹脂/回でその濃度は10重量%程度を目
安とし、アルカリ溶液は100〜600g・アルカリ/
−樹脂/回、その濃度として4重量%程度を目
安として採用される。 この操作により強酸性陽イオン交換樹脂は膨
潤、収縮を繰返すことになり、微細孔にある大部
分の不純物は粒外に排出除去されるが、粒内の微
細孔の深部に存在する不純物はまだ残留してい
る。 そこでこれらの不純物を除去するために上述の
操作を行なつた強酸性陽イオン交換樹脂はまず常
法により再生し再生形(H形)にする。その際強
酸性陽イオン交換樹脂の交換基がすべてH形にな
るように多目の鉱酸溶液を用いて再生しておくこ
とが望ましい。 次いで再生形(H形)になつた強酸性陽イオン
交換樹脂に陰イオン交換樹脂を添加して常法によ
りできるだけ均一な混合状態にした後純水に浸漬
する。 この場合添加する陰イオン交換樹脂は強塩基
性、中塩基性、弱塩基性あるいは再生形(OH
形)塩形いずれでも良い。また、スチレン系、ア
クリル系を母体とするもの、さらにゲル型又はポ
ーラス型いずれでもよいが、通常はスチレン系が
使用される。陰イオン交換樹脂の塩基性度が大き
い場合の方が純水に浸漬する時間が短かくてすむ
ことから再生形(OH形)の強塩基性陰イオン交
換樹脂が最も好ましい。陰イオン交換樹脂の添加
量としては強酸性陽イオン交換樹脂体積の0.5〜
2.0倍を目安とする。浸漬する純水の水質として
は電気伝導度1μs/cm以下で浸漬する時間は少な
くとも24時間以上であれば良い。 再生形の強酸性陽イオン交換樹脂粒内の微細孔
に残留する不純物が純水中で陰イオン交換樹脂と
共存すると何故に不純物の遊離が促進されるかそ
の理由については明らかではないが、陰イオン交
換樹脂は再生形の強酸性陽イオン交換樹脂粒内の
微細孔に残留する不純物の遊離に対して純水中で
触媒的に作用し、不純物の遊離を促進させるもの
と思われる。 また、強酸性陽イオン交換樹脂の他の不純物に
よる汚染を防止するため添加する陰イオン交換樹
脂は十分に洗浄したものを利用する。 上述の操作により再生形の強酸性陽イオン交換
樹脂に残留する不純物はほぼ完全に純粋中へ排出
除去されるので次いで再生形の強酸性陽イオン交
換樹脂と陰イオン交換樹脂の混合樹脂は逆洗等の
手段により再生形の強酸性陽イオン交換樹脂を分
離分取した後、充分に水洗して各用途に供給され
る。 また本発明に使用された陰イオン交換樹脂は多
少遊離物により汚染されているので若干多目の再
生剤により再生することにより再生することによ
りこれらの不純物を除去したのち各用途で使用さ
れる。 本発明の対象となる強酸性陽イオン交換樹脂は
スチレン系、フエノール系、アクリル系を母体と
するもの、さらにゲル形、ポーラス形いずれもよ
い効果が得られる。 強酸性陽イオン交換樹脂を高純度の精製工程で
使用する際には本発明による処理を行なつた後使
用すれば強酸性陽イオン交換樹脂からの不純物の
遊離は殆んどないので高純度の精製物を得ること
ができる。 〔実施例〕 実施例 1 第1表に示すような市販の強酸性陽イオン交換
樹脂各々1をカラムに充填し、2規定塩酸3
通液、水洗、1規定苛性ソーダ5通液、水洗の
操作を2回繰返した後、2規定塩酸7を通液後
水洗し各強酸性陽イオン交換樹脂再生し再生形に
した。 次いで第1表に示す強塩基性陰イオン交換樹脂
各々2を常法により再生形とした後、各々を対
応する再生された強酸性陽イオン交換樹脂が充填
されたカラムに添加し混合状態にした後、電気伝
導度0.1μS/cmの純水に常温で浸漬し一定量を12
時間後、24時間後、120時間後に取出した。取出
した各混合樹脂は逆洗して強酸性陽イオン交換樹
脂のみを分離分取し、それらを各々電気伝導度
0.1μS/cm、TOC0.1mg/以下の純水に浸漬し40
℃で24時間放置した。放置後のこの純水のTOC
は第2表のようであつた。
[Industrial Application Field] The present invention relates to a method for preventing the release of impurities such as trace amounts of solvent and unreacted monomers remaining in strongly acidic cation exchange resin particles resulting from the manufacturing process of strongly acidic cation exchange resins. . [Prior art] Strongly acidic cation exchange resins are widely used in the production process of boiler water, the treatment process of precious metal-containing waste liquids, the purification process of sugar solutions, etc. However, with the refinement of industry in recent years, strong acidic cation exchange resins Exchangeable resins have also come to be used for more precise separation and purification processes. However, it is known that a trace amount of impurities are liberated from strongly acidic cation exchange resins during use, regardless of the chemical properties or physical structure of the strongly acidic cation exchange resin. These impurities are thought to be trace amounts of solvent and unreacted monomers remaining in the micropores of the strongly acidic cation exchange resin particles resulting from the manufacturing process of the strongly acidic cation exchange resin. During use, it gradually becomes liberated from the fine pores of the resin particles. Therefore, especially in ultrapure water manufacturing processes and pharmaceutical manufacturing processes that require careful and precise purification and separation, the release of impurities from these strongly acidic cation exchange resins into the processing solution has a direct impact on the product yield. Therefore, it is desired to provide a strongly acidic cation exchange resin that releases extremely few impurities. Therefore, as one method of providing a strongly acidic cation exchange resin that releases less of these impurities, various methods have been investigated to completely remove trace amounts of impurities remaining in the strongly acidic cation exchange resin. Currently, the micropores in the strongly acidic cation exchange resin particles are formed by contacting the strongly acidic cation exchange resin with a mineral acid solution and an alkaline solution several times alternately, causing the strongly acidic cation exchange resin to rapidly