JPH0450713B2 - - Google Patents

Info

Publication number
JPH0450713B2
JPH0450713B2 JP57166811A JP16681182A JPH0450713B2 JP H0450713 B2 JPH0450713 B2 JP H0450713B2 JP 57166811 A JP57166811 A JP 57166811A JP 16681182 A JP16681182 A JP 16681182A JP H0450713 B2 JPH0450713 B2 JP H0450713B2
Authority
JP
Japan
Prior art keywords
lead
electrode plate
negative electrode
battery
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57166811A
Other languages
Japanese (ja)
Other versions
JPS5956356A (en
Inventor
Hiroshi Sugyama
Yukihiro Onoda
Kozo Hirose
Kiichi Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57166811A priority Critical patent/JPS5956356A/en
Publication of JPS5956356A publication Critical patent/JPS5956356A/en
Publication of JPH0450713B2 publication Critical patent/JPH0450713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、充電中に発生するガスを酸素ガスの
みに制御し、この酸素ガスを負極の充電生成物で
ある鉛で直接反応させることによつて消失させる
負極ガス吸収方式で密閉化した蓄電池に関するも
のである。 従来例の構成とその問題点 この種鉛蓄電池の主な用途は、電話用、通信
用、操作用、非常照明用、メモリーバツクアツプ
用等の非常用電源である。 鉛蓄電池の密閉化の原理を次の(1)、(2)式に示
す。 Pb+1/2O2+H2SO4→PbSO4+H2O …(1) PbSO4+2H++2e→H2SO4+Pb …(2) 正極板が完全充電状態になると、正極からは酸
素ガスが発生する。この酸素ガスは負極活物質の
鉛に吸収され、電解液である硫酸と反応して硫酸
鉛となる(1)式。この硫酸鉛が充電されて鉛に変化
する量((2)式)と、鉛が酸素ガスを吸収して硫酸
鉛に変化する量((1)式)とが釣り合うため、蓄電
池の密閉化が果される。完全充電後蓄電池に流れ
る電流は主としてガス吸収反応および自己放電を
補なうために使用される。 従来、トリクル充電もしくはフロート充電のよ
うに、長期間にわたり定電圧充電方式で使用され
る場合、時間の経過とともに電解液が減少して充
電々流が増大する現象がみられた。これは減液に
よつて酸素ガス吸収反応に係わる負極板表面積の
増加や、電解液比重の上昇による自己放電の増加
があり、これらにより充電々流が増大することに
よると考えられる。特に負極端板(極板群の最も
外側に使用される負極板)のガス吸収に占める割
合は約60%で充電々流が増大する主な要因となつ
ている。必要以上の充電々流の増加は、正極格子
の腐食を促進し、電池寿命を短縮する。従来の負
極端板の断面図を第1図に示したが、極板の両面
が海綿状鉛からなる活性物1により覆われてお
り、酸素ガスは両面で活発に吸収される。また負
極端板の正極に対向する側と、電槽壁または中仕
切壁と対向する側のそれぞれの面のガス吸収比率
はほぼ1:3となつており、負極端板の電槽壁ま
たは中仕切壁側のガス吸収反応に占める割合が高
いことがわかる。なお、第1図において2は枠
骨、3は中骨を示す。 従来の電槽内側にリブを設けた負極吸収式の密
閉形鉛蓄電池では、負極端板の電槽壁面側や中仕
切壁側に対向する面は全面ガス吸収可能な状態と
なる。また電槽内にリブが設けられていない負極
吸収式の密閉形鉛蓄電池、および負極端板と電槽
内側のリブとの間に合成樹脂等のスペーサを使用
する負極吸収式の密閉形鉛蓄電池でも負極端板表
面を鏡面のように仕上げることは不可能であり、
使用中に負極活物質の不均一な膨張、収縮が発生
する。従つて電槽壁、中仕切壁、スペーサなどと
の間に間隙が多く発生し、特にこの種の電池は液
量が非常に少ないため、ガスの通過も活発にな
り、それに伴つて酸素ガス吸収量も増大し、実際
には全面でガス吸収を起こして充電々流の増加は
加速することになる。この充電々流の増加は、正
極格子の腐食を促進し、電池寿命を短縮するとい
う問題があつた。 発明の目的 本発明は、トリクル充電、フロート充電のよう
に長期間定電圧充電を行なう場合、負極でのガス
吸収面積の増加に伴う充電々流の増大を抑えるこ
とにより正極格子の腐食を抑制し、蓄電池の長寿
命化を図ることを目的としたものである。 発明の構成 すなわち、本発明は上記の目的を達成するた
め、負極端板での酸素ガス吸収反応を抑制すべ
く、負極端板の正極板と対向しない面の大部分あ
るいは全面を鉛または鉛合金の膜で覆い、負極活
物質への不必要な酸素ガスの供給を防ぐことを特
徴とするものである。また酸素ガスと最も接触し
易い負極端板の外側全面を鉛または鉛合金の膜で
覆つた場合、製造時にペースト状活物質の脱落や
はがれが増加することがあるため、膜と格子中骨
との接合部に、ガス吸収に影響を与えない範囲を
透孔を設け、隣接した格子区画のペースト状活物
質を連続的に結合させて脱落やはがれの発生をも
防止したものである。 実施例の説明 以下、本発明の詳細は実施例により説明する。 第2図は実施例における電池構成を示すもので
図中4の電槽にはカバー5が接着され、カバー5
に形成した凹部にはそれぞれのセルに対応して安
全弁6が設けられ、凹部の上には覆7が接着され
ている。覆7には複数のガス排気孔8が設けられ
ている。またカバー5には端子9,9′が設けら
れている。極板群10は電槽の各セル室内に収納
され、電槽内面(中仕切壁も同様)にはリブ11
が複数本縦に設けられ、極板群10に適度の群圧
を加えている。負極端板12は各極板群10の左
右両側に位置する。電解液はこれを非流動化させ
るため、セパレータに含浸可能な量だけ含浸させ
るか、またはゲル化させるなどの方法がとられ、
さらにはまたセパレータとゲル化した電解液とを
併用するなどの方法も採用される。 次に負極端板に使用する格子を第3図、第4図
により説明する。第3図に示す格子は、枠骨2、
中骨3及び格子の片面を覆う鉛または鉛合金膜1
3が一体に形成されたものである。この格子の製
法は鋳造、鍛造等によればよい。この負極端板で
は、ペースト充填密度の比較的低いものは製造が
容易であるが、ペースト充填密度が高くなるにつ
れて充填性が悪くなり、空洞の発生やペーストの
脱落が多くなる。しかしガス吸収反応の抑制効果
は大である。このためいかなるペースト充填密度
でも充填可能な負極端板用格子として、第3図に
示すものを第4図の如く改良した。これは膜13
と中骨3との接合部分に透孔14を設けたもの
で、ペースト充填時の空気抜け、および隣接した
格子区画に充填されたペーストを一体化し、製造
時のペーストの脱落を防止したものである。この
透孔14はBに示す縦方向の中骨、あるいはCに
示す横方向の中骨のどちらか一方にのみ設けても
よく、勿論両方に設けてもさしつかえない。また
透孔の総面積が負極端板片面の表面積に点める割
合は、第5図に示すように充電々流との関係から
30%以下とすることが望ましい。なお、供試電池
には6V、3Ahのものを使用し、20か月目の値を
示した。 このようにして作成した負極端板を用いて、20
