JPH09138364A - Optical scanning device and foreign body inspection device - Google Patents

Optical scanning device and foreign body inspection device

Info

Publication number
JPH09138364A
JPH09138364A JP7317130A JP31713095A JPH09138364A JP H09138364 A JPH09138364 A JP H09138364A JP 7317130 A JP7317130 A JP 7317130A JP 31713095 A JP31713095 A JP 31713095A JP H09138364 A JPH09138364 A JP H09138364A
Authority
JP
Japan
Prior art keywords
light
angle
light flux
optical axis
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7317130A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Hagiwara
恒幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7317130A priority Critical patent/JPH09138364A/en
Priority to US08/715,638 priority patent/US5736735A/en
Publication of JPH09138364A publication Critical patent/JPH09138364A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make a physically stable optical scan by providing a rotary driving means and a light deflecting means which compensate a generated surface deflection error, and rotating the light deflecting means in one body so that a luminous flux scanned body is scanned with luminous flux which has its wave front divided and deflected by the light deflecting means. SOLUTION: A light beam L1 of a linear polarized light wave emitted by a laser light source 25 has its phase modulated into a circular polarized wave, which is reflected by a reflecting mirror 27 and expanded by a beam expander lens system 28, and then made incident on an optical unit 24 as incident luminous flux I0 through a lens 29. The luminous flux I0 has it phase modulated by a λ/4-wavelength plate 23 into a linear polarized wave. Then the wave is reflected by 1st and 2nd reflecting surfaces 11A and 11B of a rotary mirror 11 and made incident on an inspected surface 32A of an inspected substrate 32 again as 1st and 2nd pieces I1 and I2 of reflected luminous flux. At this time, the pieces I1 and I2 of reflected luminous flux make arcuate scans on the inspected surface 32A of the inspected substrate 32 according to the rotation of the optical unit 24 accompanying the driving of a motor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 発明の属する技術分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段 発明の実施の形態 (1)第1実施例 (1−1)原理(図1(A)〜図3) (1−2)第1実施例による異物検査装置の構成(図4
〜図6) (1−3)第1実施例の動作 (1−4)第1実施例の効果 (2)第2実施例 (2−1)原理(図7(A)〜図9) (2−2)第2実施例による異物検査装置の構成(図1
0) (2−3)第2実施例の動作 (2−4)第2実施例の効果 (3)他の実施例 発明の効果
[Table of Contents] The present invention will be described in the following order. TECHNICAL FIELD OF THE INVENTION Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Embodiments of the Invention (1) First Example (1-1) Principle (FIGS. 1A to 3) (1-2) Configuration of the foreign matter inspection apparatus according to the first embodiment (see FIG.
(FIG. 6) (1-3) Operation of the first embodiment (1-4) Effect of the first embodiment (2) Second embodiment (2-1) Principle (FIGS. 7A to 9) ( 2-2) Configuration of the foreign matter inspection apparatus according to the second embodiment (FIG. 1)
0) (2-3) Operation of the second embodiment (2-4) Effects of the second embodiment (3) Other embodiments Effects of the invention

【0002】[0002]

【発明の属する技術分野】本発明は、光走査装置及び異
物検査装置に関し、例えば液晶製造用のマスク等の大型
基板の表面に付着した異物の有無を検出する装置に適用
して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device and a foreign substance inspection device, and is suitable for application to a device for detecting the presence or absence of foreign substances adhering to the surface of a large substrate such as a mask for liquid crystal production. is there.

【0003】[0003]

【従来の技術】従来、この種の異物検査装置における基
板上の異物の有無を検出する光学的手段として図11
(A)及び(B)に示すような光走査装置1が用いられ
ている。なお、図11(A)は正面図であり、図11
(B)は下面図である。光走査装置1は、装置内に固定
されたモータ2と当該モータ2の駆動軸2Aと一体に矢
印aで示す方向に回転されるロータリミラー3から構成
されている。ロータリミラー3は2つの平面ミラーでな
る第1及び第2の反射面3A及び3Bを有し、当該第1
及び第2の反射面3A及び3Bはモータ2の駆動軸2A
と平行な光軸nに対してそれぞれ角度b1 及びb2 をな
す。
2. Description of the Related Art Conventionally, as an optical means for detecting the presence or absence of foreign matter on a substrate in this type of foreign matter inspection apparatus, FIG.
The optical scanning device 1 as shown in (A) and (B) is used. Note that FIG. 11A is a front view and FIG.
(B) is a bottom view. The optical scanning device 1 is composed of a motor 2 fixed in the device and a rotary mirror 3 which is rotated integrally with a drive shaft 2A of the motor 2 in a direction indicated by an arrow a. The rotary mirror 3 has first and second reflecting surfaces 3A and 3B formed of two plane mirrors.
And the second reflecting surfaces 3A and 3B are the drive shaft 2A of the motor 2.
The angles b 1 and b 2 are respectively formed with respect to the optical axis n parallel to.

【0004】この場合、光軸nに沿つて入射される入射
光束I0 は、ロータリミラー3の第1及び第2の反射面
3A及び3Bによつて2等分に波面分割されると共に反
射されて、第1及び第2の反射光束I1 及びI2 に分離
して進行する。これら第1及び第2の反射光束I1 及び
2 は、光軸nとモータ2の駆動軸2Aとが平行関係に
あるとき、光軸nに対してそれぞれ角度θ1 及びθ2
なし、これらは次式
In this case, the incident light beam I 0 incident along the optical axis n is split into two equal wavefronts by the first and second reflecting surfaces 3A and 3B of the rotary mirror 3 and is reflected. As a result, the first and second reflected light beams I 1 and I 2 are separated and proceed. When the optical axis n and the drive axis 2A of the motor 2 are parallel to each other, the first and second reflected light fluxes I 1 and I 2 form angles θ 1 and θ 2 with respect to the optical axis n, respectively. These are

【数1】 (Equation 1)

【数2】 で表される。(Equation 2) It is represented by

【0005】[0005]

【発明が解決しようとする課題】ところで光走査装置1
において、モータ2の駆動軸2Aが光軸nに対して静的
又は動的に軸振れを生じるおそれがある。この結果、駆
動軸2Aが矢印cで示す方向に偏移して当該駆動軸2A
と光軸nとの相対的な角度偏差がδとなる場合には、第
1及び第2の反射光束I1 及びI2 の光軸nに対する角
度θ1 及びθ2 はそれぞれ角度θ1 ′、角度θ2 ′と変
化し、これらは次式
By the way, the optical scanning device 1 is provided.
In the above, there is a possibility that the drive shaft 2A of the motor 2 may shake the shaft statically or dynamically with respect to the optical axis n. As a result, the drive shaft 2A is deviated in the direction indicated by the arrow c, and the drive shaft 2A is displaced.
When the relative angular deviation between the optical axis n and the optical axis n is δ, the angles θ 1 and θ 2 of the first and second reflected light beams I 1 and I 2 with respect to the optical axis n are respectively the angle θ 1 ′, Angle θ 2 ′ and these change

【数3】 (Equation 3)

【数4】 で表される。(Equation 4) It is represented by

【0006】このようにモータ2の駆動軸2Aが静的又
は動的な軸振れが生じた場合、当該駆動軸2Aが光軸n
に対して偏移するに伴つてロータリミラー3の反射角3
A及び3Bも面振れが生じることとなる。この結果、第
1及び第2の反射光束I1 及びI2 の光軸nに対する角
度も変化して基板(図示せず)上に照射し得なくなるお
それがあり、かくして基板上の異物の有無を検出するこ
とが困難となる問題があつた。
When the drive shaft 2A of the motor 2 is statically or dynamically shaken in this manner, the drive shaft 2A is driven by the optical axis n.
The angle of reflection 3 of the rotary mirror 3
Surface deflection also occurs in A and 3B. As a result, the angles of the first and second reflected light fluxes I 1 and I 2 with respect to the optical axis n may change, and it may not be possible to irradiate the substrate (not shown). There was a problem that was difficult to detect.

【0007】また第1及び第2の反射光束I1 及びI2
をそれぞれモータ2の駆動軸2Aに対して同一角度に反
射させる場合、例えば式(1)及び式(2)においてθ
1 =θ2 となるような条件で反射させる場合には、第1
及び第2の反射面3A及び3Bの光軸nに対する角度精
度をそれぞれ独立して向上させる必要があつた。
The first and second reflected light beams I 1 and I 2
Are reflected at the same angle with respect to the drive shaft 2A of the motor 2, for example, in equations (1) and (2),
When reflecting under the condition that 1 = θ 2 ,
It is necessary to independently improve the angle accuracy of the second reflection surfaces 3A and 3B with respect to the optical axis n.

【0008】本発明は以上の点を考慮してなされたもの
で、被光束照射物(被検査物)に対して物理的に安定し
た光走査を行うと共に、被光束照射物(被検査物)が大
きい場合にも対応でき、かつ精度良く異物を検出するこ
とができる光走査装置及び異物検査装置を提案しようと
するものである。
The present invention has been made in consideration of the above points, and physically stable optical scanning is performed on an object to be irradiated with a light beam (object to be inspected), and an object to be irradiated with a light beam to be inspected (object to be inspected) is obtained. It is intended to propose an optical scanning device and a foreign matter inspection device which can deal with a large case and can detect a foreign matter with high accuracy.

【0009】[0009]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、回転軸2Aを有する回転駆動手段
2と、回転軸2Aと平行な第一の光軸nに沿つて入射さ
れる入射光束I0 を、第一の光軸nに対して第一の角度
をなす第一の光束I1 と第一の光軸nに対して第二の角
度をなす第二の光束I2 とに波面分割すると共に、波面
分割の中心位置を基準とした回転軸2Aの回転方向に第
一の光束I1 及び第二の光束I2 をそれぞれ偏向して被
光束照射物32に入射させ、さらに回転軸2Aと第一の
光軸nとの相対的な角度偏差に基づいて第一の角度及び
第二の角度の両方又はいずれか一方が変化して生じる面
振れ誤差を補償して第一の角度及び第二の角度を一定値
に維持する光偏向手段11、91とを設け、回転駆動手
段2は、光偏向手段11、91によつて波面分割され偏
向された第一の光束I1 及び第二の光束I2 が被光束照
射物32を走査するように、回転軸2Aを中心として光
偏向手段11、91を一体に回転させるようにした。
In order to solve such a problem, according to the present invention, a rotation driving means 2 having a rotation axis 2A and an incident light incident along a first optical axis n parallel to the rotation axis 2A. The light flux I 0 is divided into a first light flux I 1 forming a first angle with respect to the first optical axis n and a second light flux I 2 forming a second angle with respect to the first optical axis n. The wavefront division is performed, and the first light flux I 1 and the second light flux I 2 are respectively deflected in the rotation direction of the rotation axis 2A with the center position of the wavefront division as a reference to be incident on the light irradiation target object 32, and further rotated. The first angle is compensated for by a surface wobbling error caused by a change in one or both of the first angle and the second angle based on the relative angular deviation between the axis 2A and the first optical axis n. And the optical deflecting means 11 and 91 for maintaining the second angle at a constant value, and the rotation driving means 2 includes the optical deflecting means 1 The light deflectors 11 and 91 are rotated about the rotation axis 2A so that the first light flux I 1 and the second light flux I 2 which are wavefront-divided and deflected by the light beams 1 and 91 scan the light beam irradiation object 32. I made it rotate together.