swell and contract. A method has been adopted to provide a strongly acidic cation exchange resin in which residual impurities are discharged and removed outside of the grains, resulting in less release of impurities. However, even with this method, it is not possible to completely eliminate the extremely small amount of impurities remaining deep within the micropores, and it cannot be said that this method provides a strongly acidic cation exchange resin without the release of impurities. [Purpose of the Invention] Therefore, the inventors of the present invention conducted intensive studies with the aim of providing a strongly acidic cation exchange resin that does not release impurities. The inventors have discovered that it is possible to almost completely eliminate impurities remaining in the micropores of the exchange resin, and that it is possible to provide a strongly acidic cation exchange resin that does not release impurities, and has thus arrived at the present invention. [Structure of the Invention] The present invention involves contacting a strongly acidic cation exchange resin with a mineral acid solution and then an alkaline solution in this order, or in the reverse order, at least once or twice or more. A strongly acidic cation exchange resin is regenerated by a conventional method to obtain a regenerated form, and then an anion exchange resin is added to the regenerated form of the strongly acidic cation exchange resin, and the mixture is mixed and immersed in pure water. This is an attempt to solve the above problem. The present invention will be explained in more detail below. A small amount of impurities such as a small amount of solvent and unreacted monomers derived from the resin manufacturing process remain in the micropores within the particles of strongly acidic cation exchange resin. When ion exchange treatment is carried out using the ion exchange treatment, impurities are gradually liberated from the micropores during the treatment process and are entrained in the treatment liquid. Such a phenomenon is extremely inconvenient in processes that perform high-purity purification, such as ultrapure water production processes and pharmaceutical purification processes. Therefore, in order to remove these impurities, in the present invention, a strongly acidic cation exchange resin is first brought into contact with a mineral acid solution and then an alkaline solution in this order, or at least once with an alkaline solution and then a mineral acid solution in this order. Or repeat it two or more times. The operation method is to fill a column with strongly acidic cation exchange resin, pass a mineral acid solution (alkaline solution) through it, wash with water, and use an alkaline solution (mineral acid solution).
This is carried out by repeating the operations of passing liquid and washing with water once or several times. At that time, the mineral acid solution should be 100 to 600 g/mineral acid/-resin/time, and the concentration should be about 10% by weight, and the alkaline solution should be 100 to 600 g/alkali/resin/time.
-Resin/time, and its concentration is approximately 4% by weight. Through this operation, the strongly acidic cation exchange resin repeatedly swells and contracts, and most of the impurities in the micropores are discharged to the outside of the grains, but the impurities deep in the micropores inside the grains are still removed. remains. Therefore, the strongly acidic cation exchange resin that has been subjected to the above-described operation to remove these impurities is first regenerated by a conventional method to form a regenerated form (H form). At this time, it is desirable to regenerate the strongly acidic cation exchange resin using a rich mineral acid solution so that all the exchange groups become H-type. Next, an anion exchange resin is added to the strongly acidic cation exchange resin which has become a regenerated form (H form), and the mixture is mixed as uniformly as possible by a conventional method, and then immersed in pure water. In this case, the anion exchange resin added is strongly basic, medium basic, weakly basic, or regenerated (OH
