JPH0450643A - Flaw detector - Google Patents

Flaw detector

Info

Publication number
JPH0450643A
JPH0450643A JP15376590A JP15376590A JPH0450643A JP H0450643 A JPH0450643 A JP H0450643A JP 15376590 A JP15376590 A JP 15376590A JP 15376590 A JP15376590 A JP 15376590A JP H0450643 A JPH0450643 A JP H0450643A
Authority
JP
Japan
Prior art keywords
scanning
light
inspected
inspection
under inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15376590A
Other languages
Japanese (ja)
Inventor
Miki Fukushima
幹 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15376590A priority Critical patent/JPH0450643A/en
Publication of JPH0450643A publication Critical patent/JPH0450643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of deviation in scanning position when a plane under inspection is deflected and turned by measuring the distance between an inspecting part and the plane under inspection at two points at both ends of scanning light, and correcting and driving the fluctuation of the scanning position due to the change in distance in secondary scanning direction in real time at both ends of the inspecting part. CONSTITUTION:This apparatus is composed of an inspecting part 1 which has CCD sensor and performs the main optical scanning and a secondary scanning part 25 and a secondary scanning part 26 which are in parallel to each other and drive the inspecting part 1 in the vertical direction. When a plane under inspection 24 is deflected and the distance between the plane under inspection 24 and the inspecting part 1 is changed, the incident position into the plane under inspection 24 is changed in response to the changing amount. Therefore, the deflecting amount of the plane 24 can be detected. When the driving of the inspecting part 1 is controlled in real time in response to the detection, the occurrence of scanning position deviation is prevented even if the plane under inspection is deflected and turned, and the stable detection can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は傷検査装置、特に、太陽電池パネルのように規
則性のある外観をもつ大面積薄板の高速検査に適用しう
る傷検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flaw inspection device, and particularly to a flaw inspection device that can be applied to high-speed inspection of large-area thin plates with a regular appearance such as solar panels. .

〔従来の技術〕[Conventional technology]

従来の技術としては、例えば、特開昭59−68653
号公報に示されているような物体表面の傷検査装置があ
る。
As a conventional technique, for example, Japanese Patent Application Laid-Open No. 59-68653
There is an apparatus for inspecting flaws on the surface of an object as shown in the above publication.

第6図は従来の傷検査装置の一例を示す断面図である。FIG. 6 is a sectional view showing an example of a conventional flaw inspection device.

第6図に示す傷検査装置は、レーザ発振器31と、変調
器32と、コリメータ33と、遮光体34と、受光体3
5と、受光体35が受けた光量に応じて適宜の処理をす
る処理装置36とを含んでいる。
The flaw inspection device shown in FIG.
5, and a processing device 36 that performs appropriate processing depending on the amount of light received by the photoreceptor 35.

レーザ発振器31から発振されるレーザ光を変調器32
で変調してコリメータ33に入れ、ここでレーザ光を平
行光にして物体37の表面に照射する。
The laser beam oscillated from the laser oscillator 31 is transmitted to the modulator 32.
The laser beam is modulated and input into a collimator 33, where the laser beam is converted into parallel light and irradiated onto the surface of an object 37.

照射された光は物体37の表面で反射される。The irradiated light is reflected by the surface of the object 37.

反射光の反射角度は物体の表面の状態により異なる。表
面に傷が無く、塵芥も付着していない正常状態では反射
光の反射パターンが一定面積に収まるが、表面に傷がつ
いていたり、塵芥が付着している異常状態では反射光の
散乱が大きくなり、正常時の反射パターン面積の外側に
まで散乱する。
The reflection angle of reflected light varies depending on the condition of the surface of the object. Under normal conditions with no scratches or dust on the surface, the reflection pattern of the reflected light will be within a certain area, but in abnormal conditions with scratches or dust on the surface, the reflected light will be scattered more. , the light is scattered outside the normal reflection pattern area.

そこで、正常時の反射光バタ・−ン上に少くともパター
ンの面積より広い面積の遮光体34を設けて正常時の反
射光を遮断し、遮光体34の外側に受光体35を設けて
、物体37の異常時に遮光体34の外側にまで散乱する
異常反射光だけを当該受光体35により受光する。
Therefore, a light shielding body 34 having an area at least larger than the area of the pattern is provided on the reflected light pattern during normal operation to block the reflected light during normal operation, and a light receiving body 35 is provided outside of the light shielding body 34. When the object 37 is abnormal, only the abnormal reflected light scattered to the outside of the light shielding body 34 is received by the light receiving body 35.