【0010】また本発明においては、被検査物32の被
検査面32Aに付着した異物の有無を検査する異物検査
装置20、100において、光束L1を発射する光源2
5と、回転軸2Aを有する回転駆動手段2と、光束L1
の光路上に配置され、回転軸2Aと平行な第一の光軸n
に沿つて入射される入射光束I0 を、第一の光軸nに対
して第一の角度をなす第一の光束I1 と第一の光軸nに
対して第二の角度をなす第二の光束I2 とに波面分割す
ると共に、波面分割の中心位置を基準とした回転軸2A
の回転方向に第一の光束I1 及び第二の光束I2 をそれ
ぞれ偏向して被検査物32の被検査面32Aに入射さ
せ、さらに回転軸2Aと第一の光軸nとの相対的な角度
偏差に基づいて第一の角度及び第二の角度の両方又はい
ずれか一方が変化して生じる面振れ誤差を補償して第一
の角度及び第二の角度を一定値に維持する光偏向手段1
1、91と、被検査物32の被検査面32Aに付着した
異物により発生される第一の光束I1 及び第二の光束I
2 の散乱光を受光し、受光した散乱光の強度に応じた電
気信号を出力する受光手段51〜67と、受光手段51
〜67から供給される電気信号に基づいて異物を検出す
る信号処理手段40、41とを設け、回転駆動手段2
は、光偏向手段11、91によつて波面分割され偏向さ
れた第一の光束I1 及び第二の光束I2 が被検査物32
の被検査面32Aを走査するように、回転軸2Aを中心
として光偏向手段11、91を一体に回転させるように
した。
Further, in the present invention, the light source 2 for emitting the light beam L1 in the foreign matter inspection device 20, 100 for inspecting the presence or absence of foreign matter adhered to the inspected surface 32A of the inspected object 32.
5, rotation driving means 2 having a rotation axis 2A, and light flux L1
Of the first optical axis n which is arranged on the optical path of
An incident light beam I 0 incident along the first optical axis n with a first light beam I 1 forming a first angle with respect to the first optical axis n and a second light beam forming a second angle with respect to the first optical axis n. The rotation axis 2A is divided into two light fluxes I 2 and the center of the wavefront division is used as a reference.
The first light flux I 1 and the second light flux I 2 are respectively deflected in the rotation direction of ## EQU1 ## to be incident on the inspection surface 32A of the inspection object 32, and the relative rotation axis 2A and the first optical axis n are relative to each other. Deflection for compensating for a surface wobbling error caused by a change in either or both of the first angle and the second angle based on the effective angle deviation to maintain the first angle and the second angle at constant values. Means 1
1, 91 and the first light flux I 1 and the second light flux I generated by the foreign matter adhered to the surface 32A of the inspection object 32.
Receiving the second scattered light, and the light receiving means 51 to 67 for outputting an electric signal corresponding to the intensity of the received scattered light, light receiving means 51
Signal processing means 40 and 41 for detecting foreign matter based on the electric signals supplied from
Are the first light flux I 1 and the second light flux I 2 which are wavefront-divided and deflected by the light deflecting means 11 and 91, and are inspected 32.
The light deflection means 11 and 91 are integrally rotated about the rotation axis 2A so as to scan the surface 32A to be inspected.

【0011】さらに本発明においては、光走査装置2
1、101は、光偏向手段11、91によつて偏向され
た入射光束I0 が被光束照射物(被検査物)32に対し
て一定の偏光状態となるように入射光束I0 の偏光状態
を調整する偏光状態調整手段23を設け、回転駆動手段
2は、光偏向手段11、91によつて波面分割され偏向
された第一の光束I1 及び第二の光束I2 が被光束照射
物(被検査物)32を走査するように、回転軸2Aを中
心として光偏向手段11、91及び偏光状態調整手段2
3を一体に回転させるようにした。
Further, in the present invention, the optical scanning device 2
1, 101, the polarization state of the incident light beam I 0 as the incident light beam I 0 had it occurred deflected light deflector 11, 91 is a constant polarization state relative Hihikaritaba irradiated (inspection object) 32 A polarization state adjusting means 23 for adjusting the light flux is provided, and the rotation driving means 2 is configured such that the first light flux I 1 and the second light flux I 2 which are wavefront-divided and deflected by the light deflecting means 11 and 91 are irradiated by the light flux irradiation object The optical deflecting means 11 and 91 and the polarization adjusting means 2 centering on the rotation axis 2A so as to scan the (inspection object) 32.
It was made to rotate 3 integrally.

【0012】このように回転軸2Aと平行な第一の光軸
nに沿つて入射される入射光束I0を、第一の光軸nに
対して第一の角度をなす第一の光束I1 と第一の光軸n
に対して第二の角度をなす第二の光束I2 とに波面分割
すると共に、波面分割の中心位置を基準とした回転軸2
Aの回転方向に第一の光束I1 及び第二の光束I2 をそ
れぞれ偏向して被光束照射物32に入射させ、回転軸2
Aと第一の光軸nとの相対的な角度偏差に基づいて第一
の角度及び第二の角度の両方又はいずれか一方が変化し
て生じる面振れ誤差を補償して第一の角度及び第二の角
度を一定値に維持する光偏向手段11、91を設けたこ
とにより、回転駆動手段2の回転軸2Aに静的又は動的
な軸振れが生じた場合においても、第1及び第2の光束
1 及びI2 は当該軸振れによる影響を受けることなく
被光束照射物(被検査物)32に対して物理的に安定し
て走査させることができる。さらに光偏向手段11、9
1によつて偏向された入射光束I0 が被光束照射物(被
検査物)32に対して一定の偏光状態となるように入射
光束I0 の偏光状態を調整する偏光状態調整手段23を
光走査装置21、101に設けたことにより、被光束照
射物(被検査物)が大きい場合にも対応でき、かつ精度
良く異物を検出することができる。
In this way, the incident light beam I 0 incident along the first optical axis n parallel to the rotation axis 2A forms a first light beam I forming a first angle with respect to the first optical axis n. 1 and the first optical axis n
With respect to the second light flux I 2 forming a second angle with respect to, and the rotation axis 2 with the center position of the wavefront division as a reference.
The first light flux I 1 and the second light flux I 2 are respectively deflected in the rotation direction of A to be incident on the light flux irradiation object 32, and the rotation axis 2
Based on the relative angular deviation between A and the first optical axis n, a surface wobbling error caused by a change in either or both of the first angle and the second angle is compensated for and the first angle and By providing the light deflecting means 11 and 91 for maintaining the second angle at a constant value, even when static or dynamic shaft wobbling occurs on the rotation shaft 2A of the rotation driving means 2, the first and first The two luminous fluxes I 1 and I 2 can be physically and stably scanned with respect to the luminous flux irradiation object (inspection object) 32 without being affected by the axial shake. Further, the light deflection means 11 and 9
Light polarization state adjusting unit 23 for the incident light beam I 0 had it occurred deflected 1 adjusts the polarization state of the incident light beam I 0 as a constant polarization state relative Hihikaritaba irradiated (inspection object) 32 By providing the scanning devices 21 and 101, it is possible to cope with the case where the object to be irradiated with the light beam (object to be inspected) is large, and it is possible to accurately detect the foreign matter.

【0013】[0013]

【発明の実施の形態】以下図面について本発明の一実施
例を詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings.

【0014】(1)第1実施例 (1−1)原理 図11(A)及び(B)との対応部分に同一符号を付し
て示す図1(A)及び(B)において、光走査装置10
は従来の光走査装置1と異なり、ロータリミラー11の
2つの平面ミラーでなる第1及び第2の反射面11A及
び11Bは、モータ2の駆動軸2Aと平行な光軸nに対
して共に同一の角度dをなす。
(1) First Embodiment (1-1) Principle Optical scanning in FIGS. 1A and 1B in which parts corresponding to those in FIGS. 11A and 11B are denoted by the same reference numerals. Device 10
Unlike the conventional optical scanning device 1, the first and second reflecting surfaces 11A and 11B, which are two plane mirrors of the rotary mirror 11, are the same with respect to the optical axis n parallel to the drive axis 2A of the motor 2. Angle d of.

【0015】図2は、モータ2の駆動軸2Aが光軸nに
対して軸振れを生じていない場合において、光軸nに沿
つて入射される入射光束I0 と第2の反射光束I2 との
関係を示す。この場合、入射光束I0 は第1の反射面1
1Aに反射した後、さらに第2の反射面11Bに反射し
て第2の反射光束I2 として進行する。
FIG. 2 shows an incident light flux I 0 and a second reflected light flux I 2 which are incident along the optical axis n when the drive shaft 2A of the motor 2 does not cause axial runout with respect to the optical axis n. Shows the relationship with. In this case, the incident light beam I 0 is reflected by the first reflecting surface 1
After being reflected by 1A, it is further reflected by the second reflecting surface 11B and travels as a second reflected light beam I 2 .

【0016】入射光束I0 は光軸nと平行でなるため第
1の反射面11Aに対して角度dをなし、これにより第
2の反射光束I2 が第2の反射面11Bに対してなす角
度をeとした場合、幾何学的に角度eは次式
Since the incident light beam I 0 is parallel to the optical axis n, it forms an angle d with the first reflecting surface 11A, and the second reflected light beam I 2 makes it with respect to the second reflecting surface 11B. When the angle is e, geometrically the angle e is

【数5】 で表される。従つて第2の反射光束I2 が光軸nに対し
てなす角度をθとした場合、角度θは次式
(Equation 5) It is represented by Therefore, when the angle formed by the second reflected light flux I 2 with respect to the optical axis n is θ, the angle θ is

【数6】 で表される。(Equation 6) It is represented by

【0017】ここで図3は、モータ2の駆動軸2Aが光
軸nに対して静的又は動的に軸振れを生じ、当該駆動軸
2Aが光軸nに対して角度δだけ傾いた場合を示す。こ
の場合、光軸nと平行でなる入射光束I0 は第1の反射
面11Aに対して角度d1 をなし、光軸nと第2の反射
面11Bとのなす角度をd2 とした場合に、角度d1
び角度d2 の関係は、次式
Here, FIG. 3 shows a case where the drive shaft 2A of the motor 2 statically or dynamically shakes the optical axis n, and the drive shaft 2A is inclined by an angle δ with respect to the optical axis n. Indicates. In this case, when the incident light flux I 0 parallel to the optical axis n forms an angle d 1 with the first reflecting surface 11A and the angle between the optical axis n and the second reflecting surface 11B is d 2. The relationship between the angle d 1 and the angle d 2 is

【数7】 で表される。また第2の反射光束I2 が第2の反射面1
1Bに対してなす角度をe1 とした場合、幾何学的に角
度e1 は、式(7)を代入して得られる次式
(Equation 7) It is represented by Further, the second reflected light flux I 2 is reflected by the second reflecting surface 1
When the angle formed with respect to 1B is e 1 , the angle e 1 is geometrically calculated by the following equation obtained by substituting the equation (7).