Form) Either salt form is fine. Further, it may be a styrene-based material, an acrylic-based material, a gel type or a porous type, but a styrene-based material is usually used. A regenerated form (OH form) of strongly basic anion exchange resin is most preferable because the time required for immersion in pure water is shorter when the anion exchange resin has a high degree of basicity. The amount of anion exchange resin added is 0.5 to 0.5 of the volume of the strongly acidic cation exchange resin.
Aim for 2.0x. The quality of the pure water to be immersed should be such that the electrical conductivity is 1 μs/cm or less and the immersion time is at least 24 hours. It is not clear why impurities remaining in the fine pores in the recycled form of strongly acidic cation exchange resin particles coexist with anion exchange resin in pure water, promoting the release of impurities. It is thought that the ion exchange resin acts catalytically in pure water to release impurities remaining in the fine pores of the regenerated strongly acidic cation exchange resin particles, promoting the release of impurities. Further, in order to prevent contamination of the strongly acidic cation exchange resin with other impurities, the anion exchange resin to be added should be thoroughly washed. By the above operation, the impurities remaining in the regenerated strongly acidic cation exchange resin are almost completely discharged and removed, so the mixed resin of the regenerated strongly acidic cation exchange resin and anion exchange resin is then backwashed. After separating and fractionating the regenerated strongly acidic cation exchange resin by means such as the above, it is thoroughly washed with water and supplied to various uses. Furthermore, since the anion exchange resin used in the present invention is somewhat contaminated with free substances, it is regenerated with a slightly larger amount of regenerant to remove these impurities before being used for various purposes. The strong acidic cation exchange resins to which the present invention is applied are those based on styrene, phenol, and acrylic, and both gel and porous types can produce good effects. When using a strongly acidic cation exchange resin in a high-purity purification process, if it is used after the treatment according to the present invention, there will be almost no release of impurities from the strongly acidic cation exchange resin. A purified product can be obtained. [Example] Example 1 One part of each of the commercially available strong acidic cation exchange resins shown in Table 1 was packed into a column, and 3 parts of 2N hydrochloric acid was added.
After repeating the operations of passing liquid, washing with water, passing 5 parts of 1N caustic soda, and rinsing with water twice, 7 parts of 2N hydrochloric acid was passed therethrough and then washed with water to regenerate each strongly acidic cation exchange resin into a regenerated form. Next, 2 of each of the strong basic anion exchange resins shown in Table 1 were made into regenerated forms by a conventional method, and each was added to a column filled with the corresponding regenerated strong acid cation exchange resin to form a mixed state. After that, soak a certain amount in pure water with an electrical conductivity of 0.1μS/cm at room temperature for 12 hours.
It was taken out after 1 hour, 24 hours, and 120 hours. Each mixed resin taken out is backwashed to separate and fractionate only the strongly acidic cation exchange resin, and each of them is tested for electrical conductivity.
0.1μS/cm, TOC 0.1mg/or less, 40 immersed in pure water.
It was left at ℃ for 24 hours. TOC of this pure water after standing
was as shown in Table 2.