受光された光は処理装置36によって適宜に処理される
The received light is appropriately processed by a processing device 36.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の傷検査装置は、受光系配置の都合上被検
査面への走査光の入射角を直角にできない。そのため、
被検査面が面に垂直方向に振れたときおよび回転したと
きに走査位置にずれが生じ、検査もれのエリアが生ずる
という欠点があった。
In the conventional flaw inspection apparatus described above, the angle of incidence of the scanning light on the surface to be inspected cannot be set at a right angle due to the arrangement of the light receiving system. Therefore,
When the surface to be inspected swings or rotates in a direction perpendicular to the surface, a shift occurs in the scanning position, resulting in a defective area that is not inspected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の傷検査装置は、光源と、光源から発せられた光
を回転多面鏡により走査する主走査手段と走査光の被走
査面での反射および散乱光を受光する受光手段とからな
る検査部と、前記検査部の主走査方向の両端部を被検査
面と平行な軸にて個々に起動する互いに平行な駆動部を
有する副走査手段と、前記検査部の両端部2カ所での被
検査面と検査部との相対的な距離を計測する手段とを含
んで構成される。
The flaw inspection device of the present invention has an inspection section comprising a light source, a main scanning means for scanning the light emitted from the light source with a rotating polygon mirror, and a light receiving means for receiving the reflected and scattered light of the scanning light on the surface to be scanned. and sub-scanning means having mutually parallel driving parts that individually activate both ends of the inspection section in the main scanning direction with axes parallel to the surface to be inspected, and a sub-scanning means having drive sections parallel to each other that actuate both ends of the inspection section in the main scanning direction individually, It is configured to include means for measuring the relative distance between the surface and the inspection section.

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

第1図に示す傷検査装置は、検査部1と、互いに平行で
検査部1を上下方向に駆動する副走査部25と、副走査
部26とを含んで構成される。
The flaw inspection apparatus shown in FIG. 1 includes an inspection section 1, a sub-scanning section 25 that is parallel to each other and drives the inspection section 1 in the vertical direction, and a sub-scanning section 26.

検査部1は走査光aと、距離検出光b5および距離検出
光Cの3つの光軸を有している。
The inspection section 1 has three optical axes: a scanning light a, a distance detection light b5, and a distance detection light C.

第2図は検査部1と副走査部25および副走査部26と
の接続部分を示す断面図である。
FIG. 2 is a cross-sectional view showing a connecting portion between the inspection section 1, the sub-scanning section 25, and the sub-scanning section 26.

検査部1はその一端を副走査部25と回転ジヨイント2
1により接続される。また検査部1の他端は副走査部2
6と回転ジヨイント22および伸縮ジヨイント23とに
より接続される。
The inspection section 1 has one end connected to the sub-scanning section 25 and the rotation joint 2.
Connected by 1. The other end of the inspection section 1 is a sub-scanning section 2.
6 through a rotation joint 22 and a telescopic joint 23.

第3図は本発明の検査部1の光学構成を示す斜視図であ
る。
FIG. 3 is a perspective view showing the optical configuration of the inspection section 1 of the present invention.

検査部1は、レーザ発振器2と、コリメータ3と、コリ
メートされた光を入射するレンズ4と、被検査面24で
光走査を行うガルバノミラ−5と、被検査面からの散乱
光を集光する集光レンズ6と、マスク7と、受光センサ
8と、受光センサの出力を入力する測定器18とからな
る検査光学系と、レーザ発振器9と、ハーフミラ−10
と、ハーフミラ−10により2本に分離された光軸のう
ち1本を被検査面24に入射し被検査面での反射光を入
射するレンズ11と、1次元CCDセンサ12と、ハー
フミラ−10により分離されたもう1本の光軸を入射し
被検査面に向けるミラー13と、その先軸が被検査面で
反射された光を入射するレンズ14と、1次元CCDセ
ンサ15と、1次元CCDセンサ12および1次元CC
Dセンサ15の出力をそれぞれ入力する副走査ドライバ
16および副走査ドライバ17とからなる距離検出系と
を含んで構成される。
The inspection unit 1 includes a laser oscillator 2, a collimator 3, a lens 4 that receives collimated light, a galvanometer mirror 5 that performs optical scanning on a surface to be inspected 24, and a condensing light scattered from the surface to be inspected. An inspection optical system consisting of a condensing lens 6, a mask 7, a light receiving sensor 8, and a measuring device 18 that inputs the output of the light receiving sensor, a laser oscillator 9, and a half mirror 10.
, a lens 11 that makes one of the two optical axes separated by the half mirror 10 enter the surface to be inspected 24 and the reflected light from the surface to be inspected, a one-dimensional CCD sensor 12, and a half mirror 10. a mirror 13 that receives another optical axis separated by the mirror 13 and directs it toward the surface to be inspected; a lens 14 that receives the light whose tip axis is reflected by the surface to be inspected; a one-dimensional CCD sensor 15; CCD sensor 12 and one-dimensional CC
The distance detection system includes a sub-scanning driver 16 and a sub-scanning driver 17 that respectively input the output of the D sensor 15.