【数8】 で表され、さらに第2の反射光束I2 の光軸nに対する
角度θは、式(7)及び式(8)を代入して得られる次
(Equation 8) And an angle θ of the second reflected light flux I 2 with respect to the optical axis n is obtained by substituting the equations (7) and (8)

【数9】 で表される。(Equation 9) It is represented by

【0018】このように第2の反射光束I2 の光軸nに
対する角度θは、モータ2の駆動軸2Aが光軸nに対し
て傾いた場合の当該傾き角度δの値にかかわらず常に一
定値を示すことがわかる。この結果、モータ2の駆動軸
2Aが光軸nに対して静的又は動的に軸振れを生じて
も、第2の反射光束I2 は第2の反射面11Bの面振れ
による影響を受けずに済む。また上述の場合と同様にし
て、入射光束I0 が第1の反射面11Aに入射する場合
においても、第1の反射光束I1 は第1の反射面11A
の面振れによる影響を受けずに済む。
As described above, the angle θ of the second reflected light flux I 2 with respect to the optical axis n is always constant regardless of the value of the inclination angle δ when the drive shaft 2A of the motor 2 is inclined with respect to the optical axis n. It turns out that it shows a value. As a result, even if the drive shaft 2A of the motor 2 statically or dynamically vibrates with respect to the optical axis n, the second reflected light flux I 2 is affected by the surface wobbling of the second reflecting surface 11B. You don't have to. Further, similarly to the case described above, even when the incident light flux I 0 is incident on the first reflection surface 11A, the first reflected light flux I 1 is generated by the first reflection surface 11A.
It is not affected by the surface runout of.

【0019】(1−2)第1実施例による異物検査装置
の構成 次に、この光走査装置10を適用した異物検査装置につ
いて説明する。図4に示す異物検査装置20において、
光走査装置21は光走査装置10と異なり、ロータリミ
ラー11、箱体22及びλ/4波長板23でなる光学ユ
ニツト24がモータ2の駆動軸2Aと一体に回転し得る
ように設けられている。光学ユニツト24において、箱
体22の上端内側面にはロータリミラー11が固着され
ると共に、箱体22の下側面には駆動軸2Aと同軸上に
形成された窓を覆うように外側からλ/4波長板23が
固着されている。
(1-2) Configuration of Foreign Material Inspection Apparatus According to First Embodiment Next, a foreign material inspection apparatus to which the optical scanning device 10 is applied will be described. In the foreign matter inspection device 20 shown in FIG.
Unlike the optical scanning device 10, the optical scanning device 21 is provided with an optical unit 24 including a rotary mirror 11, a box body 22 and a λ / 4 wavelength plate 23 so as to rotate integrally with the drive shaft 2A of the motor 2. . In the optical unit 24, the rotary mirror 11 is fixed to the inner surface of the upper end of the box body 22, and the lower side surface of the box body 22 is provided with λ / from the outside so as to cover a window formed coaxially with the drive shaft 2A. The four-wave plate 23 is fixed.

【0020】この異物検査装置20では、レーザ光源2
5から射出された直線偏光波でなる光ビームL1を、λ
/4波長板26を介して円偏光波に位相変調した後、反
射ミラー27に反射してビームエキスパンダレンズ系2
5に入射し、当該ビームエキスパンダレンズ系25にお
いて拡大された後、レンズ29を介して所定の開口角α
で集束される入射光束I0 として装置内に固定された反
射ミラー30を介して光学ユニツト24に入射する。
In this foreign matter inspection apparatus 20, the laser light source 2
The light beam L1 which is a linearly polarized wave emitted from
After being phase-modulated into a circularly polarized wave through the / 4 wavelength plate 26, it is reflected by the reflection mirror 27 and then the beam expander lens system 2
5 and is expanded in the beam expander lens system 25, and then a predetermined aperture angle α is set through the lens 29.
The incident light beam I 0 is focused on the optical unit 24 via the reflection mirror 30 fixed in the apparatus.

【0021】光学ユニツト24に入射された入射光束I
0 は、λ/4波長板23によつて、電気ベクトルの振動
方向が光軸nと第1又は第2の反射面11A及び11B
とを含む平面Zn1 又はZn2 に直交するような直線偏
光波に位相変調される。
Incident light beam I incident on the optical unit 24
0 means that the vibration direction of the electric vector is due to the λ / 4 wave plate 23 and the optical axis n and the first or second reflecting surface 11A and 11B.
The phase is modulated into a linearly polarized wave that is orthogonal to the plane Zn 1 or Zn 2 including and.

【0022】この後ロータリミラー11の第1及び第2
の反射面11A及び11Bにおいて反射され、第1及び
第2の反射光束I1 及びI2 としてそれぞれ箱体22の
下側面に形成された窓を介してステージ31上に載置さ
れた被検査基板32の被検査面32Aに対してS偏光波
として入射する。このとき第1及び第2の反射光束I1
及びI2 は、モータ2の駆動に伴う光学ユニツト24の
回転に応じて被検査基板32の被検査面32Aを円弧状
に走査する。
After this, the first and second rotary mirrors 11 are
Of the substrate to be inspected, which is reflected on the reflecting surfaces 11A and 11B of the above and is placed on the stage 31 through the windows formed on the lower surface of the box 22 as the first and second reflected light beams I 1 and I 2 , respectively. It is incident on the surface 32A to be inspected 32 as S-polarized wave. At this time, the first and second reflected light fluxes I 1
And I 2 scan the surface 32A to be inspected of the substrate 32 to be inspected in an arc shape according to the rotation of the optical unit 24 accompanying the driving of the motor 2.

【0023】この被検査基板32が載置されたステージ
31においては、モータ33と同期して駆動するアクチ
ユエータ34により、光学ユニツト24が180 〔°〕回
転する毎にステージ31を矢印xで示す方向に移動し得
るようになされ、かくして第1及び第2の反射光束I1
及びI2 が被検査基板32の被検査面32Aを全面に亘
つて走査し得るようになされている。
In the stage 31 on which the substrate 32 to be inspected is placed, an actuator 34 which is driven in synchronization with the motor 33 causes the stage 31 to move in a direction indicated by an arrow x every time the optical unit 24 rotates 180 [°]. To be moved to the first and second reflected light fluxes I 1
And I 2 can scan the inspected surface 32A of the inspected substrate 32 over the entire surface.

【0024】またステージ31の周囲には、図5に示す
ように、第1及び第2の反射光束I1 及びI2 が被検査
基板32の被検査面32Aを走査する際に当該被検査面
32Aに発生した散乱光を互いに異なる空間方向から受
光し得るように、集光レンズ及び受光素子からなる受光
部51〜67が光走査線Cを斜め上から見込むように等
間隔で円弧状に複数並設されている。さらにこれら各受
光部51〜67の受光結果を処理するための信号処理部
40及び制御部41が設けられている。
As shown in FIG. 5, around the stage 31, when the first and second reflected light beams I 1 and I 2 scan the surface 32A of the substrate 32 to be inspected, the surface to be inspected is scanned. In order that the scattered light generated in 32A can be received from different spatial directions, the light receiving units 51 to 67 each including a condenser lens and a light receiving element form a plurality of arcs at equal intervals so that the optical scanning line C can be seen obliquely from above. It is installed side by side. Further, a signal processing unit 40 and a control unit 41 for processing the light reception results of these light receiving units 51 to 67 are provided.

【0025】このときこれら各受光部51〜67の配設
位置には、第1及び第2の反射光束I1 及びI2 が被検
査基板32の被検査面32Aに形成されたパターンのエ
ツジを照射した場合に発生する散乱光が強い指向性を伴
うのに対して、異物による散乱光は当該異物からあらゆ
る方向に広がることを考慮して、被検査基板32の被検
査面32Aに形成されたパターンのエツジからの散乱光
を受光しないように選定されている。
At this time, the edges of the pattern in which the first and second reflected light beams I 1 and I 2 are formed on the surface 32A to be inspected of the substrate 32 to be inspected are provided at the positions where the respective light receiving portions 51 to 67 are arranged. The scattered light generated when irradiated has a strong directivity, while the scattered light due to the foreign matter spreads in all directions from the foreign matter, and is formed on the inspected surface 32A of the inspected substrate 32. It is selected not to receive scattered light from the edges of the pattern.

【0026】これら各受光部51〜67の出力信号は、
図6に示すように、信号処理部40内に設けられた信号
切換部70に供給される。信号切換部70は、制御部4
1から与えられた光学ユニツト24の回転角度を表す角
度情報信号S1に基づいて、17個の受光部のうち回転
角度に対応する検査点からの散乱光を受光することので
きる3つの受光部を選択し、当該選択した3つの受光部
からの電気信号S2〜S4をそれぞれゲイン可変アンプ
71〜73に供給する。
The output signals of these light receiving portions 51 to 67 are
As shown in FIG. 6, the signal is supplied to the signal switching unit 70 provided in the signal processing unit 40. The signal switching unit 70 includes the control unit 4
On the basis of the angle information signal S1 representing the rotation angle of the optical unit 24 given from 1, three light receiving parts capable of receiving scattered light from the inspection point corresponding to the rotation angle among the 17 light receiving parts are selected. The selected electric signals S2 to S4 from the selected three light receiving units are supplied to the variable gain amplifiers 71 to 73, respectively.

【0027】因みに実際上、受光部51〜67のうち光
走査線上のある1点(検査点)からの散乱光を同時に受
光することができるのは、3つの隣接する受光部のみで
ある。従つて、光学ユニツト24の回転角度に依存する
検査点の位置に応じて、検査点からの光を同時に受光す
ることができる3つの隣接する受光部が17個の受光部
から適宜選択される。
Incidentally, in reality, only three adjacent light receiving portions can simultaneously receive scattered light from one point (inspection point) on the optical scanning line among the light receiving portions 51 to 67. Therefore, depending on the position of the inspection point depending on the rotation angle of the optical unit 24, three adjacent light receiving sections capable of simultaneously receiving the light from the inspection point are appropriately selected from the 17 light receiving sections.

【0028】ここで実験結果によれば、電気信号S2〜
S4は、光学ユニツト24の回転角度すなわち光走査線
C上の第1又は第2の反射光束I1 又はI2 の位置に依
存して変動する。このためゲイン可変アンプ71〜73
は、制御部41から与えられた角度情報信号S5〜S7
に基づいて電気信号S2〜S4をゲイン補正することに
より、光学ユニツト24の回転角度に依存することなく
ほぼ一定の信号レベルを有する電気信号S8〜S10を
得る。
According to the experimental results, the electric signals S2 to
S4 varies depending on the rotation angle of the optical unit 24, that is, the position of the first or second reflected light flux I 1 or I 2 on the optical scanning line C. Therefore, the variable gain amplifiers 71 to 73
Are angle information signals S5 to S7 given from the control unit 41.
By correcting the gains of the electric signals S2 to S4 based on the above, the electric signals S8 to S10 having a substantially constant signal level are obtained without depending on the rotation angle of the optical unit 24.