【表】【table】

【表】 比較例 1 実施例で使用したものと同一銘柄の強酸性陽イ
オン交換樹脂を各々1カラムに充填し、実施例
と同様の操作で2規定塩酸3通液、水洗、1規
定苛性ソーダ5通液、水洗の操作を2回繰返し
た後、2規定塩酸7を通液して各強酸性陽イオ
ン交換樹脂を再生し再生形にした。 次いでこの各々の強酸性陽イオン交換樹脂は電
気伝導度0.1μS/cmの純水に24時間浸漬した。純
水に浸漬後の各強酸性陽イオン交換樹脂は新たに
電気伝導度0.1μS/cm、TOC0.1mg/以下の純水
に浸漬し、40℃、24時間放置した。放置後のこの
純水のTOCは第3表のようであつた。
[Table] Comparative Example 1 Each column was filled with strongly acidic cation exchange resins of the same brand as those used in the example, and the same procedure as in the example was carried out, followed by 3 passes of 2 N hydrochloric acid, water washing, and 1 N caustic soda 5 times. After repeating the operations of passing liquid and washing with water twice, each strongly acidic cation exchange resin was regenerated into a regenerated form by passing 2N hydrochloric acid 7 through it. Next, each of the strongly acidic cation exchange resins was immersed in pure water with an electrical conductivity of 0.1 μS/cm for 24 hours. After soaking in pure water, each strongly acidic cation exchange resin was immersed in pure water with an electrical conductivity of 0.1 μS/cm and a TOC of 0.1 mg/or less, and left at 40°C for 24 hours. The TOC of this pure water after standing was as shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、強酸性陽イオン交換樹脂
粒の微細孔中に残存する不純物をほゞ完全に排除
することができ、不純物の遊離のない強酸性陽イ
オン交換樹脂を提供できる。
According to the method of the present invention, impurities remaining in the micropores of the strongly acidic cation exchange resin particles can be almost completely eliminated, and a strongly acidic cation exchange resin without release of impurities can be provided.

Claims (1)

【特許請求の範囲】 1 強酸性陽イオン交換樹脂に鉱酸溶液ついでア
ルカリ溶液をこの順序、あるいはそれとは逆の順
序で接触させる操作を少なくとも1回あるいは2
回以上繰返し行なつた後、該強酸性陽イオン交換
樹脂を常法により再生して再生形とし、ついで再
生形となつた該強酸性陽イオン交換樹脂に陰イオ
ン交換樹脂を添加して混合状態にして純水に浸漬
することを特徴とする強酸性陽イオン交換樹脂か
らの不純物の遊離を防止する方法。 2 添加する上記陰イオン交換樹脂が再生形の強
塩基性陰イオン交換樹脂であるところの特許請求
の範囲第1項記載の方法。 3 添加する上記陰イオン交換樹脂量が上記強酸
性陽イオン交換樹脂の体積の0.5〜2.0倍であると
ころの特許請求の範囲第1項記載の方法。 4 上記再生形の強酸性陽イオン交換樹脂と上記
陰イオン交換樹脂との混合状態での純水浸漬時間
が24時間以上であるところの特許請求の範囲第1
項記載の方法。
[Claims] 1. An operation of contacting a strongly acidic cation exchange resin with a mineral acid solution and then an alkaline solution in this order, or in the reverse order, at least once or twice.
After repeating the process several times, the strongly acidic cation exchange resin is regenerated by a conventional method to obtain a regenerated form, and then an anion exchange resin is added to the regenerated form of the strongly acidic cation exchange resin to form a mixed state. A method for preventing the release of impurities from a strongly acidic cation exchange resin, which comprises soaking the resin in pure water. 2. The method according to claim 1, wherein the anion exchange resin added is a regenerated strongly basic anion exchange resin. 3. The method according to claim 1, wherein the amount of the anion exchange resin added is 0.5 to 2.0 times the volume of the strongly acidic cation exchange resin. 4. Claim 1, wherein the recycled strongly acidic cation exchange resin and the anion exchange resin are immersed in pure water for 24 hours or more in a mixed state.
The method described in section.
JP60125644A 1985-06-10 1985-06-10 Method for preventing release of impurities from strong acidic cation exchange resin Granted JPS61283355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125644A JPS61283355A (en) 1985-06-10 1985-06-10 Method for preventing release of impurities from strong acidic cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125644A JPS61283355A (en) 1985-06-10 1985-06-10 Method for preventing release of impurities from strong acidic cation exchange resin