次に第1図〜第5図を参照しながら、動作を順を追って
説明する。
Next, the operation will be explained step by step with reference to FIGS. 1 to 5.

レーザ発振器2により出射されたビームはコリメータ3
で平行光になりレンズ4を経てガルバノミラ−5で偏向
され入射角45°にて被検査面24上を走査する。被検
査面24での反射光はマスク7にて遮光される。
The beam emitted by the laser oscillator 2 is sent to the collimator 3
The light becomes parallel light, passes through the lens 4, is deflected by the galvanometer mirror 5, and scans the surface to be inspected 24 at an incident angle of 45°. The light reflected from the surface to be inspected 24 is blocked by the mask 7.

走査中、被検査面24上に傷があれば散乱光が生じて、
集光レンズ6により集光されて受光センタ8に入射し、
その光量に応じた出力が測定器18より得られる。
During scanning, if there are scratches on the surface to be inspected 24, scattered light will be generated.
The light is condensed by a condensing lens 6 and enters a light receiving center 8,
An output corresponding to the amount of light is obtained from the measuring device 18.

この出力値が予め設定した値からの大小をもって傷の有
無を検査していくことができる。このとき検査部1を走
査と直角方向(Z方向)に副走査部24.25を駆動す
ることにより2次元面内の検査を行える。
The presence or absence of scratches can be inspected based on the magnitude of this output value from a preset value. At this time, by driving the sub-scanning sections 24 and 25 in a direction perpendicular to the scanning of the inspection section 1 (Z direction), inspection within a two-dimensional plane can be performed.

一方、レーザ発振器9により出射されたビームはハーフ
ミラ−10により2本の光軸に分離される。−本は被検
査面24上の走査光aの左端部に入射し、被検査面24
からの反射光をレンズ11を経て1次元CCDセンサ1
2に入射する。
On the other hand, the beam emitted by the laser oscillator 9 is separated into two optical axes by a half mirror 10. - The book is incident on the left end of the scanning light a on the surface to be inspected 24, and
The reflected light is passed through the lens 11 to the one-dimensional CCD sensor 1
2.

ハーフミラ−10により分離されるもう一本の光軸はミ
ラー13を経て被検査面24上の走査光aの右端部に入
射し、被検査面24からの反射光をレンズ14を経て1
次元CCDセンサ15に入射する。
The other optical axis separated by the half mirror 10 passes through the mirror 13 and enters the right end of the scanning light a on the surface to be inspected 24, and the reflected light from the surface to be inspected 24 passes through the lens 14 and is
incident on the dimensional CCD sensor 15.

ここで被検査面24と検査部1との距離が一定であれば
、2つの1次元CCDセンサ12,15の出力はどちら
も一定である。
Here, if the distance between the surface to be inspected 24 and the inspection section 1 is constant, the outputs of the two one-dimensional CCD sensors 12 and 15 are both constant.

被検査面24が振れて前記距離が変化すると、その変化
量に応じて被検査面24への入射位置が変化するため1
次元センサ12および1次元センサ15への入射位置も
変化し被検査面24の振れ量を検知できる。
When the surface to be inspected 24 swings and the distance changes, the position of incidence on the surface to be inspected 24 changes according to the amount of change.
The incident position on the dimensional sensor 12 and the one-dimensional sensor 15 also changes, and the amount of deflection of the surface to be inspected 24 can be detected.