時間率容量12Ahの電池を作成し、トリクル充電
方式の加速寿命試験を行なつた。 なお、負極端板の構成は第3図に示すもの、お
よび第4図に示すものとし、透孔14の総面積を
極板片面の表面積に対し10%、20%、30%、50%
のものをそれぞれ作成し、極板群構成は正極板3
枚、負極板4枚とした。 トリクル充電方式の加速寿命試験は充電々圧
2.30V/セル、最大充電々流500mA、温度40±5
℃で20か月間実施した。 第6図に充電々流および容量の経時変化を示し
た。6か月以降徐々に変化が現われ、20か月目に
は本発明品の効果が十分にあることが確認でき
た。 なお、第6図において、aは膜をもたない従来
品、bは本発明の透孔面積比率が50%のもの、c
は30%のもの、dは20%のもの、eは10%のも
の、fは0%のものをそれぞれ示す。またgは従
来品aの容量変化、hは本発明品b〜fの容量変
化を範囲で示した。 このように本発明の負極端板を使用することに
より、充電々流の増加を抑え、かつ寿命を延長で
きることがわかる。 また使用18か月目における充電々流増加率と容
量との関係を次表に示した。
Industrial Application Field The present invention uses a negative electrode gas absorption method that controls the gas generated during charging to only oxygen gas, and eliminates this oxygen gas by causing a direct reaction with lead, which is a charging product of the negative electrode. This relates to sealed storage batteries. Conventional Structure and Problems This type of lead-acid battery is mainly used as an emergency power source for telephones, communication, operation, emergency lighting, memory backup, etc. The principles of sealing lead-acid batteries are shown in equations (1) and (2) below. Pb+1/2O 2 +H 2 SO 4 →PbSO 4 +H 2 O …(1) PbSO 4 +2H + +2e→H 2 SO 4 +Pb …(2) When the positive electrode plate becomes fully charged, oxygen gas is generated from the positive electrode. . This oxygen gas is absorbed by lead, the negative electrode active material, and reacts with sulfuric acid, the electrolyte, to form lead sulfate (Equation (1)). The amount that this lead sulfate is charged and changes to lead (equation (2)) is balanced with the amount that lead absorbs oxygen gas and changes to lead sulfate (equation (1)), so it is necessary to seal the storage battery. fulfilled. The current flowing through the battery after full charge is primarily used to compensate for gas absorption reactions and self-discharge. Conventionally, when a constant voltage charging method is used for a long period of time, such as trickle charging or float charging, a phenomenon has been observed in which the electrolyte decreases over time and the charging current increases. This is thought to be due to an increase in the surface area of the negative electrode plate involved in the oxygen gas absorption reaction due to liquid reduction, and an increase in self-discharge due to an increase in the specific gravity of the electrolyte, which increases the charging current. In particular, the negative electrode plate (the negative electrode plate used on the outermost side of the electrode plate group) accounts for about 60% of the gas absorption, and is the main reason for the increase in charging current. An increase in charging current more than necessary promotes corrosion of the positive electrode grid and shortens battery life. A cross-sectional view of a conventional negative electrode plate is shown in FIG. 1, and both sides of the electrode plate are covered with an active substance 1 made of spongy lead, and oxygen gas is actively absorbed on both sides. In addition, the gas absorption ratio between the side of the negative electrode plate facing the positive electrode and the side facing the battery case wall or partition wall is approximately 1:3. It can be seen that the ratio of the gas absorption reaction on the partition wall side is high. In addition, in FIG. 1, 2 indicates a frame bone, and 3 indicates a middle bone. In a conventional sealed lead-acid battery of negative electrode absorption type in which a rib