【0029】ゲイン補正後の電気信号S8〜S10は、
それぞれゲイン可変アンプ71〜73から最小値選択器
74に供給され、当該最小値選択器74において電気信
号S8〜S10の各信号レベルのうち最小の信号レベル
を求め、これを最小値信号S15として制御部41に供
給する。制御部41は、最小値信号S15に基づいて被
検査基板32の被検査面32Aにおける異物の大きさを
特定する。なお異物の大きさを特定するのに最小値を用
いたことにより、パターンのエツジと異物とが共存して
いる場合に当該エツジからのノイズを消すことができ
る。
The electric signals S8 to S10 after gain correction are
The gain variable amplifiers 71 to 73 supply the minimum value selector 74, and the minimum value selector 74 determines the minimum signal level among the signal levels of the electric signals S8 to S10 and controls it as the minimum value signal S15. Supply to the part 41. The control unit 41 specifies the size of the foreign matter on the inspected surface 32A of the inspected substrate 32 based on the minimum value signal S15. By using the minimum value to specify the size of the foreign matter, noise from the edge can be eliminated when the edge of the pattern and the foreign matter coexist.

【0030】一方、ゲイン補正後の電気信号S8〜S1
0は、それぞれゲイン可変アンプ71〜73からコンパ
レータ75〜77に供給される。コンパレータ75〜7
7は、電気信号S8〜S10を基準電圧78に基づく電
気的ノイズや光学的ノイズのレベルから見て十分に高い
所定の閾値と比較することにより、各電気信号S8〜S
10を2値化し、これらをそれぞれ2値化信号S11〜
S13としてアンド(AND)回路79に供給する。
On the other hand, the electric signals S8 to S1 after the gain correction are made.
0 is supplied from the variable gain amplifiers 71 to 73 to the comparators 75 to 77, respectively. Comparator 75-7
7 compares each of the electric signals S8 to S10 with a predetermined threshold value which is sufficiently high in view of the level of electric noise or optical noise based on the reference voltage 78, so that each of the electric signals S8 to S8.
10 is binarized, and these are binarized signals S11 to S11.
It is supplied to the AND circuit 79 as S13.

【0031】アンド回路79は、2値化信号S11〜S
13が全て論理「H」となるとき、すなわち全て基準電
圧78に基づく所定の閾値を越えたとき、異物検出信号
S14を制御部41に出力する。制御部41は、この異
物検出信号S1をトリガとして最小値選択器74から最
小値信号S15を取り込み、当該最小値信号S15から
得られる最小の信号レベルに基づいて異物の大きさを決
定し、さらに被検査面32Aの異物の位置と共に異物の
大きさ及び形状等でなる異物表示信号S16を外部に設
けられたデイスプレイ80に送出して表示させる。
The AND circuit 79 outputs the binarized signals S11 to S.
When all 13 are logic "H", that is, when all exceed a predetermined threshold value based on the reference voltage 78, the foreign matter detection signal S14 is output to the control unit 41. The control unit 41 takes in the minimum value signal S15 from the minimum value selector 74 by using the foreign matter detection signal S1 as a trigger, determines the size of the foreign matter based on the minimum signal level obtained from the minimum value signal S15, and further, A foreign substance display signal S16 including the size and shape of the foreign substance along with the position of the foreign substance on the surface 32A to be inspected is sent to the display 80 provided outside to be displayed.

【0032】(1−3)第1実施例の動作 以上の構成において、この異物検査装置20では、レー
ザ光源25から射出された直線偏光波でなる光ビームL
1をλ/4波長板26によつて円偏光波に位相変調した
後、これを反射ミラー27、ビームエキスパンダレンズ
系25、レンズ29及び反射ミラー30でなる光学系を
介して光走査装置21の光学ユニツト24にモータ2の
駆動軸2Aと光軸nを一致させて入射させる。
(1-3) Operation of the First Embodiment In the above configuration, in the foreign matter inspection device 20, the light beam L formed by the linearly polarized wave emitted from the laser light source 25 is used.
1 is phase-modulated into a circularly polarized wave by a λ / 4 wave plate 26, and then the optical scanning device 21 is passed through an optical system including a reflection mirror 27, a beam expander lens system 25, a lens 29 and a reflection mirror 30. The drive shaft 2A of the motor 2 and the optical axis n are made incident on the optical unit 24 of FIG.

【0033】次いでこの入射光束I0 を光学ユニツト2
4のλ/4波長板23により直線偏光波でなる光ビーム
に変換し、これをロータリミラー11の第1及び第2の
反射面11A及び11Bにおいて被検査基板32の被検
査面32Aに向けて発射すると共に、この際モータ2を
駆動して光学ユニツト24を回転させることにより、第
1及び第2の反射光束I1 及びI2 に被検査基板32の
被検査面32Aを走査させる。
Then, the incident light beam I 0 is converted into an optical unit 2
It is converted into a light beam of a linearly polarized wave by the λ / 4 wave plate 23 of 4 and is directed toward the surface 32A to be inspected of the substrate 32 to be inspected at the first and second reflecting surfaces 11A and 11B of the rotary mirror 11. At the same time as firing, the motor 2 is driven to rotate the optical unit 24 to scan the surface 32A to be inspected of the substrate 32 to be inspected with the first and second reflected light beams I 1 and I 2 .

【0034】さらにこのとき被検査基板32の被検査面
32Aに発生する散乱光を複数の受光素子を有する受光
部51〜67によつて受光し、これら受光部51〜67
の出力に基づいて信号処理部40において異物の有無を
検出する。
Further, at this time, the scattered light generated on the inspected surface 32A of the inspected substrate 32 is received by the light receiving sections 51 to 67 having a plurality of light receiving elements, and these light receiving sections 51 to 67 are received.
The presence or absence of foreign matter is detected in the signal processing unit 40 based on the output of

【0035】さらにこの異物検査装置20では、上述の
ように、光走査装置21から発射される入射光束I0
電気ベクトルの振動方向が光軸nと第1又は第2の反射
面11A及び11Bとを含む平面Zn1 又はZn2 に直
交するような直線偏光波に位相変調され、従つて第1及
び第2の反射光束I1 及びI2 が光走査装置21の光学
ユニツト24の回転角に関わらず常にS偏光波として被
検査基板32の被検査面32Aに入射する。
Further, in the foreign matter inspection device 20, as described above, the vibration direction of the electric vector of the incident light beam I 0 emitted from the optical scanning device 21 is the optical axis n and the first or second reflecting surface 11A or 11B. Phase-modulated into a linearly polarized wave that is orthogonal to a plane Zn 1 or Zn 2 including and, accordingly, the first and second reflected light fluxes I 1 and I 2 are rotated at the rotation angle of the optical unit 24 of the optical scanning device 21. Regardless, it always enters the inspection surface 32A of the inspection substrate 32 as an S-polarized wave.

【0036】この場合、例えば被検査基板32が液晶基
板などのようにガラス材から形成されている場合にはS
偏光波よりもP偏光波の方が反射率が高く、また被検査
基板32の被検査面32Aに金属材からなるパターンが
形成されている場合には、このパターンのエツジにおい
てS偏光波よりもP偏光波の散乱光の方が多く発生し易
いことが知られている。従つてこの異物検査装置20で
は、被検査基板32の被検査面32Aに入射させる光ビ
ームの偏光状態を考慮していなかつた従来の異物検査装
置に比べて、より精度良く異物を検査することができ
る。
In this case, if the substrate 32 to be inspected is made of a glass material such as a liquid crystal substrate, S
When the P-polarized wave has a higher reflectance than the polarized wave and a pattern made of a metal material is formed on the surface 32A to be inspected of the substrate 32 to be inspected, the edge of this pattern is larger than the S-polarized wave. It is known that the scattered light of the P-polarized wave is more likely to be generated. Therefore, the foreign matter inspection apparatus 20 can inspect foreign matter with higher accuracy than the conventional foreign matter inspection apparatus that does not consider the polarization state of the light beam incident on the inspected surface 32A of the inspected substrate 32. it can.

【0037】またロータリミラー11を互いに非直角で
なる第1及び第2の反射面11A及び11Bの2つの平
面ミラーから構成したことにより、モータ2の駆動軸2
Aに静的又は動的な軸振れが生じた場合、第1及び2の
反射光束I1 及びI2 が光軸nに対してなす角度は、共
に第1及び第2の反射面11A及び11Bのなす角度に
よつて決定され、従つて駆動軸2Aの光軸nに対する偏
移の度合いに関わらず常に一定値を示す。この結果、モ
ータ2の駆動軸2Aが光軸nに対して静的又は動的に軸
振れを生じても、第1及び第2の反射光束I1 及びI2
は共に第1及び第2の反射面11A及び11Bの面振れ
による影響を受けることなく光走査され得る。
Further, since the rotary mirror 11 is composed of two plane mirrors of the first and second reflecting surfaces 11A and 11B which are not orthogonal to each other, the drive shaft 2 of the motor 2 is formed.
When static or dynamic axial runout occurs in A, the angles formed by the first and second reflected light beams I 1 and I 2 with respect to the optical axis n are both the first and second reflecting surfaces 11A and 11B. Is determined by the angle formed by, and thus always shows a constant value regardless of the degree of deviation of the drive shaft 2A with respect to the optical axis n. As a result, even if the drive shaft 2A of the motor 2 statically or dynamically shakes the optical axis n, the first and second reflected light fluxes I 1 and I 2
Can be optically scanned without being affected by the surface runout of the first and second reflecting surfaces 11A and 11B.

【0038】(1−4)第1実施例の効果 以上の構成によれば、円偏光波でなる入射光束I0 をλ
/4波長板26において偏光状態が一定の直線偏光波の
第1及び第2の反射光束I1 及びI2 に変換すると共
に、当該第1及び第2の反射光束I1 及びI2 を被検査
基板32の被検査面32Aに入射するようにロータリミ
ラー11で偏向すると共にこれらλ/4波長板23及び
ロータリミラー11をモータ2によつて入射光束I0
光軸nを回転軸2Aとして回転させるようにして第1及
び第2の反射光束I1 及びI2 を被検査基板32の被検
査面32Aに走査させるようにしたことにより、被検査
基板32が大きい場合にも対応できると共に、精度良く
異物を検出することができる。
(1-4) Effects of the First Embodiment According to the above configuration, the incident light flux I 0, which is a circularly polarized wave, is converted into λ
/ 4 with polarization state converting first and second reflected light beams I 1 and I 2 of the constant linearly polarized wave in the wavelength plate 26, to be inspected the first and second reflected light beams I 1 and I 2 The λ / 4 wave plate 23 and the rotary mirror 11 are deflected by the rotary mirror 11 so as to be incident on the surface 32A to be inspected of the substrate 32 and rotated by the motor 2 with the optical axis n of the incident light beam I 0 as the rotation axis 2A. By making the first and second reflected light beams I 1 and I 2 scan the inspected surface 32A of the inspected substrate 32 in this way, it is possible to deal with the case where the inspected substrate 32 is large and the accuracy is improved. Foreign matter can be detected well.

【0039】さらにロータリミラー11を互いに非直角
でなる第1及び第2の反射面11A及の2つの平面ミラ
ーから構成したことにより、モータ2の駆動軸2Aに静
的又は動的な軸振れが生じた場合においても、第1及び
第2の反射光束I1 及びI2は共に第1及び第2の反射
面11A及び11Bのなす角度によつて決定され、従つ
て第1及び第2の反射面11A及び11Bの面振れによ
る影響を受けることなく光走査され得る異物検査装置を
実現することができる。
Further, since the rotary mirror 11 is composed of the two plane mirrors having the first and second reflecting surfaces 11A which are non-perpendicular to each other, the drive shaft 2A of the motor 2 has a static or dynamic shaft wobbling. Even when it occurs, the first and second reflected light fluxes I 1 and I 2 are both determined by the angle formed by the first and second reflection surfaces 11A and 11B, and accordingly, the first and second reflection light fluxes are determined. It is possible to realize a foreign matter inspection apparatus that can perform optical scanning without being affected by surface wobbling of the surfaces 11A and 11B.