このとき当然ながら走査光aの被検査面24への入射位
置も同様に変化する。例えば、被検査面24への入射角
が45°のとき、被検査面24の振れが面に垂直方向に
l mmであるとすると走査光aの入射位置の変化量δ
はδ=IXtan45゜である。
At this time, naturally, the position of incidence of the scanning light a on the surface to be inspected 24 also changes. For example, if the angle of incidence on the surface to be inspected 24 is 45°, and the deflection of the surface to be inspected 24 is l mm in the direction perpendicular to the surface, the amount of change δ in the incident position of the scanning light a
is δ=IXtan45°.

このときの1次元CCDセンサ12および1次元CCD
センサ15の出力変化は等しくなり、副走査ドライバ1
6および副走査ドライバ17は等しい副走査速度制御を
行うことにより、被検査面24の振れによる走査光aの
位置変化を補正できる。
One-dimensional CCD sensor 12 and one-dimensional CCD at this time
The output changes of the sensor 15 are equal, and the sub-scanning driver 1
6 and the sub-scanning driver 17 perform equal sub-scanning speed control, thereby correcting the position change of the scanning light a due to the shake of the surface to be inspected 24.

また被検査面の振れが副走査方向(Z方向)の軸に対し
回転する方向で、走査光aの右端を中心に回転角1°で
走査長200闘とすると、走査光aの右端での位置ずれ
は生じないが、左端では1、、Q=200Xtanl。
Also, if the vibration of the surface to be inspected is in the direction of rotation with respect to the axis in the sub-scanning direction (Z direction), and the scanning length is 200 mm with a rotation angle of 1° centered on the right end of scanning light a, then No positional shift occurs, but at the left end 1, Q=200Xtanl.

となるため、走査光aの位置変化量δはδ=工Xtan
45゜ =200Xtanl°Xtan45゜ 崎3.5(m−) となる。
Therefore, the amount of position change δ of the scanning light a is δ=Equation
45°=200Xtanl°Xtan45°Saki 3.5 (m-).

このとき1次元CCDセンサ12の出力変化はないが1
次元CCDセンサ15は被検査面24の振れ量に応じた
出力変化を生ずる。
At this time, there is no change in the output of the one-dimensional CCD sensor 12, but 1
The dimensional CCD sensor 15 produces an output change according to the amount of shake of the surface to be inspected 24.

2つの副走査ドライバ18.17と2つの1次元CCD
センサ12,15の出力変化に応じてそれぞれ駆動し検
査部1を傾ける方向に副走査速度をそれぞれ制御するこ
とにり、被検査面24の振れによる走査光aの位置変化
を補正できる。
Two sub-scan drivers 18.17 and two one-dimensional CCDs
By driving each of the sensors 12 and 15 in response to changes in the output thereof and controlling the sub-scanning speed in the direction in which the inspection section 1 is tilted, it is possible to correct a change in the position of the scanning light a due to the shake of the surface to be inspected 24.

このとき2つの副走査部25.26の駆動速度が変動す
るため検査部1が、2つの副走査軸でなす面内に回転す
る。このときの回転を回転ジョイン)21.22で受け
、2つの副走査駆動点間の距離の変動を伸縮ジヨイント
23で受ける。
At this time, since the driving speeds of the two sub-scanning sections 25 and 26 vary, the inspection section 1 rotates within a plane defined by the two sub-scanning axes. The rotation at this time is received by the rotation joints 21 and 22, and the variation in the distance between the two sub-scan driving points is received by the expansion/contraction joint 23.

〔発明の効果〕 本発明の傷検査装置は、走査光の両端2カ所で検査部と
被検査面との距離を計測し、距離の変動による走査位置
の変動を検査部両端で副走査方向にリアルタイムに補正
駆動することにより、固定設置が困難な大面積薄板(例
えば太陽電池パネル)の安定的な傷検査が行えるという
効果がある。
[Effects of the Invention] The flaw inspection device of the present invention measures the distance between the inspection section and the surface to be inspected at two locations on both ends of the scanning light, and changes the scanning position due to the change in distance in the sub-scanning direction at both ends of the inspection section. By correcting and driving in real time, it is possible to stably inspect flaws on large-area thin plates (for example, solar panels) that are difficult to install in a fixed manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は検査
部と副走査部の接続を示す断面図、第3図は本発明の検
査部の一実施例を示す光路図、第4図、第5図は走査位
置の被検査面の位置関係を示す断面図、第6図は従来の
一例を示す断面図である。 2.9・・・レーザ発振器、3・・・コリメータ、4゜
11.14・・・レンズ、5・・・ガルバノミラ−6・
・・集光レンズ、7・・・マスク、8・・・受光センサ
、10・・・ハーフミラ−12,15・・・1次元CC
Dセンサ。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a sectional view showing the connection between the inspection section and the sub-scanning section, and FIG. 3 is an optical path diagram showing an embodiment of the inspection section of the present invention. FIGS. 4 and 5 are cross-sectional views showing the positional relationship of the surface to be inspected at the scanning position, and FIG. 6 is a cross-sectional view showing an example of the conventional method. 2.9...Laser oscillator, 3...Collimator, 4゜11.14...Lens, 5...Galvanometer mirror-6.
...Condensing lens, 7...Mask, 8...Light receiving sensor, 10...Half mirror 12, 15...1-dimensional CC
D sensor.