is provided inside the battery case, the surface of the negative end plate facing the battery case wall side or the partition wall side is entirely capable of absorbing gas. There are also negative electrode absorption type sealed lead-acid batteries that do not have ribs inside the battery case, and negative electrode absorption type sealed lead acid batteries that use a spacer such as synthetic resin between the negative electrode plate and the rib inside the battery case. However, it is impossible to finish the negative electrode plate surface like a mirror.
Non-uniform expansion and contraction of the negative electrode active material occurs during use. Therefore, there are many gaps between the battery case walls, partition walls, spacers, etc., and since this type of battery has a very small amount of liquid, the passage of gas is also active, and oxygen gas is absorbed. The amount also increases, and in fact gas absorption occurs over the entire surface, accelerating the increase in charge current. This increase in charging current has the problem of accelerating corrosion of the positive electrode grid and shortening battery life. Purpose of the Invention The present invention suppresses corrosion of the positive electrode grid when performing constant voltage charging for a long period of time, such as trickle charging or float charging, by suppressing the increase in charging current caused by the increase in the gas absorption area at the negative electrode. The purpose is to extend the life of storage batteries. Structure of the Invention That is, in order to achieve the above object, the present invention covers most or the entire surface of the negative electrode plate that does not face the positive electrode plate with lead or a lead alloy in order to suppress the oxygen gas absorption reaction at the negative electrode plate. It is characterized by covering the negative electrode active material with a film to prevent unnecessary supply of oxygen gas to the negative electrode active material. In addition, if the entire outer surface of the negative electrode plate, which is most likely to come into contact with oxygen gas, is covered with a lead or lead alloy film, the paste-like active material may fall off or peel off during manufacturing, so the film and lattice backbone may Through-holes are provided at the joints in areas that do not affect gas absorption, and the paste-like active materials in adjacent lattice sections are continuously bonded to prevent them from falling off or peeling off. DESCRIPTION OF EXAMPLES Hereinafter, details of the present invention will be explained with reference to examples. FIG. 2 shows the battery configuration in the example. A cover 5 is glued to the battery case 4 in the figure.
A safety valve 6 is provided in the recessed portion corresponding to each cell, and a cover 7 is adhered onto the recessed portion. The cover 7 is provided with a plurality of gas exhaust holes 8. The cover 5 is also provided with terminals 9, 9'. The electrode plate group 10 is housed in each cell chamber of the battery case, and ribs 11 are provided on the inner surface of the battery case (same as the partition wall).
A plurality of electrode plates are provided vertically to apply appropriate group pressure to the electrode plate group 10. The negative electrode plates 12 are located on both the left and right sides of each electrode plate group 10. In order to make the electrolyte non-fluid, methods such as impregnating the separator with the amount that can be impregnated with the electrolyte or gelling it are taken.