【0040】(2)第2実施例 (2−1)原理 図1(A)及び(B)との対応部分に同一符号を付して
示す図7(A)及び(B)において、光走査装置90は
第1実施例の光走査装置10と異なり、ロータリミラー
11は4つの平面ミラーでなる第1〜第4の反射面91
A〜91Dから構成され、第1及び第2の反射面91A
及び91Bはモータ2の駆動軸2Aと平行な光軸nに対
して共に同一の角度pをなすと共に、第3及び第4の反
射面91C及び91Dは光軸nに直交する同一平面を形
成している。
(2) Second Embodiment (2-1) Principle Optical scanning in FIGS. 7A and 7B in which parts corresponding to those in FIGS. 1A and 1B are denoted by the same reference numerals. The device 90 is different from the optical scanning device 10 of the first embodiment, and the rotary mirror 11 is composed of four plane mirrors, that is, first to fourth reflecting surfaces 91.
A to 91D, and first and second reflecting surfaces 91A
, 91B form the same angle p with the optical axis n parallel to the drive axis 2A of the motor 2, and the third and fourth reflecting surfaces 91C and 91D form the same plane orthogonal to the optical axis n. ing.

【0041】図8は、モータ2の駆動軸2Aが光軸nに
対して軸振れを生じていない場合において、光軸nに沿
つて入射される入射光束I0 と第1の反射光束I1 との
関係を示す。この場合、入射光束I0 は第1の反射面9
1Aに反射した後、さらに第3の反射面91Cに反射し
て第1の反射光束I1 として進行する。
FIG. 8 shows an incident light flux I 0 and a first reflected light flux I 1 which are incident along the optical axis n when the drive shaft 2A of the motor 2 does not cause axial runout with respect to the optical axis n. Shows the relationship with. In this case, the incident light beam I 0 is reflected by the first reflecting surface 9
After being reflected by 1A, it is further reflected by the third reflecting surface 91C and proceeds as the first reflected light flux I 1 .

【0042】入射光束I0 は光軸nと平行でなるため第
1の反射面11Aに対して角度pをなし、これにより第
1の反射光束I1 が第3の反射面91Cに対してなす角
度をqとした場合、幾何学的に角度qは次式
Since the incident light beam I 0 is parallel to the optical axis n, it forms an angle p with the first reflecting surface 11A, whereby the first reflected light beam I 1 is formed with respect to the third reflecting surface 91C. If the angle is q, geometrically the angle q is

【数10】 で表される。従つて第1の反射光束I1 が光軸nに対し
てなす角度をθとした場合、角度θは次式
(Equation 10) It is represented by Therefore, when the angle formed by the first reflected light flux I 1 with respect to the optical axis n is θ, the angle θ is

【数11】 で表される。[Equation 11] It is represented by

【0043】ここで図9は、モータ2の駆動軸2Aが光
軸nに対して静的又は動的に軸振れを生じ、当該駆動軸
2Aが光軸nに対して角度δだけ傾いた場合を示す。こ
の場合、光軸nと平行でなる入射光束I0 が第1の反射
面91Aに対してなす角度をp1 とした場合に、角度p
1 は次式
Here, FIG. 9 shows a case where the drive shaft 2A of the motor 2 statically or dynamically shakes with respect to the optical axis n, and the drive shaft 2A is inclined by an angle δ with respect to the optical axis n. Indicates. In this case, when the incident light beam I 0 parallel to the optical axis n makes an angle p 1 with the first reflection surface 91A, the angle p
1 is the following formula

【数12】 で表される。また第1の反射光束I1 と第3の反射面9
1Cとのなす角度をq1とした場合に、角度q1 は次式
(Equation 12) It is represented by In addition, the first reflected light flux I 1 and the third reflection surface 9
When the angle formed by 1C is q 1 , the angle q 1 is

【数13】 で表される。さらに第1の反射光束I1 の光軸nに対す
る角度θは、式(12)及び式(13)を代入して得ら
れる次式
(Equation 13) It is represented by Further, the angle θ of the first reflected light flux I 1 with respect to the optical axis n is obtained by substituting the equations (12) and (13).

【数14】 で表される。[Equation 14] It is represented by

【0044】このように第1の反射光束I1 の光軸nに
対する角度θは、モータ2の駆動軸2Aが光軸nに対し
て傾いた場合の当該傾き角度δの値にかかわらず常に一
定値を示すことがわかる。この結果、モータ2の駆動軸
2Aが光軸nに対して静的又は動的に軸振れを生じて
も、第1の反射光束I1 は第1及び第3の反射面91A
及び91Cの面振れによる影響を受けずに済む。また上
述の場合と同様にして、入射光束I0 が第2の反射面9
1Bに入射する場合においても、第2の反射光束I2
第2及び第4の反射面91B及び91Dの面振れによる
影響を受けずに済む。
Thus, the angle θ of the first reflected light flux I 1 with respect to the optical axis n is always constant regardless of the value of the inclination angle δ when the drive shaft 2A of the motor 2 is inclined with respect to the optical axis n. It turns out that it shows a value. As a result, even if the drive shaft 2A of the motor 2 statically or dynamically shakes with respect to the optical axis n, the first reflected light flux I 1 will have the first and third reflection surfaces 91A.
And it is not affected by the surface runout of 91C. Further, in the same manner as in the case described above, the incident light beam I 0 is reflected by the second reflecting surface 9
Even when incident on 1B, the second reflected light flux I 2 is not affected by the surface runout of the second and fourth reflecting surfaces 91B and 91D.

【0045】(2−2)第2実施例による異物検査装置
の構成 次に、この光走査装置90を適用した異物検査装置につ
いて説明する。図4との対応部分に同一符号を付した図
10に示す異物検査装置100において、光走査装置1
01は光走査装置90と異なり、ロータリミラー91、
箱体102及びλ/4波長板23でなる光学ユニツト1
03がモータ2の駆動軸2Aと一体に回転し得るように
設けられている。
(2-2) Configuration of Foreign Particle Inspection Apparatus According to Second Embodiment Next, a foreign particle inspection apparatus to which the optical scanning device 90 is applied will be described. In the foreign matter inspection apparatus 100 shown in FIG. 10 in which the same parts as those in FIG.
01 is different from the optical scanning device 90, and is a rotary mirror 91,
Optical unit 1 including box 102 and λ / 4 wave plate 23
03 is provided so as to rotate integrally with the drive shaft 2A of the motor 2.

【0046】光学ユニツト103において、箱体102
の上端内側面にはロータリミラー91が固着されると共
に、箱体102の下側面には駆動軸2Aと同軸上に形成
された窓を覆うように外側からλ/4波長板23が固着
されている。
In the optical unit 103, the box body 102
A rotary mirror 91 is fixed to the inner surface of the upper end of the box body, and a λ / 4 wave plate 23 is fixed to the lower surface of the box body 102 from the outside so as to cover a window formed coaxially with the drive shaft 2A. There is.

【0047】この異物検査装置100では、レーザ光源
25から射出された直線偏光波でなる光ビームL1を、
λ/4波長板26を介して円偏光波に位相変調した後、
反射ミラー27に反射してビームエキスパンダレンズ系
25に入射し、当該ビームエキスパンダレンズ系25に
おいて拡大された後、レンズ29を介して所定の開口角
αで集束される入射光束I0 として装置内に固定された
反射ミラー30を介して光学ユニツト103に入射す
る。
In this foreign matter inspection apparatus 100, the light beam L1 which is a linearly polarized wave emitted from the laser light source 25 is
After phase modulation into a circularly polarized wave via the λ / 4 wave plate 26,
The reflected light is reflected by the reflection mirror 27, is incident on the beam expander lens system 25, is enlarged by the beam expander lens system 25, and is then converged via the lens 29 at a predetermined aperture angle α as an incident light flux I 0. The light enters the optical unit 103 via the reflection mirror 30 fixed inside.

【0048】光学ユニツト103に入射された入射光軸
0 は、λ/4波長板23によつて、電気ベクトルの振
動方向が光軸nと第3又は第4の反射面91C及び91
Dとを含む平面Zn3 又はZn4 に直交するような直線
偏光波に位相変調される。
The incident optical axis I 0 incident on the optical unit 103 is determined by the λ / 4 wavelength plate 23 so that the vibration direction of the electric vector is the optical axis n and the third or fourth reflecting surface 91C and 91.
The phase is modulated into a linearly polarized wave that is orthogonal to the plane Zn 3 or Zn 4 including D and.

【0049】この後ロータリミラー91の第3又は第4
の反射面91C及び91Dにおいて反射され、第1及び
第2の反射光束I1 及びI2 としてそれぞれ箱体102
の下側面に形成された窓を介してステージ31上に載置
された被検査基板32の被検査面32Aに対してS偏光
波として入射する。このとき第1及び第2の反射光束I
1 及びI2 は、モータ2の駆動に伴う光学ユニツト10
3の回転に応じて被検査基板32の被検査面32Aを円
弧状に走査する。
After this, the third or fourth rotary mirror 91 is used.
Of the box body 102 which is reflected by the reflecting surfaces 91C and 91D of the first and second reflected light beams I 1 and I 2 , respectively.
S-polarized waves are incident on the surface 32A to be inspected of the substrate 32 to be inspected mounted on the stage 31 through a window formed on the lower side surface of the substrate 31. At this time, the first and second reflected light fluxes I
1 and I 2 are optical units 10 associated with the driving of the motor 2.
According to the rotation of 3, the inspection surface 32A of the inspection substrate 32 is scanned in an arc shape.

【0050】この被検査基板32が載置されたステージ
31においては、モータ33と同期して駆動するアクチ
ユエータ34により、光学ユニツト24が180 〔°〕回
転する毎にステージ31を矢印xで示す方向に移動し得
るようになされ、かくして第1及び第2の反射光束I1
及びI2 が被検査基板32の被検査面32Aを全面に亘
つて走査し得るようになされている。
In the stage 31 on which the substrate 32 to be inspected is placed, an actuator 34, which is driven in synchronization with the motor 33, moves the stage 31 in the direction indicated by the arrow x every time the optical unit 24 rotates 180 [°]. To be moved to the first and second reflected light fluxes I 1
And I 2 can scan the inspected surface 32A of the inspected substrate 32 over the entire surface.