Claims (1)

【特許請求の範囲】[Claims] 光源と、光源から発せられた光を回転多面鏡により走査
する主走査手段と走査光の被走査面での反射および散乱
光を受光する受光手段とからなる検査部と、前記検査部
の主走査方向の両端部を被検査面と平行な軸にて個々に
起動する互いに平行な駆動部を有する副走査手段と、前
記検査部の両端部2カ所での被検査面と検査部との相対
的な距離を計測する手段とを有することを特徴とする傷
検査装置。
an inspection unit comprising a light source, a main scanning unit for scanning the light emitted from the light source with a rotating polygon mirror, and a light receiving unit for receiving the reflected and scattered light on the scanned surface of the scanning light; and a main scanning unit for the inspection unit. a sub-scanning means having mutually parallel driving parts that are activated individually at both ends of the direction with axes parallel to the surface to be inspected; and a relative relationship between the surface to be inspected and the inspection section at two ends of the inspection section. What is claimed is: 1. A flaw inspection device comprising means for measuring a distance.
JP15376590A 1990-06-12 1990-06-12 Flaw detector Pending JPH0450643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15376590A JPH0450643A (en) 1990-06-12 1990-06-12 Flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15376590A JPH0450643A (en) 1990-06-12 1990-06-12 Flaw detector

Publications (1)

Publication Number Publication Date
JPH0450643A true JPH0450643A (en) 1992-02-19

Family

ID=15569644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15376590A Pending JPH0450643A (en) 1990-06-12 1990-06-12 Flaw detector

Country Status (1)

Country Link
JP (1) JPH0450643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224432A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Defect inspection device and method by photo luminescence of solar battery
JP2019100958A (en) * 2017-12-07 2019-06-24 柳井電機工業株式会社 Inspection device for photovoltaic panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224432A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Defect inspection device and method by photo luminescence of solar battery
JP2019100958A (en) * 2017-12-07 2019-06-24 柳井電機工業株式会社 Inspection device for photovoltaic panel

Similar Documents

Publication Publication Date Title
US8503046B2 (en) Rotating prism scanning device and method for scanning
US5185676A (en) Beam scanning apparatus and apparatus for writing image information
JPH0658214B2 (en) Optical fiber seam detection device
JPH0450643A (en) Flaw detector
JP4696249B2 (en) Shape measuring method and apparatus
JPH11258532A (en) Light scanning device
JP3204289B2 (en) Laser distance measuring device and laser distance measuring method
JPH03296650A (en) Apparatus for inspecting flaw
JPH09138364A (en) Optical scanning device and foreign body inspection device
JP2939766B2 (en) Laser scanning spot diameter measuring device
JPS5949537B2 (en) Defect detection device
JPH03261852A (en) Flaw inspecting device
JPH0210250A (en) Method and apparatus for controlling attitude of defect-checking-apparatus for applied surface
JPH0643369A (en) Two-dimensional scanner in laser scan microscope
JPH01263610A (en) Focusing device
JPH06347227A (en) Apparatus and method for measuring surface shape
JPH0648399Y2 (en) Non-contact micro surface abnormality detector
JPS62220838A (en) Surface inspecting instrument
JPH07318831A (en) Laser microscopic device
JPH04116453A (en) Flaw inspecting apparatus
JPH05118826A (en) Shape detecting apparatus
JPS61191908A (en) Measurement of shape
JPH10260006A (en) Range finder
CN113728209A (en) Interference image pickup device
JPH10132528A (en) Surface inspection device