Furthermore, methods such as using a separator and a gelled electrolytic solution in combination are also adopted. Next, the grid used for the negative electrode plate will be explained with reference to FIGS. 3 and 4. The lattice shown in FIG. 3 consists of frame bones 2,
Lead or lead alloy film 1 covering the backbone 3 and one side of the grid
3 are integrally formed. This lattice may be manufactured by casting, forging, or the like. This negative electrode plate is easy to manufacture if it has a relatively low paste filling density, but as the paste filling density increases, the filling properties deteriorate, and cavities are formed and the paste often falls off. However, the effect of suppressing gas absorption reactions is large. For this reason, the grid shown in FIG. 3 was improved as shown in FIG. 4 as a grid for the negative end plate that can be filled with any paste filling density. This is membrane 13
A through hole 14 is provided at the joint between the backbone 3 and the backbone 3 to allow air to escape during paste filling, and to integrate the paste filled into adjacent lattice sections to prevent the paste from falling off during manufacturing. be. The through hole 14 may be provided only in either the longitudinal midrib shown in B or the lateral midrib shown in C, or of course may be provided in both. In addition, the ratio of the total area of the through holes to the surface area of one side of the negative electrode plate is determined from the relationship with the charging current as shown in Figure 5.
It is desirable to keep it below 30%. A 6V, 3Ah battery was used as the test battery, and the values at 20 months are shown. Using the negative end plate created in this way, 20
A battery with a time rate capacity of 12Ah was created and an accelerated life test using a trickle charge method was conducted. The configuration of the negative electrode plate is as shown in Fig. 3 and Fig. 4, and the total area of the through holes 14 is 10%, 20%, 30%, and 50% of the surface area of one side of the electrode plate.
Create each one, and the electrode plate group configuration is positive electrode plate 3.
There were four negative electrode plates. Trickle charging method accelerated life test
2.30V/cell, maximum charging current 500mA, temperature 40±5
It was carried out for 20 months at ℃. Figure 6 shows the change in charging current and capacity over time. Changes gradually appeared after 6 months, and by the 20th month, it was confirmed that the product of the present invention was sufficiently effective. In Fig. 6, a is a conventional product without a membrane, b is a product with a pore area ratio of 50% according to the present invention, and c is a product with a pore area ratio of 50%.
indicates 30%, d indicates 20%, e indicates 10%, and f indicates 0%. In addition, g indicates the capacitance change of the conventional product a, and h indicates the capacitance change of the present invention products b to f as a range. As described above, it can be seen that by using the negative electrode plate of the present invention, it is possible to suppress the increase in charging current and extend the life. The following table shows the relationship between the charge current increase rate and capacity after 18 months of use.