【0051】また上述した第1実施例の場合と同様に、
ステージ31の周囲には、第1及び第2の反射光束I1
及びI2 が被検査基板32の被検査面32Aを走査する
際に当該被検査面32Aに発生した散乱光を互いに異な
る空間方向から受光し得るように、集光レンズ及び受光
素子からなる受光部(図示せず)が光走査線を斜め上か
ら見込むように等間隔で円弧状に複数並設されている。
さらにこれら各受光部の受光結果を処理するための信号
処理部及び制御部(共に図示せず)が設けられている。
Further, as in the case of the first embodiment described above,
Around the stage 31, the first and second reflected light fluxes I 1
And I 2 is so as to receive light from different spatial directions and scattered light generated on the inspected surface 32A when scanning the inspected surface 32A of the substrate to be inspected 32, the light receiving portion comprising a condenser lens and a light receiving element A plurality of (not shown) are arranged in an arc shape at equal intervals so that the optical scanning line can be seen obliquely from above.
Further, a signal processing unit and a control unit (both not shown) for processing the light reception result of each of these light receiving units are provided.

【0052】(2−3)第2実施例の動作 以上の構成において、この異物検査装置100では、レ
ーザ光源25から射出された直線偏光波でなる光ビーム
L1をλ/4波長板26によつて円偏光波に位相変調し
た後、これを反射ミラー27、ビームエキスパンダレン
ズ系25、レンズ29及び反射ミラー30でなる光学系
を介して光走査装置21の光学ユニツト103にモータ
2の駆動軸2Aと光軸nを一致させて入射させる。
(2-3) Operation of the Second Embodiment With the above-mentioned configuration, in the foreign matter inspection device 100, the light beam L1 which is a linearly polarized wave emitted from the laser light source 25 is transmitted by the λ / 4 wavelength plate 26. After phase-modulating it into a circularly polarized wave, the optical axis 103 of the reflecting mirror 27, the beam expander lens system 25, the lens 29, and the reflecting mirror 30 is passed through the optical unit 103 of the optical scanning device 21 to drive the motor 2. 2A and the optical axis n are made to coincide and incident.

【0053】次いでこの入射光束I0 を光学ユニツト1
03のλ/4波長板23により直線偏光波でなる光ビー
ムに変換し、これをロータリミラー91の第3及び第4
の反射面91C及び91Dにおいて被検査基板32の被
検査面32Aに向けて発射すると共に、この際モータ2
を駆動して光学ユニツト103を回転させることによ
り、第1及び第2の反射光束I1 及びI2 に被検査基板
32の被検査面32Aを走査させる。
Then, the incident light beam I 0 is converted into an optical unit 1
The λ / 4 wave plate 23 of No. 03 converts the light beam into a linearly polarized light beam, and the third and fourth rotary mirrors 91 convert the light beam.
The reflective surfaces 91C and 91D are fired toward the surface 32A to be inspected of the board 32 to be inspected, and the motor 2
Is driven to rotate the optical unit 103 to scan the surface 32A to be inspected of the substrate 32 to be inspected with the first and second reflected light beams I 1 and I 2 .

【0054】さらにこのとき被検査基板32の被検査面
32Aに発生する散乱光を複数の受光素子を有する受光
部51〜67によつて受光し、これら受光部51〜67
の出力に基づいて信号処理部40において異物の有無を
検出する。
Further, at this time, scattered light generated on the surface 32A to be inspected of the substrate 32 to be inspected is received by the light receiving sections 51 to 67 having a plurality of light receiving elements, and these light receiving sections 51 to 67 are received.
The presence or absence of foreign matter is detected in the signal processing unit 40 based on the output of

【0055】さらにこの異物検査装置100では、上述
のように、光走査装置101から発射される入射光束I
0 の電気ベクトルの振動方向が光軸nと第3又は第4の
反射面91C及び91Dとを含む平面Zn3 又はZn4
に直交するような直線偏光波に位相変調され、従つて第
1及び第2の反射光束I1 及びI2 が光走査装置101
の光学ユニツト103の回転角に関わらず常にS偏光波
として被検査基板32の被検査面32Aに入射する。
Further, in the foreign matter inspection device 100, as described above, the incident light flux I emitted from the optical scanning device 101 is used.
A plane Zn 3 or Zn 4 in which the vibration direction of the electric vector of 0 includes the optical axis n and the third or fourth reflecting surfaces 91C and 91D.
Phase-modulated into a linearly polarized wave that is orthogonal to, and accordingly, the first and second reflected light fluxes I 1 and I 2 are
Regardless of the rotation angle of the optical unit 103, it is always incident on the inspection surface 32A of the inspection substrate 32 as an S-polarized wave.

【0056】従つてこの異物検査装置100では、被検
査基板32の被検査面32Aに入射させる光ビームの偏
光状態を考慮していなかつた従来の異物検査装置に比べ
て、より精度良く異物を検査することができる。
Therefore, the foreign matter inspection apparatus 100 inspects foreign matter with higher accuracy than the conventional foreign matter inspection apparatus which does not consider the polarization state of the light beam incident on the surface 32A to be inspected of the substrate 32 to be inspected. can do.

【0057】またロータリミラー11を互いに非直角で
なる第1及び第2の反射面91A及び91Bと同一平面
を形成する第3及び第4の反射面91C及び91Dとで
なる4つの平面ミラーから構成したことにより、モータ
2の駆動軸2Aに静的又は動的な軸振れが生じた場合、
第1及び2の反射光束I1 及びI2 が光軸nに対してな
す角度は、共に第1及び第2の反射面91A及び91B
のなす角度によつて決定され、従つて駆動軸2Aの光軸
nに対する偏移の度合いに関わらず常に一定値を示す。
この結果、モータ2の駆動軸2Aが光軸nに対して静的
又は動的に軸振れを生じても、第1及び第2の反射光束
1 及びI2 は共に第1〜第4の反射面91A〜91D
の面振れによる影響を受けることなく光走査され得る。
The rotary mirror 11 is composed of four plane mirrors, which are first and second reflecting surfaces 91A and 91B which are non-perpendicular to each other and third and fourth reflecting surfaces 91C and 91D which form the same plane. As a result, when static or dynamic shaft run-out occurs in the drive shaft 2A of the motor 2,
The angles formed by the first and second reflected light beams I 1 and I 2 with respect to the optical axis n are both the first and second reflecting surfaces 91A and 91B.
Is determined by the angle formed by, and thus always shows a constant value regardless of the degree of deviation of the drive shaft 2A with respect to the optical axis n.
As a result, even if the drive shaft 2A of the motor 2 statically or dynamically shakes the optical axis n, the first and second reflected light fluxes I 1 and I 2 are both Reflective surfaces 91A to 91D
The optical scanning can be performed without being affected by the surface wobbling.

【0058】(2−4)第2実施例の効果 以上の構成によれば、円偏光波でなる入射光束I0 をλ
/4波長板26において偏光状態が一定の直線偏光波の
第1及び第2の反射光束I1 及びI2 に変換すると共
に、当該第1及び第2の反射光束I1 及びI2 を被検査
基板32の被検査面32Aに入射するようにロータリミ
ラー91で偏向すると共にこれらλ/4波長板23及び
ロータリミラー91をモータ2によつて入射光束I0
光軸nを回転軸2Aとして回転させるようにして第1及
び第2の反射光束I1 及びI2 を被検査基板32の被検
査面32Aに走査させるようにしたことにより、被検査
基板32が大きい場合にも対応できると共に、精度良く
異物を検出することができる。
(2-4) Effects of the Second Embodiment According to the above configuration, the incident light flux I 0, which is a circularly polarized wave, is converted into λ.
/ 4 with polarization state converting first and second reflected light beams I 1 and I 2 of the constant linearly polarized wave in the wavelength plate 26, to be inspected the first and second reflected light beams I 1 and I 2 The λ / 4 wave plate 23 and the rotary mirror 91 are deflected by the rotary mirror 91 so as to be incident on the surface 32A to be inspected of the substrate 32 and rotated by the motor 2 with the optical axis n of the incident light beam I 0 as the rotation axis 2A. By making the first and second reflected light beams I 1 and I 2 scan the inspected surface 32A of the inspected substrate 32 in this way, it is possible to deal with the case where the inspected substrate 32 is large and the accuracy is improved. Foreign matter can be detected well.

【0059】さらにロータリミラー11を互いに非直角
でなる第1及び第2の反射面91A及び91Bと同一平
面を形成する第3及び第4の反射面91C及び91Dと
でなる4つの平面ミラーから構成したことにより、モー
タ2の駆動軸2Aに静的又は動的な軸振れが生じた場合
においても、第1及び第2の反射光束I1 及びI2 は共
に第1及び第2の反射面91A及び91Bのなす角度に
よつて決定され、従つて第1〜第4の反射面91A〜9
1Dの面振れによる影響を受けることなく光走査され得
る異物検査装置を実現することができる。
Further, the rotary mirror 11 is composed of four plane mirrors composed of first and second reflecting surfaces 91A and 91B which are non-perpendicular to each other and third and fourth reflecting surfaces 91C and 91D which form the same plane. As a result, even when the drive shaft 2A of the motor 2 undergoes static or dynamic shaft wobbling, the first and second reflected light fluxes I 1 and I 2 are both the first and second reflecting surfaces 91A. And 91B, and thus the first to fourth reflecting surfaces 91A to 9B.
It is possible to realize a foreign matter inspection apparatus that can perform optical scanning without being affected by 1D surface shake.

【0060】(3)他の実施例 なお上述の実施例においては、ステージ31の周囲に1
7個の受光部51〜67を設けた場合について述べた
が、本発明はこれに限らず、17個以外の所定数の受光
部を設けるようにしても良い。この場合、被検査基板3
2の被検査面32Aにおいて光学ユニツト24の 180
〔°〕回転分に相当する走査線Cを形成する第1及び第
2の反射光束I1 及びI2 を受光し得るように、所定数
の受光部を並設するようにする。
(3) Other Embodiments In the above-mentioned embodiment, one stage is provided around the stage 31.
Although the case where seven light receiving units 51 to 67 are provided has been described, the present invention is not limited to this, and a predetermined number of light receiving units other than 17 may be provided. In this case, the substrate to be inspected 3
180 of the optical unit 24 on the surface 32A to be inspected
[°] A predetermined number of light receiving portions are arranged in parallel so that the first and second reflected light beams I 1 and I 2 forming the scanning line C corresponding to the rotation amount can be received.

【0061】また上述の実施例においては、ロータリミ
ラー11、91をそれぞれ光軸nを中心とする平面に対
して面対称でなる形状とした場合について述べたが、本
発明はこれに限らず、このような面対称でなる形状でな
くとも良い。要は、光軸nに対して第1及び第2の反射
光束I1 及びI2 が第1及び第2の角度をなすように波
面分割されると共に、波面分割の中心位置を基準とした
回転軸2Aの回転方向に第1及び第2の反射光束I1
びI2 をそれぞれ偏向して被検査基板32の被検査面3
2Aに入射させ、回転軸2Aと光軸nとの相対的な角度
偏差に基づいて第1及び第2の角度の両方又はいずれか
一方が変化して生じる面振れ誤差を補償して第1及び第
2の角度を一定値に維持し得るように形成されたもので
あれば種々の形状のものを適用し得る。
Further, in the above-mentioned embodiment, the case where the rotary mirrors 11 and 91 each have a shape symmetrical with respect to the plane about the optical axis n is described, but the present invention is not limited to this. The shape does not have to be plane-symmetric. In short, the first and second reflected light fluxes I 1 and I 2 are wavefront-divided so as to form first and second angles with respect to the optical axis n, and rotation is performed with the center position of the wavefront division as a reference. The inspected surface 3 of the inspected substrate 32 is deflected by deflecting the first and second reflected light fluxes I 1 and I 2 in the rotation direction of the axis 2A.
2A, and compensates for a surface wobbling error that occurs when either or both of the first and second angles change based on the relative angular deviation between the rotation axis 2A and the optical axis n, and Various shapes can be applied as long as they are formed so as to maintain the second angle at a constant value.