Publications (2)

Publication Number Publication Date
JPS61283355A JPS61283355A (en) 1986-12-13
JPH0450859B2 true JPH0450859B2 (en) 1992-08-17

Family

ID=14915123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125644A Granted JPS61283355A (en) 1985-06-10 1985-06-10 Method for preventing release of impurities from strong acidic cation exchange resin

Country Status (1)

Country Link
JP (1) JPS61283355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249238A (en) * 2003-02-21 2004-09-09 Japan Organo Co Ltd Dry strongly acidic cation exchange resin and its producing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847432A (en) * 1987-12-28 1989-07-11 General Electric Company Method for the purification of ion exchange resins used in the production of bisphenol A
RU2040475C1 (en) * 1990-11-09 1995-07-25 Ибара Корпорейшн Method of water purification from metal oxides or suspended impurities
US6248797B1 (en) * 1999-05-17 2001-06-19 Shelton A. Dias Supercritical carbon dioxide extraction of contaminants from ion exchange resins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249238A (en) * 2003-02-21 2004-09-09 Japan Organo Co Ltd Dry strongly acidic cation exchange resin and its producing method

Also Published As

Publication number Publication date
JPS61283355A (en) 1986-12-13

Similar Documents

Publication Publication Date Title
US2461505A (en) Removal or replacement of electrolytes in physiologically active materials
US3791866A (en) Recovery of waste brine regenerant
US5932106A (en) Process for regeneration of ion-exchange resins used for sugar decolorization, using chloride salts in a sucrose solution alkalinized with calcium hydroxide
GB2088850A (en) Treatment of N methyl pyrrolidone
US3371112A (en) Purification of crude malic acid liquors
JPH0450859B2 (en)
US3556727A (en) Purification of aqueous hydrogen peroxide solutions containing dissolved organic compound by use of nonionic porous resin
JP2001064249A (en) Purification of alkanesulfonic acid
US3457032A (en) Process for purifying solutions containing aluminates
JP3171058B2 (en) Hydrogen peroxide water purification method
JPH03167160A (en) Purification of aqueous solution of quaternary ammonium hydroxide
US2695875A (en) Purification of hydrochloric acid solutions
JPH0450860B2 (en)
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
JPH0230315B2 (en) AMINRUIOFUKUMUHAISUINOSHORIHOHO
JP2785833B2 (en) Sucrose solution desalination purification equipment
KR102302447B1 (en) Method for purifying sugar-containing solution using acrylic-based ion exchange resin and styrene-based ion exchange resin
JPS5924663B2 (en) Solution processing method
SU988766A1 (en) Process for producing adsorbent for recovering p-xylene from mixture of aromatic c8 hydrocarbons
JP3963599B2 (en) Acid component removal method
JPS6155421B2 (en)
JP3352571B2 (en) Method for regenerating strongly basic anion exchange resin in sucrose liquid purification equipment
SU895931A1 (en) Purifying colution for removing iron-containing impurities from raw materials
SU1502080A1 (en) Method of regenerating weak-base ion exchanger
JPH0240380B2 (en)