【表】 なお、電池はいずれも10個平均の値で示し、電
流増加率は18か月目の充電々流/初期充電々流に
より求め、透孔面積比は透孔総面積/極板片面積
×100で求めた。 発明の効果 このように本発明は、負極端板の正極板と対向
しない片面に鉛または鉛合金膜を形成して酸素ガ
ス吸収反応を抑制するため、充電々流の増加を抑
えることができる。寿命の延長が図れる。さらに
鉛または鉛合金膜と格子骨との接合部の一部に透
孔を設ければ、電槽壁あるいは中仕切壁との間に
スペーサ等を介在させる必要がなくなり、リブ付
電槽への極板群の挿入も容易であるとともに、ゲ
ル状電解液の注入も速やに行える。また透孔によ
り隣り合う格子区画のペースト状活物質も連続的
につなぐことができ、活物質の脱落・剥離を防止
することもできるという利点がある。
[Table] All batteries are shown as the average value of 10 batteries, the current increase rate is determined from the 18th month charging current/initial charging current, and the pore area ratio is the total pore area/electrode plate piece. It was calculated by multiplying the area by 100. Effects of the Invention As described above, the present invention suppresses the oxygen gas absorption reaction by forming a lead or lead alloy film on one side of the negative electrode plate that does not face the positive electrode plate, so that it is possible to suppress an increase in the charging current. Lifespan can be extended. Furthermore, if a through hole is provided in a part of the joint between the lead or lead alloy membrane and the lattice frame, there is no need for a spacer etc. to be interposed between the battery case wall or partition wall, and it is possible to connect the ribbed battery case. It is easy to insert the electrode plate group, and the gel electrolyte can also be quickly injected. Further, there is an advantage that the paste-like active materials in adjacent lattice sections can be continuously connected by the through holes, and it is also possible to prevent the active materials from falling off or peeling off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の負極端板を示す断面図、第2
図は本発明の実施例における密閉形鉛蓄電池の一
部を破断した斜視図、第3図Aは本発明の鉛蓄電
池における負極端板の正面図、第3図Bは第3図
AにおけるB−B′線に沿つた断面図、第4図A
はペースト状活物質を充填した負極端板の説明
図、同BはAにおけるC−C′線に沿つた断面図、
同CはAにおけるD−D′線に沿つた断面図、第
5図は透孔総面積の負極端板片面積に占める割合
と充電々流との関係を示す図、第6図はトリクル
充電方式の加速寿命試験における容量と充電々流
との関係を示す図である。 2……枠骨、3……中骨、10……極板群、1
1……リブ、12……負極端板、13……鉛また
は鉛合金の膜、14……透孔。
Figure 1 is a sectional view showing a conventional negative end plate, Figure 2 is a sectional view showing a conventional negative end plate;
The figure is a partially cutaway perspective view of a sealed lead-acid battery according to an embodiment of the present invention, FIG. 3A is a front view of the negative end plate of the lead-acid battery of the present invention, and FIG. -Cross-sectional view along line B', Figure 4A
is an explanatory diagram of the negative end plate filled with paste-like active material, B is a cross-sectional view along the C-C' line in A,
C is a cross-sectional view taken along the line D-D' in A, FIG. 5 is a diagram showing the relationship between the ratio of the total area of the through holes to the area of the negative electrode plate and the charging current, and FIG. 6 is a diagram showing trickle charging. FIG. 3 is a diagram showing the relationship between capacity and charging current in an accelerated life test of the method. 2...Frame bone, 3...Middle bone, 10...Pole plate group, 1
1...Rib, 12...Negative end plate, 13...Lead or lead alloy film, 14...Through hole.