【0062】さらに上述の実施例においては、偏光状態
調整手段としてλ/4波長板23を用いた場合について
述べたが、本発明はこれに限らず、ロータリミラー1
1、91によつて偏向された入射光束I0 が被検査基板
32の被検査面32Aに対して一定の偏向状態となるよ
うに入射光束I0 の偏光状態を調整し得るのもであれば
種々のものを適用し得る。
Further, in the above-mentioned embodiment, the case where the λ / 4 wavelength plate 23 is used as the polarization adjusting means has been described, but the present invention is not limited to this, and the rotary mirror 1 is used.
If also the incident light beam I 0 had it occurred deflected 1, 91 that can adjust the polarization state of the incident light beam I 0 as a constant polarization state with respect to the inspected surface 32A of the substrate to be inspected 32 Various ones can be applied.

【0063】[0063]

【発明の効果】上述のように本発明によれば、回転軸と
平行な第一の光軸に沿つて入射される入射光束を、第一
の光軸に対して第一の角度をなす第一の光束と第一の光
軸に対して第二の角度をなす第二の光束とに波面分割す
ると共に、波面分割の中心位置を基準とした回転軸の回
転方向に第一の光束及び第二の光束をそれぞれ偏向して
被光束照射物(被検査物)に入射させ、回転軸と第一の
光軸との相対的な角度偏差に基づいて第一の角度及び第
二の角度の両方又はいずれか一方が変化して生じる面振
れ誤差を補償して第一の角度及び第二の角度を一定値に
維持する光偏向手段を設けたことにより、回転駆動手段
の回転軸に静的又は動的な軸振れが生じた場合において
も、第1及び第2の光束は当該軸振れによる影響を受け
ることなく被光束照射物(被検査物)に対して物理的に
安定して走査させることができる光走査装置及び異物検
査装置を実現し得る。
As described above, according to the present invention, the incident light flux incident along the first optical axis parallel to the rotation axis makes a first angle with respect to the first optical axis. The first light beam and the second light beam forming a second angle with respect to the first optical axis are wavefront-divided, and the first light beam and the first light beam in the rotation direction of the rotation axis with reference to the center position of the wavefront division. Both of the first and second angles are deflected based on the relative angular deviation between the rotation axis and the first optical axis by deflecting the two light fluxes and making them incident on the irradiation object (inspection object). Alternatively, by providing an optical deflecting means for compensating a surface wobbling error caused by a change in either one of them and maintaining the first angle and the second angle at a constant value, the rotation axis of the rotation driving means is static or Even when dynamic axial runout occurs, the first and second light fluxes are not affected by the axial runout, and Ibutsu can realize an optical scanning device and foreign matter inspection apparatus capable of physically stable scanned relative (inspection object).

【0064】さらに光偏向手段によつて偏向された入射
光束が被光束照射物(被検査物)に対して一定の偏光状
態となるように入射光束の偏光状態を調整する偏光状態
調整手段を光走査装置に設けたことにより、被光束照射
物(被検査物)が大きい場合にも対応でき、かつ精度良
く異物を検出することができる光走査装置及び異物検査
装置を実現し得る。
Further, the polarization state adjusting means for adjusting the polarization state of the incident light beam so that the incident light beam deflected by the light deflecting means has a constant polarization state with respect to the light beam irradiation object (inspection object) By being provided in the scanning device, it is possible to realize an optical scanning device and a foreign matter inspection device which can cope with a case where a light beam irradiation object (inspection object) is large and can accurately detect a foreign matter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による光走査装置の構成を
示す側面図及び下面図である。
FIG. 1 is a side view and a bottom view showing the configuration of an optical scanning device according to a first embodiment of the present invention.

【図2】図1の光走査装置について正常時における反射
光束の様子を示す側面図である。
2 is a side view showing a state of a reflected light beam in a normal state of the optical scanning device of FIG.

【図3】図1の光走査装置について軸振れ時における反
射光束の様子を示す側面図である。
FIG. 3 is a side view showing a state of a reflected light beam when the optical scanning device of FIG. 1 is shaken.

【図4】本発明の第1実施例による異物検査装置の全体
構成を示す側面図である。
FIG. 4 is a side view showing the overall configuration of the foreign matter inspection device according to the first embodiment of the present invention.

【図5】本発明の第1実施例による異物検査装置の全体
構成を示す平面図である。
FIG. 5 is a plan view showing the overall configuration of a foreign matter inspection device according to the first embodiment of the present invention.

【図6】信号処理部の構成を示すブロツク図である。FIG. 6 is a block diagram showing a configuration of a signal processing unit.

【図7】本発明の第2実施例による光走査装置の構成を
示す側面図及び下面図である。
FIG. 7 is a side view and a bottom view showing the configuration of the optical scanning device according to the second embodiment of the present invention.

【図8】図7の光走査装置について正常時における反射
光束の様子を示す側面図である。
8 is a side view showing a state of reflected light flux in a normal state of the optical scanning device of FIG.

【図9】図1の光走査装置について軸振れ時における反
射光束の様子を示す側面図である。
9 is a side view showing a state of a reflected light beam when the optical scanning device of FIG. 1 is shaken.

【図10】本発明の第1実施例による異物検査装置の全
体構成を示す側面図である。
FIG. 10 is a side view showing the overall configuration of the foreign matter inspection apparatus according to the first embodiment of the present invention.

【図11】従来の光走査装置の構成を示す側面図及び下
面図である。
FIG. 11 is a side view and a bottom view showing a configuration of a conventional optical scanning device.

【符号の説明】[Explanation of symbols]

1、10、21、90、101……光走査装置、2……
モータ、2A……駆動軸、3、11、91……ロータリ
ミラー、20、100……異物検査装置、22、102
……箱体、23、26……λ/4波長板、24、103
……光学ユニツト、25……レーザ光源、31……ステ
ージ、32……被検査基板、32A……被検査面、40
……信号処理部、41……制御部、51〜67……受光
部。
1, 10, 21, 90, 101 ... Optical scanning device, 2 ...
Motor, 2A ... Drive shaft, 3, 11, 91 ... Rotary mirror, 20, 100 ... Foreign matter inspection device, 22, 102
...... Box, 23,26 ...... λ / 4 wave plate, 24,103
...... Optical unit, 25 ...... Laser light source, 31 ...... Stage, 32 ...... Inspected substrate, 32A ...... Inspected surface, 40
...... Signal processing unit, 41 ...... Control unit, 51 to 67 ...... Light receiving unit.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】回転軸を有する回転駆動手段と、 前記回転軸と平行な第一の光軸に沿つて入射される入射
光束を、前記第一の光軸に対して第一の角度をなす第一
の光束と前記第一の光軸に対して第二の角度をなす第二
の光束とに波面分割すると共に、前記波面分割の中心位
置を基準とした前記回転軸の回転方向に前記第一の光束
及び前記第二の光束をそれぞれ偏向して被光束照射物に
入射させ、さらに前記回転軸と前記第一の光軸との相対
的な角度偏差に基づいて前記第一の角度及び前記第二の
角度の両方又はいずれか一方が変化して生じる面振れ誤
差を補償して前記第一の角度及び前記第二の角度を一定
値に維持する光偏向手段とを具え、前記回転駆動手段
は、前記光偏向手段によつて波面分割され偏向された前
記第一の光束及び前記第二の光束が前記被光束照射物を
走査するように、前記回転軸を中心として前記光偏向手
段を一体に回転させることを特徴とする光走査装置。
1. A rotation driving means having a rotation axis, and an incident light beam incident along a first optical axis parallel to the rotation axis, forms a first angle with respect to the first optical axis. The wavefront division is performed into a first light flux and a second light flux forming a second angle with respect to the first optical axis, and the first light flux and the second light flux in the rotation direction of the rotation axis with reference to the center position of the wavefront division. The one light flux and the second light flux are respectively deflected to be incident on the object to be irradiated with the light flux, and further, the first angle and the first light axis are determined based on a relative angular deviation between the rotation axis and the first optical axis. Optical rotation means for compensating a surface wobbling error caused by a change in both or one of the second angles and maintaining the first angle and the second angle at constant values. Is the first light flux and the second light flux that have been wavefront-divided and deflected by the light deflection means. An optical scanning device characterized in that the light deflecting means is integrally rotated about the rotation axis so that a light beam scans the light beam irradiated object.
【請求項2】前記光偏向手段は、前記第一の光軸に対し
て第一の角度をなす第一の平面鏡と前記第一の光軸に対
して第二の角度をなす第二の平面鏡との2枚の平面鏡か
ら構成され、 前記第一の角度及び前記第二の角度は同一角度でなるこ
とを特徴とする請求項1に記載の光走査装置。
2. The light deflecting means comprises a first plane mirror forming a first angle with respect to the first optical axis and a second plane mirror forming a second angle with respect to the first optical axis. 2. The optical scanning device according to claim 1, wherein the first angle and the second angle are the same angle.
【請求項3】前記光偏向手段は、前記第一の光軸に対し
て第一の角度をなす第一の平面鏡と、前記第一の光軸に
対して第二の角度をなす第二の平面鏡と、前記回転軸に
直交する反射面を有する第三の平面鏡との3枚の平面鏡
の組合せにより構成され、 前記第一の角度は前記第一の光束の前記第一の平面鏡及
び前記第三の平面鏡による反射角に基づいて決定される
と共に、前記第二の角度は前記第一の光束の前記第二の
平面鏡及び前記第三の平面鏡による反射角に基づいて決
定されることを特徴とする請求項1に記載の光走査装
置。
3. The light deflecting means comprises a first plane mirror forming a first angle with respect to the first optical axis and a second plane mirror forming a second angle with respect to the first optical axis. It is configured by a combination of three plane mirrors of a plane mirror and a third plane mirror having a reflection surface orthogonal to the rotation axis, and the first angle is the first plane mirror and the third plane of the first light flux. And the second angle is determined based on the reflection angles of the first light flux by the second plane mirror and the third plane mirror. The optical scanning device according to claim 1.
【請求項4】前記光走査装置は、前記光偏向手段によつ
て偏向された前記入射光束が前記被光束照射物に対して
一定の偏光状態となるように前記入射光束の偏光状態を
調整する偏光状態調整手段を具え、前記回転駆動手段
は、前記光偏向手段によつて波面分割され偏向された前
記第一の光束及び前記第二の光束が前記被光束照射物を
走査するように、前記回転軸を中心として前記光偏向手
段及び前記偏光状態調整手段を一体に回転させることを
特徴とする請求項1に記載の光走査装置。
4. The optical scanning device adjusts a polarization state of the incident light flux so that the incident light flux deflected by the light deflecting means has a constant polarization state with respect to the object to be irradiated with the light flux. Polarization rotation adjusting means, the rotation driving means, the first light flux and the second light flux wave-divided and deflected by the light deflecting means, so as to scan the light beam irradiation object, The optical scanning device according to claim 1, wherein the optical deflecting unit and the polarization state adjusting unit are integrally rotated about a rotation axis.
【請求項5】前記偏光状態調整手段は、前記入射光束が
入射する前記光偏向手段の入射面と平行かつ前記回転軸
と直交する直線に対して、前記入射光束の偏光状態に応
じた所定角度だけ前記光偏向手段の前記入射面内におい
て光学軸が傾けられた波長板でなることを特徴とする請
求項4に記載の光走査装置。
5. The polarization state adjusting means has a predetermined angle corresponding to a polarization state of the incident light flux with respect to a straight line parallel to the incident surface of the light deflection means on which the incident light flux enters and orthogonal to the rotation axis. 5. The optical scanning device according to claim 4, wherein the optical scanning device comprises a wave plate whose optical axis is tilted only in the incident surface of the light deflecting means.
【請求項6】被検査物の被検査面に付着した異物の有無
を検査する異物検査装置において、 光束を発射する光源と、 回転軸を有する回転駆動手段と、 前記光束の光路上に配置され、前記回転軸と平行な第一
の光軸に沿つて入射される入射光束を、前記第一の光軸
に対して第一の角度をなす第一の光束と前記第一の光軸
に対して第二の角度をなす第二の光束とに波面分割する
と共に、前記波面分割の中心位置を基準とした前記回転
軸の回転方向に前記第一の光束及び前記第二の光束をそ
れぞれ偏向して前記被検査物の前記被検査面に入射さ
せ、さらに前記回転軸と前記第一の光軸との相対的な角
度偏差に基づいて前記第一の角度及び前記第二の角度の
両方又はいずれか一方が変化して生じる面振れ誤差を補
償して前記第一の角度及び前記第二の角度を一定値に維
持する光偏向手段と、 前記被検査物の前記被検査面に付着した前記異物により
発生される前記第一の光束及び前記第二の光束の散乱光
を受光し、受光した散乱光の強度に応じた電気信号を出
力する受光手段と、 前記受光手段から供給される前記電気信号に基づいて前
記異物を検出する信号処理手段とを具え、前記回転駆動
手段は、前記光偏向手段によつて波面分割され偏向され
た前記第一の光束及び前記第二の光束が前記被検査物の
前記被検査面を走査するように、前記回転軸を中心とし
て前記光偏向手段を一体に回転させることを特徴とする
異物検査装置。
6. A foreign matter inspection apparatus for inspecting the presence or absence of a foreign matter adhered to an inspected surface of an inspected object, a light source for emitting a light beam, a rotation driving means having a rotation axis, and an optical path for the light beam. , An incident light flux incident along a first optical axis parallel to the rotation axis, with respect to the first light flux and the first optical axis forming a first angle with respect to the first optical axis And a second light flux forming a second angle, and deflecting the first light flux and the second light flux in the rotation direction of the rotation axis with reference to the center position of the wavefront division. Incident on the surface to be inspected of the object to be inspected, and further based on a relative angular deviation between the rotation axis and the first optical axis, either or both of the first angle and the second angle. One of the first angle and the second Light deflecting means for maintaining the angle at a constant value, and receiving and receiving scattered light of the first light flux and the second light flux generated by the foreign matter attached to the inspection surface of the inspection object. The rotation driving means includes a light receiving unit that outputs an electric signal according to the intensity of scattered light, and a signal processing unit that detects the foreign matter based on the electric signal supplied from the light receiving unit. The light deflection means is integrated around the rotation axis so that the first light flux and the second light flux, which are wavefront-divided and deflected by the means, scan the surface to be inspected of the object to be inspected. A foreign matter inspection device characterized by being rotated.
【請求項7】前記光偏向手段は、前記第一の光軸に対し
て第一の角度をなす第一の平面鏡と前記第一の光軸に対
して第二の角度をなす第二の平面鏡との2枚の平面鏡か
ら構成され、 前記第一の角度及び前記第二の角度は同一角度でなるこ
とを特徴とする請求項6に記載の異物検査装置。
7. The light deflecting means comprises a first plane mirror forming a first angle with respect to the first optical axis and a second plane mirror forming a second angle with respect to the first optical axis. 7. The foreign matter inspection apparatus according to claim 6, wherein the first angle and the second angle are the same angle.
【請求項8】前記光偏向手段は、前記第一の光軸に対し
て第一の角度をなす第一の平面鏡と、前記第一の光軸に
対して第二の角度をなす第二の平面鏡と、前記回転軸に
直交する反射面を有する第三の平面鏡との3枚の平面鏡
の組合せにより構成され、 前記第一の角度は前記第一の光束の前記第一の平面鏡及
び前記第三の平面鏡による反射角に基づいて決定される
と共に、前記第二の角度は前記第一の光束の前記第二の
平面鏡及び前記第三の平面鏡による反射角に基づいて決
定されることを特徴とする請求項6に記載の異物検査装
置。
8. The light deflecting means comprises a first plane mirror forming a first angle with respect to the first optical axis and a second plane mirror forming a second angle with respect to the first optical axis. It is configured by a combination of three plane mirrors of a plane mirror and a third plane mirror having a reflection surface orthogonal to the rotation axis, and the first angle is the first plane mirror and the third plane of the first light flux. And the second angle is determined based on the reflection angles of the first light flux by the second plane mirror and the third plane mirror. The foreign matter inspection device according to claim 6.
【請求項9】前記光走査装置は、前記光偏向手段によつ
て偏向された前記入射光束が前記被光束照射物に対して
一定の偏光状態となるように前記入射光束の偏光状態を
調整する偏光状態調整手段を具え、前記回転駆動手段
は、前記光偏向手段によつて波面分割され偏向された前
記第一の光束及び前記第二の光束が前記被光束照射物を
走査するように、前記回転軸を中心として前記光偏向手
段及び前記偏光状態調整手段を一体に回転させることを
特徴とする請求項6に記載の異物検査装置。
9. The optical scanning device adjusts a polarization state of the incident light flux so that the incident light flux deflected by the light deflecting means has a constant polarization state with respect to the object to be irradiated with the light flux. Polarization rotation adjusting means, the rotation driving means, the first light flux and the second light flux wave-divided and deflected by the light deflecting means, so as to scan the light beam irradiation object, The foreign matter inspection apparatus according to claim 6, wherein the light deflection unit and the polarization state adjustment unit are integrally rotated about a rotation axis.
【請求項10】前記偏光状態調整手段は、前記入射光束
が入射する前記光偏向手段の入射面と平行かつ前記回転
軸と直交する直線に対して、前記入射光束の偏光状態に
応じた所定角度だけ前記光偏向手段の前記入射面内にお
いて光学軸が傾けられた波長板でなることを特徴とする
請求項9に記載の異物検査装置。
10. The polarization state adjusting means has a predetermined angle corresponding to a polarization state of the incident light flux with respect to a straight line parallel to the incident surface of the light deflection means on which the incident light flux enters and orthogonal to the rotation axis. The foreign matter inspection apparatus according to claim 9, wherein the foreign matter inspection apparatus is formed of a wave plate having an optical axis inclined only in the incident surface of the light deflector.
JP7317130A 1995-09-21 1995-11-10 Optical scanning device and foreign body inspection device Pending JPH09138364A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7317130A JPH09138364A (en) 1995-11-10 1995-11-10 Optical scanning device and foreign body inspection device
US08/715,638 US5736735A (en) 1995-09-21 1996-09-18 Optical scanning device and foreign matter inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7317130A JPH09138364A (en) 1995-11-10 1995-11-10 Optical scanning device and foreign body inspection device

Publications (1)

Publication Number Publication Date
JPH09138364A true JPH09138364A (en) 1997-05-27

Family

ID=18084781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7317130A Pending JPH09138364A (en) 1995-09-21 1995-11-10 Optical scanning device and foreign body inspection device

Country Status (1)

Country Link
JP (1) JPH09138364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067226A1 (en) * 2002-02-04 2003-08-14 Therma-Wave Inc. Rotating head ellipsometer
US6778273B2 (en) 2001-03-30 2004-08-17 Therma-Wave, Inc. Polarimetric scatterometer for critical dimension measurements of periodic structures
JP2011179823A (en) * 2010-02-26 2011-09-15 Hitachi High-Technologies Corp Defect inspection device and method of inspecting
WO2015151557A1 (en) * 2014-03-31 2015-10-08 株式会社日立ハイテクノロジーズ Defect inspection device and inspection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778273B2 (en) 2001-03-30 2004-08-17 Therma-Wave, Inc. Polarimetric scatterometer for critical dimension measurements of periodic structures
US6909507B2 (en) 2001-03-30 2005-06-21 Therma-Wave, Inc. Polarimetric scatterometry methods for critical dimension measurements of periodic structures
US7289219B2 (en) 2001-03-30 2007-10-30 Tokyo Electron Limited Polarimetric scatterometry methods for critical dimension measurements of periodic structures
US7471392B2 (en) 2001-03-30 2008-12-30 Tokyo Electron Limited Polarimetric scatterometry methods for critical dimension measurements of periodic structures
WO2003067226A1 (en) * 2002-02-04 2003-08-14 Therma-Wave Inc. Rotating head ellipsometer
US6882413B2 (en) 2002-02-04 2005-04-19 Therma-Wave, Inc. Rotating head ellipsometer
JP2011179823A (en) * 2010-02-26 2011-09-15 Hitachi High-Technologies Corp Defect inspection device and method of inspecting
WO2015151557A1 (en) * 2014-03-31 2015-10-08 株式会社日立ハイテクノロジーズ Defect inspection device and inspection method
JP2015197320A (en) * 2014-03-31 2015-11-09 株式会社日立ハイテクノロジーズ Defect inspection device and inspection method
US10228332B2 (en) 2014-03-31 2019-03-12 Hitachi High-Technologies Corporation Defect inspection device and defect inspection method

Similar Documents

Publication Publication Date Title
KR860002742A (en) Video pickup device
EP1393115B1 (en) Systems and methods for scanning a beam of light across a specimen
JPH10227621A (en) Surface inspecting apparatus and method
JPH09138364A (en) Optical scanning device and foreign body inspection device
US5736735A (en) Optical scanning device and foreign matter inspection apparatus
JPH08178857A (en) Foreign matter inspection device for large substrate
JPH10300851A (en) Distance measuring device
JPH09138198A (en) Defect inspection device
JPH07318504A (en) Foreign matter detecting light receiving system for wafer
US4388651A (en) Method and apparatus for generating a scanned optical output signal
JPH0989796A (en) Optical scanner and foreign matter inspection apparatus
JP3891418B2 (en) Laser Doppler vibrometer
JPS6313168B2 (en)
JPH0961366A (en) Differential interference microscope, and defect inspecting device using the same
JP2778577B2 (en) Light beam angle detector
JPH02134508A (en) Tilt detecting head
JP3304533B2 (en) Pinhole element
JP4103097B2 (en) Target surface position detection device
JPH05157533A (en) Measuring apparatus for pattern defect
JPH0298618A (en) Positioning detector
JPH10197336A (en) Laser beam-measuring apparatus
JP2505331B2 (en) Flat object size and defect measuring device
JPH10122831A (en) Surface inspection equipment
JPS5949537B2 (en) Defect detection device
JPH04116453A (en) Flaw inspecting apparatus