Claims (1)

【特許請求の範囲】 1 極板群における負極端板の正極板と対向しな
い片面の全面を、鉛または鉛合金の膜で覆つた密
閉形鉛蓄電池。 2 鉛または鉛合金膜が格子と一体に形成されて
いる特許請求の範囲第1項記載の密閉形鉛蓄電
池。 3 極板群における負極端板の正極板と対向しな
い片面に、その面積の70%以上を鉛または鉛合金
の膜で覆い、残りの30%以下の面積に透孔を設け
た密閉形鉛蓄電池。 4 鉛または鉛合金膜が格子と一体に形成されて
いる特許請求の範囲第3項記載の密閉形鉛蓄電
池。
[Scope of Claims] 1. A sealed lead-acid battery in which the entire surface of one side of the negative end plate in the electrode plate group that does not face the positive electrode plate is covered with a film of lead or lead alloy. 2. The sealed lead-acid battery according to claim 1, wherein the lead or lead alloy film is integrally formed with the grid. 3 Sealed lead-acid batteries in which 70% or more of the area of the negative end plate in the electrode plate group, on one side not facing the positive electrode plate, is covered with a lead or lead alloy film, and the remaining 30% or less area is provided with a through hole. . 4. The sealed lead acid battery according to claim 3, wherein the lead or lead alloy film is formed integrally with the grid.
JP57166811A 1982-09-24 1982-09-24 Enclosed type lead storage battery Granted JPS5956356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57166811A JPS5956356A (en) 1982-09-24 1982-09-24 Enclosed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57166811A JPS5956356A (en) 1982-09-24 1982-09-24 Enclosed type lead storage battery

Publications (2)

Publication Number Publication Date
JPS5956356A JPS5956356A (en) 1984-03-31
JPH0450713B2 true JPH0450713B2 (en) 1992-08-17

Family

ID=15838102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57166811A Granted JPS5956356A (en) 1982-09-24 1982-09-24 Enclosed type lead storage battery

Country Status (1)

Country Link
JP (1) JPS5956356A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166169A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Enclosed type lead battery

Also Published As

Publication number Publication date
JPS5956356A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
EP1729364B1 (en) Lead battery and lead battery storage method
US4769299A (en) High rate sealed lead-acid battery with ultrathin plates
JPH0457072B2 (en)
JP4752365B2 (en) Lead acid battery
JPH0450713B2 (en)
JPH0231462B2 (en)
JPH0340466B2 (en)
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JP3185300B2 (en) Sealed lead-acid battery
GB1531225A (en) Lead acid cells and batteries
JPH0246662A (en) Sealed lead-acid battery
JPH0294369A (en) Sealed lead-acid battery
JPS61502714A (en) Sealed lead-acid battery for oxygen gas recombination
JPS6049557A (en) Sealed lead storage battery
JPS607061A (en) Manufacture of plate for sealed lead storage battery
JPS59177870A (en) Sealed lead-acid battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPS6051786B2 (en) sealed lead acid battery
JPH041463B2 (en)
JPS607070A (en) Manufacture of sealed lead-acid battery
JPS5971261A (en) Hermetically sealed lead storage battery
JP2003178754A (en) Plate for lead-acid storage battery, and manufacturing method of the same
JPS6074351A (en) Sealed lead storage battery
JPS62163271A (en) Enclosed lead storage battery